1
|
Givon L, Edut S, Klavir O. The role of fear and dopamine-striatal pathways in grooming. Neuropharmacology 2025; 269:110323. [PMID: 39880328 DOI: 10.1016/j.neuropharm.2025.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Fear is a fundamental emotion that triggers rapid and automatic behavioral response. Fear is known to suppress reward-seeking behaviors, interrupt previous activities to prioritize defensive responses and lead to rapid switch to defensive reactions. Dopamine (DA) plays a complicated role in the choice and performance of actions and it has a potential interaction of innate actions with the presence of fear. Here, in a series of experiments we explore the role of the different DA striatal pathways in mediating grooming, an innate behavior comprised of a structured sequence of repetitive actions, with or without the presence of fear. Using chemogenetics, we specifically inhibited the DA pathways projecting to the dorsolateral striatum (DLS), dorsomedial striatum (DMS), and ventral striatum (VS), while mice were engaged in a behavioral paradigm inducing grooming during the presentation of a fear related cue. We found that fear related cues consistently reduced grooming proportions and shortened induced grooming bouts, regardless of DA manipulation, indicating prioritization of freezing behavior in fearful contexts. This also suggests that fear responses may be mediated through pathways independent of DA-based action selection. The role of DA, however, varies depending on the specific striatal pathway. Inhibiting DLS DA input delayed grooming initiation and reduced grooming when competing with freezing. In contrast, DMS DA input had no effect on grooming, while inhibition of VS mesolimbic DA input increased grooming proportions and duration. These findings underscore the distinct and sometimes opposing roles of different DA-striatal pathways in modulating innate behaviors. We discuss potential implications of this duality in DA function for both theoretical and clinical fields.
Collapse
Affiliation(s)
- Lior Givon
- School of Psychological Sciences, The University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Shahaf Edut
- School of Psychological Sciences, The University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Oded Klavir
- School of Psychological Sciences, The University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
2
|
Wirtshafter HS, Solla SA, Disterhoft JF. A universal hippocampal memory code across animals and environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620127. [PMID: 39484538 PMCID: PMC11527332 DOI: 10.1101/2024.10.24.620127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
How learning is affected by context is a fundamental question of neuroscience, as the ability to generalize learning to different contexts is necessary for navigating the world. An example of swift contextual generalization is observed in conditioning tasks, where performance is quickly generalized from one context to another. A key question in identifying the neural substrate underlying this ability is how the hippocampus (HPC) represents task-related stimuli across different environments, given that HPC cells exhibit place-specific activity that changes across contexts (remapping). In this study, we used calcium imaging to monitor hippocampal neuron activity as rats performed a conditioning task across multiple spatial contexts. We investigated whether hippocampal cells, which encode both spatial locations (place cells) and task-related information, could maintain their task representation even when their spatial encoding remapped in a new spatial context. To assess the consistency of task representations, we used advanced dimensionality reduction techniques combined with machine learning to develop manifold representations of population level HPC activity. The results showed that task-related neural representations remained stable even as place cell representations of spatial context changed, thus demonstrating similar embedding geometries of neural representations of the task across different spatial contexts. Notably, these patterns were not only consistent within the same animal across different contexts but also significantly similar across different animals, suggesting a standardized neural encoding or 'neural syntax' in the hippocampus. These findings bridge a critical gap between memory and navigation research, revealing how the hippocampus maintains cognitive consistency across different spatial environments. These findings also suggest that hippocampal function is governed by a neural framework shared between animals, an observation that may have broad implications for understanding memory, learning, and related cognitive processes. Looking ahead, this work opens new avenues for exploring the fundamental principles underlying hippocampal encoding strategies.
Collapse
Affiliation(s)
- Hannah S Wirtshafter
- Department of Neuroscience, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| | - Sara A Solla
- Department of Neuroscience, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| | - John F Disterhoft
- Department of Neuroscience, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
Heagy FK, Clements KN, Adams CL, Blain E, Issa FA. Socially induced plasticity of the posterior tuberculum and motor behavior in zebrafish (Danio rerio). J Exp Biol 2024; 227:jeb248148. [PMID: 39422204 PMCID: PMC11626077 DOI: 10.1242/jeb.248148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Social dominance is prevalent throughout the animal kingdom. It facilitates the stabilization of social relationships and allows animals to divide resources according to social rank. Zebrafish form stable dominance relationships that consist of dominants and subordinates. Although social status-dependent differences in behavior must arise as a result of neural plasticity, mechanisms by which neural circuits are reconfigured to cope with social dominance are poorly described. Here, we describe how the posterior tuberculum nucleus (PTN), which integrates sensory social information to modulate spinal motor circuits, is morphologically and functionally influenced by social status. We combined non-invasive behavioral monitoring of motor activity (startle escape and swim) and histological approaches to investigate how social dominance affects the morphological structure, axosomatic synaptic connectivity and functional activity of the PTN in relation to changes in motor behavior. We show that dopaminergic cell number significantly increases in dominants compared with subordinates, while PTN synaptic interconnectivity, demonstrated with PSD-95 expression, is higher in subordinates than in dominants. Secondly, these socially induced morphological differences emerge after 1 week of dominance formation and correlate with differences in cellular activities illustrated with higher phosphor-S6 ribosomal protein expression in dominants compared with subordinates. Thirdly, these morphological differences are reversible as the social environment evolves and correlate with adaptations in startle escape and swim behaviors. Our results provide new insights into the neural bases of social behavior that may be applicable to other social species with similar structural and functional organization.
Collapse
Affiliation(s)
- Faith K. Heagy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Katie N. Clements
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Carrie L. Adams
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elena Blain
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Fadi A. Issa
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
4
|
Li J, Ning C, Liu Y, Deng B, Wang B, Shi K, Wang R, Fang R, Zhou C. The function of juvenile-adult transition axis in female sexual receptivity of Drosophila melanogaster. eLife 2024; 12:RP92545. [PMID: 39240259 PMCID: PMC11379460 DOI: 10.7554/elife.92545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic-pituitary-gonadal axis in mammals to trigger the juvenile-adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.
Collapse
Affiliation(s)
- Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yaohua Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguancun Life Sciences Park, Beijing, China
| | - Bingcai Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruixin Fang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chuan Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Long KLP, Hoglen NEG, Keip AJ, Klinkel RM, See DL, Maa J, Wong JC, Sherman M, Manoli DS. Oxytocin receptor function regulates neural signatures of pair bonding and fidelity in the nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.599940. [PMID: 38979148 PMCID: PMC11230272 DOI: 10.1101/2024.06.23.599940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The formation of enduring relationships dramatically influences future behavior, promoting affiliation between familiar individuals. How such attachments are encoded to elicit and reinforce specific social behaviors in distinct ethological contexts remains unknown. Signaling via the oxytocin receptor (Oxtr) in the nucleus accumbens (NAc) facilitates social reward as well as pair bond formation between mates in socially monogamous prairie voles 1-9 . How Oxtr function influences activity in the NAc during pair bonding to promote affiliative behavior with partners and rejection of other potential mates has not been determined. Using longitudinal in vivo fiber photometry in wild-type prairie voles and those lacking Oxtr, we demonstrate that Oxtr function sex-specifically regulates pair bonding behaviors and associated activity in the NAc. Oxtr function influences prosocial behavior in females in a state-dependent manner. Females lacking Oxtr demonstrate reduced prosocial behaviors and lower activity in the NAc during initial chemosensory investigation of novel males. Upon pair bonding, affiliative behavior with partners and neural activity in the NAc during these interactions increase, but these changes do not require Oxtr function. Conversely, males lacking Oxtr display increased prosocial investigation of novel females. Using the altered patterns of behavior and activity in the NAc of males lacking Oxtr during their first interactions with a female, we can predict their future preference for a partner or stranger days later. These results demonstrate that Oxtr function sex-specifically influences the early development of pair bonds by modulating prosociality and the neural processing of sensory cues and social interactions with novel individuals, unmasking underlying sex differences in the neural pathways regulating the formation of long-term relationships.
Collapse
|
6
|
Simpson JH. Descending control of motor sequences in Drosophila. Curr Opin Neurobiol 2024; 84:102822. [PMID: 38096757 PMCID: PMC11215313 DOI: 10.1016/j.conb.2023.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 02/18/2024]
Abstract
The descending neurons connecting the fly's brain to its ventral nerve cord respond to sensory stimuli and evoke motor programs of varying complexity. Anatomical characterization of the descending neurons and their synaptic connections suggests how these circuits organize movements, while optogenetic manipulation of their activity reveals what behaviors they can induce. Monitoring their responses to sensory stimuli or during behavior performance indicates what information they may encode. Recent advances in all three approaches make the descending neurons an excellent place to better understand the sensorimotor integration and transformation required for nervous systems to govern the motor sequences that constitute animal behavior.
Collapse
Affiliation(s)
- Julie H Simpson
- Dept. Molecular Cellular and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, USA.
| |
Collapse
|
7
|
Mishra S, Sharma N, Lone SR. Understanding the impact of sociosexual interactions on sleep using Drosophila melanogaster as a model organism. Front Physiol 2023; 14:1220140. [PMID: 37670770 PMCID: PMC10476103 DOI: 10.3389/fphys.2023.1220140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Sleep is conserved across species, and it is believed that a fixed amount of sleep is needed for normal neurobiological functions. Sleep rebound follows sleep deprivation; however, continuous sleep deprivation for longer durations is believed to be detrimental to the animal's wellbeing. Under some physiologically demanding situations, such as migration in birds, the birth of new offspring in cetaceans, and sexual interactions in pectoral sandpipers, animals are known to forgo sleep. The mechanisms by which animals forgo sleep without having any obvious negative impact on the proper functioning of their neurobiological processes are yet unknown. Therefore, a simple assay is needed to study how animals forgo sleep. The assay should be ecologically relevant so it can offer insights into the physiology of the organisms. Equally important is that the organism should be genetically amenable, which helps in understanding the cellular and molecular processes that govern such behaviors. This paper presents a simple method of sociosexual interaction to understand the process by which animals forgo sleep. In the case of Drosophila melanogaster, when males and females are in proximity, they are highly active and lose a significant amount of sleep. In addition, there is no sleep rebound afterward, and instead, males engaged in sexual interactions continue to show normal sleep. Thus, sexual drive in the fruit flies is a robust assay to understand the underlying mechanism by which animals forgo sleep.
Collapse
|
8
|
Palmateer CM, Artikis C, Brovero SG, Friedman B, Gresham A, Arbeitman MN. Single-cell transcriptome profiles of Drosophila fruitless-expressing neurons from both sexes. eLife 2023; 12:e78511. [PMID: 36724009 PMCID: PMC9891730 DOI: 10.7554/elife.78511] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023] Open
Abstract
Drosophila melanogaster reproductive behaviors are orchestrated by fruitless neurons. We performed single-cell RNA-sequencing on pupal neurons that produce sex-specifically spliced fru transcripts, the fru P1-expressing neurons. Uniform Manifold Approximation and Projection (UMAP) with clustering generates an atlas containing 113 clusters. While the male and female neurons overlap in UMAP space, more than half the clusters have sex differences in neuron number, and nearly all clusters display sex-differential expression. Based on an examination of enriched marker genes, we annotate clusters as circadian clock neurons, mushroom body Kenyon cell neurons, neurotransmitter- and/or neuropeptide-producing, and those that express doublesex. Marker gene analyses also show that genes that encode members of the immunoglobulin superfamily of cell adhesion molecules, transcription factors, neuropeptides, neuropeptide receptors, and Wnts have unique patterns of enriched expression across the clusters. In vivo spatial gene expression links to the clusters are examined. A functional analysis of fru P1 circadian neurons shows they have dimorphic roles in activity and period length. Given that most clusters are comprised of male and female neurons indicates that the sexes have fru P1 neurons with common gene expression programs. Sex-specific expression is overlaid on this program, to build the potential for vastly different sex-specific behaviors.
Collapse
Affiliation(s)
- Colleen M Palmateer
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Catherina Artikis
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Savannah G Brovero
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Benjamin Friedman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Alexis Gresham
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Michelle N Arbeitman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
- Program of Neuroscience, Florida State UniversityTallahasseeUnited States
| |
Collapse
|
9
|
Peng Q, Chen J, Pan Y. From fruitless to sex: On the generation and diversification of an innate behavior. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12772. [PMID: 34672079 DOI: 10.1111/gbb.12772] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Male sexual behavior in Drosophila melanogaster, largely controlled by the fruitless (fru) gene encoding the male specific FruM protein, is among the best studied animal behaviors. Although substantial studies suggest that FruM specifies a neuronal circuitry governing all aspects of male sexual behaviors, recent findings show that FruM is not absolutely necessary for such behaviors. We propose that another regulatory gene doublesex encoding the male-specific DsxM protein builds a core neuronal circuitry that possesses the potential for courtship, which could be either induced through adult social experience or innately manifested during development by FruM expression in a broader neuronal circuitry. FruM expression levels and patterns determine the modes of courtship behavior from innate heterosexual, homosexual, bisexual, to learned courtship. We discuss how FruM expression is regulated by hormones and social experiences and tunes functional flexibility of the sex circuitry. We propose that regulatory genes hierarchically build the potential for innate and learned aspects of courtship behaviors, and expression changes of these regulatory genes among different individuals and species with different social experiences ultimately lead to behavioral diversification.
Collapse
Affiliation(s)
- Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jie Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
10
|
Ryan TJ, Ortega-de San Luis C, Pezzoli M, Sen S. Engram cell connectivity: an evolving substrate for information storage. Curr Opin Neurobiol 2021; 67:215-225. [PMID: 33812274 DOI: 10.1016/j.conb.2021.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/02/2023]
Abstract
Understanding memory requires an explanation for how information can be stored in the brain in a stable state. The change in the brain that accounts for a given memory is referred to as an engram. In recent years, the term engram has been operationalized as the cells that are activated by a learning experience, undergoes plasticity, and are sufficient and necessary for memory recall. Using this framework, and a growing toolbox of related experimental techniques, engram manipulation has become a central topic in behavioral, systems, and molecular neuroscience. Recent research on the topic has provided novel insights into the mechanisms of long-term memory storage, and its overlap with instinct. We propose that memory and instinct may be embodied as isomorphic topological structures within the brain's microanatomical circuitry.
Collapse
Affiliation(s)
- Tomás J Ryan
- School of Biochemistry and Immunology and Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3052, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada.
| | - Clara Ortega-de San Luis
- School of Biochemistry and Immunology and Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Maurizio Pezzoli
- School of Biochemistry and Immunology and Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Siddhartha Sen
- Centre for Research on Adaptive Nanostructures and Nanodevices and School of Physics, Trinity College Dublin, D02 PN40, Ireland
| |
Collapse
|
11
|
Experience-dependent plasticity in an innate social behavior is mediated by hypothalamic LTP. Proc Natl Acad Sci U S A 2020; 117:25789-25799. [PMID: 32973099 PMCID: PMC7568289 DOI: 10.1073/pnas.2011782117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Modification of instinctive behaviors occurs through experience, yet the mechanisms through which this happens have remained largely unknown. Recent studies have shown that potentiation of aggression, an innate behavior, can occur through repeated winning of aggressive encounters. Here, we show that synaptic plasticity at a specific excitatory input to a hypothalamic cell population is correlated with, and required for, the expression of increasingly higher levels of aggressive behavior following aggressive experience. We additionally show that the amplitude and persistence of long-term potentiation at this synapse are influenced by serum testosterone, administration of which can normalize individual differences in the expression of intermale aggression among genetically identical mice. All animals can perform certain survival behaviors without prior experience, suggesting a “hard wiring” of underlying neural circuits. Experience, however, can alter the expression of innate behaviors. Where in the brain and how such plasticity occurs remains largely unknown. Previous studies have established the phenomenon of “aggression training,” in which the repeated experience of winning successive aggressive encounters across multiple days leads to increased aggressiveness. Here, we show that this procedure also leads to long-term potentiation (LTP) at an excitatory synapse, derived from the posteromedial part of the amygdalohippocampal area (AHiPM), onto estrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl). We demonstrate further that the optogenetic induction of such LTP in vivo facilitates, while optogenetic long-term depression (LTD) diminishes, the behavioral effect of aggression training, implying a causal role for potentiation at AHiPM→VMHvlEsr1 synapses in mediating the effect of this training. Interestingly, ∼25% of inbred C57BL/6 mice fail to respond to aggression training. We show that these individual differences are correlated both with lower levels of testosterone, relative to mice that respond to such training, and with a failure to exhibit LTP after aggression training. Administration of exogenous testosterone to such nonaggressive mice restores both behavioral and physiological plasticity. Together, these findings reveal that LTP at a hypothalamic circuit node mediates a form of experience-dependent plasticity in an innate social behavior, and a potential hormone-dependent basis for individual differences in such plasticity among genetically identical mice.
Collapse
|
12
|
Gibboney S, Orvis J, Kim K, Johnson CJ, Martinez-Feduchi P, Lowe EK, Sharma S, Stolfi A. Effector gene expression underlying neuron subtype-specific traits in the Motor Ganglion of Ciona. Dev Biol 2020; 458:52-63. [PMID: 31639337 PMCID: PMC6987015 DOI: 10.1016/j.ydbio.2019.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
The central nervous system of the Ciona larva contains only 177 neurons. The precise regulation of neuron subtype-specific morphogenesis and differentiation observed during the formation of this minimal connectome offers a unique opportunity to dissect gene regulatory networks underlying chordate neurodevelopment. Here we compare the transcriptomes of two very distinct neuron types in the hindbrain/spinal cord homolog of Ciona, the Motor Ganglion (MG): the Descending decussating neuron (ddN, proposed homolog of Mauthner Cells in vertebrates) and the MG Interneuron 2 (MGIN2). Both types are invariantly represented by a single bilaterally symmetric left/right pair of cells in every larva. Supernumerary ddNs and MGIN2s were generated in synchronized embryos and isolated by fluorescence-activated cell sorting for transcriptome profiling. Differential gene expression analysis revealed ddN- and MGIN2-specific enrichment of a wide range of genes, including many encoding potential "effectors" of subtype-specific morphological and functional traits. More specifically, we identified the upregulation of centrosome-associated, microtubule-stabilizing/bundling proteins and extracellular guidance cues part of a single intrinsic regulatory program that might underlie the unique polarization of the ddNs, the only descending MG neurons that cross the midline. Consistent with our predictions, CRISPR/Cas9-mediated, tissue-specific elimination of two such candidate effectors, Efcab6-related and Netrin1, impaired ddN polarized axon outgrowth across the midline.
Collapse
Affiliation(s)
- Susanne Gibboney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jameson Orvis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kwantae Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christopher J Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Elijah K Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sarthak Sharma
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
13
|
Datta SR, Anderson DJ, Branson K, Perona P, Leifer A. Computational Neuroethology: A Call to Action. Neuron 2019; 104:11-24. [PMID: 31600508 PMCID: PMC6981239 DOI: 10.1016/j.neuron.2019.09.038] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
The brain is worthy of study because it is in charge of behavior. A flurry of recent technical advances in measuring and quantifying naturalistic behaviors provide an important opportunity for advancing brain science. However, the problem of understanding unrestrained behavior in the context of neural recordings and manipulations remains unsolved, and developing approaches to addressing this challenge is critical. Here we discuss considerations in computational neuroethology-the science of quantifying naturalistic behaviors for understanding the brain-and propose strategies to evaluate progress. We point to open questions that require resolution and call upon the broader systems neuroscience community to further develop and leverage measures of naturalistic, unrestrained behavior, which will enable us to more effectively probe the richness and complexity of the brain.
Collapse
Affiliation(s)
| | - David J Anderson
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Pasadena, CA, 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kristin Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Pietro Perona
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew Leifer
- Department of Physics, Princeton University, Princeton, NJ 08544, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
14
|
Root-Bernstein M, Narayan T, Cornier L, Bourgeois A. Context-specific tool use by Sus cebifrons. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2019.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Andrew DJ, Chen EH, Manoli DS, Ryner LC, Arbeitman MN. Sex and the Single Fly: A Perspective on the Career of Bruce S. Baker. Genetics 2019; 212:365-376. [PMID: 31167898 PMCID: PMC6553822 DOI: 10.1534/genetics.119.301928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022] Open
Abstract
Bruce Baker, a preeminent Drosophila geneticist who made fundamental contributions to our understanding of the molecular genetic basis of sex differences, passed away July 1, 2018 at the age of 72. Members of Bruce's laboratory remember him as an intensely dedicated, rigorous, creative, deep-thinking, and fearless scientist. His trainees also remember his strong commitment to teaching students at every level. Bruce's career studying sex differences had three major epochs, where the laboratory was focused on: (1) sex determination and dosage compensation, (2) the development of sex-specific structures, and (3) the molecular genetic basis for sex differences in behavior. Several members of the Baker laboratory have come together to honor Bruce by highlighting some of the laboratory's major scientific contributions in these areas.
Collapse
Affiliation(s)
- Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Devanand S Manoli
- Department of Psychiatry, University of California, San Francisco, California 94158
- Weill Institute for Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, California 94158
| | - Lisa C Ryner
- Development Sciences Division, Roche Genentech, South San Francisco, California 94080
| | - Michelle N Arbeitman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
16
|
Garcés M, Finkel L. Emotional Theory of Rationality. Front Integr Neurosci 2019; 13:11. [PMID: 31024267 PMCID: PMC6463757 DOI: 10.3389/fnint.2019.00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/13/2019] [Indexed: 11/16/2022] Open
Abstract
In recent decades, the existence of a close relationship between emotional phenomena and rational processes has certainly been established, yet there is still no unified definition or effective model to describe them. To advance our understanding of the mechanisms governing the behavior of living beings, we must integrate multiple theories, experiments, and models from both fields. In this article we propose a new theoretical framework that allows integrating and understanding the emotion-cognition duality, from a functional point of view. Based on evolutionary principles, our reasoning adds to the definition and understanding of emotion, justifying its origin, explaining its mission and dynamics, and linking it to higher cognitive processes, mainly with attention, cognition, decision-making, and consciousness. According to our theory, emotions are the mechanism for brain function optimization, aside from the contingency and stimuli prioritization system. As a result of this approach, we have developed a dynamic systems-level model capable of providing plausible explanations for certain psychological and behavioral phenomena and establishing a new framework for the scientific definition of some fundamental psychological terms.
Collapse
Affiliation(s)
- Mario Garcés
- Department of Emotion, Cognition and Behavior Research, DAXNATUR S.L., Majadahonda, Spain
| | - Lucila Finkel
- Department of Sociology, Methodology and Theory, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Key B, Brown D. Designing Brains for Pain: Human to Mollusc. Front Physiol 2018; 9:1027. [PMID: 30127750 PMCID: PMC6088194 DOI: 10.3389/fphys.2018.01027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
There is compelling evidence that the "what it feels like" subjective experience of sensory stimuli arises in the cerebral cortex in both humans as well as mammalian experimental animal models. Humans are alone in their ability to verbally communicate their experience of the external environment. In other species, sensory awareness is extrapolated on the basis of behavioral indicators. For instance, cephalopods have been claimed to be sentient on the basis of their complex behavior and anecdotal reports of human-like intelligence. We have interrogated the findings of avoidance learning behavioral paradigms and classical brain lesion studies and conclude that there is no evidence for cephalopods feeling pain. This analysis highlighted the questionable nature of anthropometric assumptions about sensory experience with increased phylogenetic distance from humans. We contend that understanding whether invertebrates such as molluscs are sentient should first begin with defining the computational processes and neural circuitries underpinning subjective awareness. Using fundamental design principles, we advance the notion that subjective awareness is dependent on observer neural networks (networks that in some sense introspect the neural processing generating neural representations of sensory stimuli). This introspective process allows the observer network to create an internal model that predicts the neural processing taking place in the network being surveyed. Predictions arising from the internal model form the basis of a rudimentary form of awareness. We develop an algorithm built on parallel observer networks that generates multiple levels of sensory awareness. A network of cortical regions in the human brain has the appropriate functional properties and neural interconnectivity that is consistent with the predicted circuitry of the algorithm generating pain awareness. By contrast, the cephalopod brain lacks the necessary neural circuitry to implement such an algorithm. In conclusion, we find no compelling behavioral, functional, or neuroanatomical evidence to indicate that cephalopods feel pain.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Deborah Brown
- School of Historical and Philosophical Inquiry, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
doublesex alters aggressiveness as a function of social context and sex in the polyphenic beetle Onthophagus taurus. Anim Behav 2017; 132:261-269. [PMID: 28966347 DOI: 10.1016/j.anbehav.2017.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite sharing nearly the same genome, individuals within the same species can vary drastically in both morphology and behaviour as a function of developmental stage, sex or developmental plasticity. Thus, regulatory processes must exist that enable the stage-, sex- or environment-specific expression of traits and their integration during ontogeny, yet exactly how trait complexes are co-regulated and integrated is poorly understood. In this study, we explore the developmental genetic basis of the regulation and integration of environment-dependent sexual dimorphism in behaviour and morphology in the horn-polyphenic dung beetle Onthophagus taurus through the experimental manipulation of the transcription factor doublesex (dsx). The gene dsx plays a profound role in the developmental regulation of morphological differences between sexes as well as alternative male morphs by inhibiting horn formation in females but enabling nutrition-responsive horn growth in males. Specifically, we investigated whether experimental downregulation of dsx expression affects male and female aggressive and courtship behaviours in two social contexts: interactions between individuals of the same sex and interactions between males and females. We find that dsx downregulation significantly alters aggressiveness in both males and females, yet does so differently for both sexes as a function of social context: dsxRNAi males exhibited elevated aggression towards males but showed reduced aggression towards females, whereas dsxRNAi females became more aggressive towards males, while their aggressiveness towards other females was unaffected. Moreover, we document unexpectedly high levels of female aggression independent of dsx treatment in both wild-type and control-injected individuals. Lastly, we found no effects of dsxRNAi on courtship and mating behaviours. We discuss the role of dsx in the regulation of sex-specific and plastic behaviours, the unexpectedly high levels of aggression of hornless dsxRNAi males in relation to the well-established description of the hornless sneaker phenotype and the potential ecological function of high female aggression.
Collapse
|
19
|
Shirangi TR, Wong AM, Truman JW, Stern DL. Doublesex Regulates the Connectivity of a Neural Circuit Controlling Drosophila Male Courtship Song. Dev Cell 2017; 37:533-44. [PMID: 27326931 DOI: 10.1016/j.devcel.2016.05.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 11/26/2022]
Abstract
It is unclear how regulatory genes establish neural circuits that compose sex-specific behaviors. The Drosophila melanogaster male courtship song provides a powerful model to study this problem. Courting males vibrate a wing to sing bouts of pulses and hums, called pulse and sine song, respectively. We report the discovery of male-specific thoracic interneurons-the TN1A neurons-that are required specifically for sine song. The TN1A neurons can drive the activity of a sex-non-specific wing motoneuron, hg1, which is also required for sine song. The male-specific connection between the TN1A neurons and the hg1 motoneuron is regulated by the sexual differentiation gene doublesex. We find that doublesex is required in the TN1A neurons during development to increase the density of the TN1A arbors that interact with dendrites of the hg1 motoneuron. Our findings demonstrate how a sexual differentiation gene can build a sex-specific circuit motif by modulating neuronal arborization.
Collapse
Affiliation(s)
- Troy R Shirangi
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Allan M Wong
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
20
|
Memory Elicited by Courtship Conditioning Requires Mushroom Body Neuronal Subsets Similar to Those Utilized in Appetitive Memory. PLoS One 2016; 11:e0164516. [PMID: 27764141 PMCID: PMC5072562 DOI: 10.1371/journal.pone.0164516] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/25/2016] [Indexed: 11/19/2022] Open
Abstract
An animal’s ability to learn and to form memories is essential for its survival. The fruit fly has proven to be a valuable model system for studies of learning and memory. One learned behavior in fruit flies is courtship conditioning. In Drosophila courtship conditioning, male flies learn not to court females during training with an unreceptive female. He retains a memory of this training and for several hours decreases courtship when subsequently paired with any female. Courtship conditioning is a unique learning paradigm; it uses a positive-valence stimulus, a female fly, to teach a male to decrease an innate behavior, courtship of the female. As such, courtship conditioning is not clearly categorized as either appetitive or aversive conditioning. The mushroom body (MB) region in the fruit fly brain is important for several types of memory; however, the precise subsets of intrinsic and extrinsic MB neurons necessary for courtship conditioning are unknown. Here, we disrupted synaptic signaling by driving a shibirets effector in precise subsets of MB neurons, defined by a collection of split-GAL4 drivers. Out of 75 lines tested, 32 showed defects in courtship conditioning memory. Surprisingly, we did not have any hits in the γ lobe Kenyon cells, a region previously implicated in courtship conditioning memory. We did find that several γ lobe extrinsic neurons were necessary for courtship conditioning memory. Overall, our memory hits in the dopaminergic neurons (DANs) and the mushroom body output neurons were more consistent with results from appetitive memory assays than aversive memory assays. For example, protocerebral anterior medial DANs were necessary for courtship memory, similar to appetitive memory, while protocerebral posterior lateral 1 (PPL1) DANs, important for aversive memory, were not needed. Overall, our results indicate that the MB circuits necessary for courtship conditioning memory coincide with circuits necessary for appetitive memory.
Collapse
|
21
|
Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons. G3-GENES GENOMES GENETICS 2016; 6:2455-65. [PMID: 27247289 PMCID: PMC4978899 DOI: 10.1534/g3.115.019265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1) underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2-5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP) identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons.
Collapse
|
22
|
Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex. G3-GENES GENOMES GENETICS 2016; 6:1799-808. [PMID: 27172187 PMCID: PMC4938635 DOI: 10.1534/g3.116.027961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sex differences in gene expression have been widely studied in Drosophila melanogaster. Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx) mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation.
Collapse
|
23
|
Lone SR, Venkataraman A, Srivastava M, Potdar S, Sharma VK. Or47b-neurons promote male-mating success in Drosophila. Biol Lett 2016; 11:20150292. [PMID: 26018835 DOI: 10.1098/rsbl.2015.0292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Drosophila performs elaborate well-defined rituals of courtship, which involve several types of sensory inputs. Here, we report that Or47b-neurons promote male-mating success. Males with Or47b-neurons silenced/ablated exhibit reduced copulation frequency and increased copulation latency. Copulation latency of Or47b-manipulated flies increased proportionately with size of the assay arena, whereas in controls it remained unchanged. While competing for mates, Or47b-ablated males are outperformed by intact controls. These results suggest the role of Or47b-neurons in promoting male-mating success.
Collapse
Affiliation(s)
- Shahnaz Rahman Lone
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, PO Box 6436, Jakkur, Bangalore, Karnataka 560064, India
| | - Archana Venkataraman
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, PO Box 6436, Jakkur, Bangalore, Karnataka 560064, India
| | - Manishi Srivastava
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, PO Box 6436, Jakkur, Bangalore, Karnataka 560064, India
| | - Sheetal Potdar
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, PO Box 6436, Jakkur, Bangalore, Karnataka 560064, India
| | - Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, PO Box 6436, Jakkur, Bangalore, Karnataka 560064, India
| |
Collapse
|
24
|
Bayless DW, Shah NM. Genetic dissection of neural circuits underlying sexually dimorphic social behaviours. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150109. [PMID: 26833830 DOI: 10.1098/rstb.2015.0109] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 11/12/2022] Open
Abstract
The unique hormonal, genetic and epigenetic environments of males and females during development and adulthood shape the neural circuitry of the brain. These differences in neural circuitry result in sex-typical displays of social behaviours such as mating and aggression. Like other neural circuits, those underlying sex-typical social behaviours weave through complex brain regions that control a variety of diverse behaviours. For this reason, the functional dissection of neural circuits underlying sex-typical social behaviours has proved to be difficult. However, molecularly discrete neuronal subpopulations can be identified in the heterogeneous brain regions that control sex-typical social behaviours. In addition, the actions of oestrogens and androgens produce sex differences in gene expression within these brain regions, thereby highlighting the neuronal subpopulations most likely to control sexually dimorphic social behaviours. These conditions permit the implementation of innovative genetic approaches that, in mammals, are most highly advanced in the laboratory mouse. Such approaches have greatly advanced our understanding of the functional significance of sexually dimorphic neural circuits in the brain. In this review, we discuss the neural circuitry of sex-typical social behaviours in mice while highlighting the genetic technical innovations that have advanced the field.
Collapse
Affiliation(s)
- Daniel W Bayless
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nirao M Shah
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Versace E, Vallortigara G. Origins of Knowledge: Insights from Precocial Species. Front Behav Neurosci 2015; 9:338. [PMID: 26696856 PMCID: PMC4673401 DOI: 10.3389/fnbeh.2015.00338] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
Behavioral responses are influenced by knowledge acquired during the lifetime of an individual and by predispositions transmitted across generations. Establishing the origin of knowledge and the role of the unlearned component is a challenging task, given that both learned and unlearned knowledge can orient perception, learning, and the encoding of environmental features since the first stages of life. Ethical and practical issues constrain the investigation of unlearned knowledge in altricial species, including human beings. On the contrary, precocial animals can be tested on a wide range of tasks and capabilities immediately after birth and in controlled rearing conditions. Insects and precocial avian species are very convenient models to dissect the knowledge systems that enable young individuals to cope with their environment in the absence of specific previous experience. We present the state of the art of research on the origins of knowledge that comes from different models and disciplines. Insects have been mainly used to investigate unlearned sensory preferences and prepared learning mechanisms. The relative simplicity of the neural system and fast life cycle of insects make them ideal models to investigate the neural circuitry and evolutionary dynamics of unlearned traits. Among avian species, chicks of the domestic fowl have been the focus of many studies, and showed to possess unlearned knowledge in the sensory, physical, spatial, numerical and social domains. Solid evidence shows the existence of unlearned knowledge in different domains in several species, from sensory and social preferences to the left-right representation of the mental number line. We show how non-mammalian models of cognition, and in particular precocial species, can shed light into the adaptive value and evolutionary history of unlearned knowledge.
Collapse
Affiliation(s)
- Elisabetta Versace
- Animal Cognition and Neuroscience Laboratory, Center for Mind/Brain Sciences, University of Trento Rovereto, Italy
| | - Giorgio Vallortigara
- Animal Cognition and Neuroscience Laboratory, Center for Mind/Brain Sciences, University of Trento Rovereto, Italy
| |
Collapse
|
26
|
Berman GJ, Choi DM, Bialek W, Shaevitz JW. Mapping the stereotyped behaviour of freely moving fruit flies. J R Soc Interface 2015; 11:rsif.2014.0672. [PMID: 25142523 PMCID: PMC4233753 DOI: 10.1098/rsif.2014.0672] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A frequent assumption in behavioural science is that most of an animal's activities can be described in terms of a small set of stereotyped motifs. Here, we introduce a method for mapping an animal's actions, relying only upon the underlying structure of postural movement data to organize and classify behaviours. Applying this method to the ground-based behaviour of the fruit fly, Drosophila melanogaster, we find that flies perform stereotyped actions roughly 50% of the time, discovering over 100 distinguishable, stereotyped behavioural states. These include multiple modes of locomotion and grooming. We use the resulting measurements as the basis for identifying subtle sex-specific behavioural differences and revealing the low-dimensional nature of animal motions.
Collapse
Affiliation(s)
- Gordon J Berman
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Daniel M Choi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - William Bialek
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Joshua W Shaevitz
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
27
|
Bergan JF. Neural Computation and Neuromodulation Underlying Social Behavior. Integr Comp Biol 2015; 55:268-80. [PMID: 26089436 DOI: 10.1093/icb/icv061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Social behaviors are as diverse as the animals that employ them, with some behaviors, like affiliation and aggression, expressed in nearly all social species. Whether discussing a "family" of beavers or a "murder" of crows, the elaborate language we use to describe social animals immediately hints at patterns of behavior typical of each species. Neuroscience has now revealed a core network of regions of the brain that are essential for the production of social behavior. Like the behaviors themselves, neuromodulation and hormonal changes regulate the underlying neural circuits on timescales ranging from momentary events to an animal's lifetime. Dynamic and heavily interconnected social circuits provide a distinct challenge for developing a mechanistic understanding of social behavior. However, advances in neuroscience continue to generate an explanation of social behavior based on the electrical activity and synaptic connections of neurons embedded in defined neural circuits.
Collapse
Affiliation(s)
- Joseph F Bergan
- Department of Psychology and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
28
|
Hull R, Oosthuysen B, Cajee UF, Mokgohloa L, Nweke E, Antunes RJ, Coetzer THT, Ntwasa M. The Drosophila retinoblastoma binding protein 6 family member has two isoforms and is potentially involved in embryonic patterning. Int J Mol Sci 2015; 16:10242-66. [PMID: 25955646 PMCID: PMC4463644 DOI: 10.3390/ijms160510242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/13/2015] [Indexed: 12/16/2022] Open
Abstract
The human retinoblastoma binding protein 6 (RBBP6) is implicated in esophageal, lung, hepatocellular and colon cancers. Furthermore, RBBP6 was identified as a strong marker for colon cancer prognosis and as a predisposing factor in familial myeloproliferative neoplasms. Functionally, the mammalian protein interacts with p53 and enhances the activity of Mdm2, the prototypical negative regulator of p53. However, since RBBP6 (known as PACT in mice) exists in multiple isoforms and pact-/- mice exhibit a more severe phenotype than mdm2-/- mutants, it must possess some Mdm2-independent functions. The function of the invertebrate homologue is poorly understood. This is complicated by the absence of the Mdm2 gene in both Drosophila and Caenorhabditis elegans. We have experimentally identified the promoter region of Snama, the Drosophila homologue, analyzed potential transcription factor binding sites and confirmed the existence of an additional isoform. Using band shift and co-immunoprecipitation assays combined with mass spectrometry, we found evidence that this gene may be regulated by, amongst others, DREF, which regulates hundreds of genes related to cell proliferation. The potential transcription factors for Snama fall into distinct functional groups, including anteroposterior embryonic patterning and nucleic acid metabolism. Significantly, previous work in mice shows that pact-/- induces an anteroposterior phenotype in embryos when rescued by simultaneous deletion of p53. Taken together, these observations indicate the significance of RBBP6 proteins in carcinogenesis and in developmental defects.
Collapse
Affiliation(s)
- Rodney Hull
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| | - Brent Oosthuysen
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| | - Umar-Faruq Cajee
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| | - Lehlogonolo Mokgohloa
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| | - Ekene Nweke
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| | - Ricardo Jorge Antunes
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| | - Theresa H T Coetzer
- School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg campus); 3209 Scottsville, South Africa.
| | - Monde Ntwasa
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa Private Bag 3, WITS-2050 Johannesburg, South Africa.
| |
Collapse
|
29
|
Constraints on the evolution of a doublesex target gene arising from doublesex's pleiotropic deployment. Proc Natl Acad Sci U S A 2015; 112:E852-61. [PMID: 25675536 DOI: 10.1073/pnas.1501192112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
"Regulatory evolution," that is, changes in a gene's expression pattern through changes at its regulatory sequence, rather than changes at the coding sequence of the gene or changes of the upstream transcription factors, has been increasingly recognized as a pervasive evolution mechanism. Many somatic sexually dimorphic features of Drosophila melanogaster are the results of gene expression regulated by the doublesex (dsx) gene, which encodes sex-specific transcription factors (DSX(F) in females and DSX(M) in males). Rapid changes in such sexually dimorphic features are likely a result of changes at the regulatory sequence of the target genes. We focused on the Flavin-containing monooxygenase-2 (Fmo-2) gene, a likely direct dsx target, to elucidate how sexually dimorphic expression and its evolution are brought about. We found that dsx is deployed to regulate the Fmo-2 transcription both in the midgut and in fat body cells of the spermatheca (a female-specific tissue), through a canonical DSX-binding site in the Fmo-2 regulatory sequence. In the melanogaster group, Fmo-2 transcription in the midgut has evolved rapidly, in contrast to the conserved spermathecal transcription. We identified two cis-regulatory modules (CRM-p and CRM-d) that direct sexually monomorphic or dimorphic Fmo-2 transcription, respectively, in the midguts of these species. Changes of Fmo-2 transcription in the midgut from sexually dimorphic to sexually monomorphic in some species are caused by the loss of CRM-d function, but not the loss of the canonical DSX-binding site. Thus, conferring transcriptional regulation on a CRM level allows the regulation to evolve rapidly in one tissue while evading evolutionary constraints posed by other tissues.
Collapse
|
30
|
Mason RP, Breda C, Kooner GS, Mallucci GR, Kyriacou CP, Giorgini F. Modeling Huntington Disease in Yeast and Invertebrates. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
31
|
Zhou C, Pan Y, Robinett C, Meissner G, Baker B. Central Brain Neurons Expressing doublesex Regulate Female Receptivity in Drosophila. Neuron 2014; 83:149-63. [DOI: 10.1016/j.neuron.2014.05.038] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
|
32
|
Abstract
Sexually dimorphic behaviors, qualitative or quantitative differences in behaviors between the sexes, result from the activity of a sexually differentiated nervous system. Sensory cues and sex hormones control the entire repertoire of sexually dimorphic behaviors, including those commonly thought to be charged with emotion such as courtship and aggression. Such overarching control mechanisms regulate distinct genes and neurons that in turn specify the display of these behaviors in a modular manner. How such modular control is transformed into cohesive internal states that correspond to sexually dimorphic behavior is poorly understood. We summarize current understanding of the neural circuit control of sexually dimorphic behaviors from several perspectives, including how neural circuits in general, and sexually dimorphic neurons in particular, can generate sexually dimorphic behaviors, and how molecular mechanisms and evolutionary constraints shape these behaviors. We propose that emergent themes such as the modular genetic and neural control of dimorphic behavior are broadly applicable to the neural control of other behaviors.
Collapse
Affiliation(s)
- Cindy F Yang
- Program in Neuroscience, University of California San Francisco, MC2722, San Francisco, CA 94158, USA; Department of Anatomy, University of California San Francisco, MC2722, San Francisco, CA 94158, USA
| | - Nirao M Shah
- Department of Anatomy, University of California San Francisco, MC2722, San Francisco, CA 94158, USA.
| |
Collapse
|
33
|
Vaughan AG, Zhou C, Manoli DS, Baker BS. Neural pathways for the detection and discrimination of conspecific song in D. melanogaster. Curr Biol 2014; 24:1039-49. [PMID: 24794294 DOI: 10.1016/j.cub.2014.03.048] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/28/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND During courtship, male Drosophila melanogaster sing a multipart courtship song to female flies. This song is of particular interest because (1) it is species specific and varies widely within the genus, (2) it is a gating stimulus for females, who are sensitive detectors of conspecific song, and (3) it is the only sexual signal that is under both neural and genetic control. This song is perceived via mechanosensory neurons in the antennal Johnston's organ, which innervate the antennal mechanosensory and motor center (AMMC) of the brain. However, AMMC outputs that are responsible for detection and discrimination of conspecific courtship song remain unknown. RESULTS Using a large-scale anatomical screen of AMMC interneurons, we identify seven projection neurons (aPNs) and five local interneurons (aLNs) that outline a complex architecture for the ascending mechanosensory pathway. Neuronal inactivation and hyperactivation during behavior reveal that only two classes of interneurons are necessary for song responses--the projection neuron aPN1 and GABAergic interneuron aLN(al). These neurons are necessary in both male and female flies. Physiological recordings in aPN1 reveal the integration of courtship song as a function of pulse rate and outline an intracellular transfer function that likely facilitates the response to conspecific song. CONCLUSIONS These results reveal a critical pathway for courtship hearing in male and female flies, in which both aLN(al) and aPN1 mediate the detection of conspecific song. The pathways arising from these neurons likely serve as a critical neural substrate for behavioral reproductive isolation in D. melanogaster.
Collapse
Affiliation(s)
| | - Chuan Zhou
- Janelia Farm Research Campus, HHMI, Ashburn, VA 20147, USA
| | | | - Bruce S Baker
- Janelia Farm Research Campus, HHMI, Ashburn, VA 20147, USA.
| |
Collapse
|
34
|
Genetic identification and separation of innate and experience-dependent courtship behaviors in Drosophila. Cell 2014; 156:236-48. [PMID: 24439379 PMCID: PMC4677784 DOI: 10.1016/j.cell.2013.11.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/26/2013] [Accepted: 11/13/2013] [Indexed: 12/23/2022]
Abstract
Wild-type D. melanogaster males innately possess the ability to perform a multistep courtship ritual to conspecific females. The potential for this behavior is specified by the male-specific products of the fruitless (fru(M)) gene; males without fru(M) do not court females when held in isolation. We show that such fru(M) null males acquire the potential for courtship when grouped with other flies; they apparently learn to court flies with which they were grouped, irrespective of sex or species and retain this behavior for at least a week. The male-specific product of the doublesex gene (dsx(M)) is necessary and sufficient for the acquisition of the potential for such experience-dependent courtship. These results reveal a process that builds, via dsx(M) and social experience, the potential for a more flexible sexual behavior, which could be evolutionarily conserved as dsx-related genes that function in sexual development are found throughout the animal kingdom.
Collapse
|
35
|
Evolution under monogamy feminizes gene expression in Drosophila melanogaster. Nat Commun 2014; 5:3482. [PMID: 24637641 DOI: 10.1038/ncomms4482] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/20/2014] [Indexed: 12/16/2022] Open
Abstract
Many genes have evolved sexually dimorphic expression as a consequence of divergent selection on males and females. However, because the sexes share a genome, the extent to which evolution can shape gene expression independently in each sex is controversial. Here, we use experimental evolution to reveal suboptimal sex-specific expression for much of the genome. By enforcing a monogamous mating system in populations of Drosophila melanogaster for over 100 generations, we eliminated major components of selection on males: female choice and male-male competition. If gene expression is subject to sexually antagonistic selection, relaxed selection on males should cause evolution towards female optima. Monogamous males and females show this pattern of feminization in both the whole-body and head transcriptomes. Genes with male-biased expression patterns evolved decreased expression under monogamy, while genes with female-biased expression evolved increased expression, relative to polygamous populations. Our results demonstrate persistent and widespread evolutionary tension between male and female adaptation.
Collapse
|
36
|
Dalton JE, Fear JM, Knott S, Baker BS, McIntyre LM, Arbeitman MN. Male-specific Fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains. BMC Genomics 2013; 14:659. [PMID: 24074028 PMCID: PMC3852243 DOI: 10.1186/1471-2164-14-659] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/20/2013] [Indexed: 11/25/2022] Open
Abstract
Background Drosophila melanogaster adult males perform an elaborate courtship ritual to entice females to mate. fruitless (fru), a gene that is one of the key regulators of male courtship behavior, encodes multiple male-specific isoforms (FruM). These isoforms vary in their carboxy-terminal zinc finger domains, which are predicted to facilitate DNA binding. Results By over-expressing individual FruM isoforms in fru-expressing neurons in either males or females and assaying the global transcriptional response by RNA-sequencing, we show that three FruM isoforms have different regulatory activities that depend on the sex of the fly. We identified several sets of genes regulated downstream of FruM isoforms, including many annotated with neuronal functions. By determining the binding sites of individual FruM isoforms using SELEX we demonstrate that the distinct zinc finger domain of each FruM isoforms confers different DNA binding specificities. A genome-wide search for these binding site sequences finds that the gene sets identified as induced by over-expression of FruM isoforms in males are enriched for genes that contain the binding sites. An analysis of the chromosomal distribution of genes downstream of FruM shows that those that are induced and repressed in males are highly enriched and depleted on the X chromosome, respectively. Conclusions This study elucidates the different regulatory and DNA binding activities of three FruM isoforms on a genome-wide scale and identifies genes regulated by these isoforms. These results add to our understanding of sex chromosome biology and further support the hypothesis that in some cell-types genes with male-biased expression are enriched on the X chromosome.
Collapse
Affiliation(s)
- Justin E Dalton
- Biomedical Sciences Department and Program in Neuroscience, Florida State University, College of Medicine, Tallahassee, FL 32303, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Fernández MP, Kravitz EA. Aggression and courtship in Drosophila: pheromonal communication and sex recognition. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:1065-76. [PMID: 24043358 DOI: 10.1007/s00359-013-0851-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/12/2013] [Accepted: 08/18/2013] [Indexed: 01/19/2023]
Abstract
Upon encountering a conspecific in the wild, males have to rapidly detect, integrate and process the most relevant signals to evoke an appropriate behavioral response. Courtship and aggression are the most important social behaviors in nature for procreation and survival: for males, making the right choice between the two depends on the ability to identify the sex of the other individual. In flies as in most species, males court females and attack other males. Although many sensory modalities are involved in sex recognition, chemosensory communication mediated by specific molecules that serve as pheromones plays a key role in helping males distinguish between courtship and aggression targets. The chemosensory signals used by flies include volatile and non-volatile compounds, detected by the olfactory and gustatory systems. Recently, several putative olfactory and gustatory receptors have been identified that play key roles in sex recognition, allowing investigators to begin to map the neuronal circuits that convey this sensory information to higher processing centers in the brain. Here, we describe how Drosophila melanogaster males use taste and smell to make correct behavioral choices.
Collapse
|
38
|
Fan P, Manoli DS, Ahmed OM, Chen Y, Agarwal N, Kwong S, Cai AG, Neitz J, Renslo A, Baker BS, Shah NM. Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 2013; 154:89-102. [PMID: 23810192 PMCID: PMC3823234 DOI: 10.1016/j.cell.2013.06.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 04/12/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022]
Abstract
Genetically hard-wired neural mechanisms must enforce behavioral reproductive isolation because interspecies courtship is rare even in sexually naïve animals of most species. We find that the chemoreceptor Gr32a inhibits male D. melanogaster from courting diverse fruit fly species. Gr32a recognizes nonvolatile aversive cues present on these reproductively dead-end targets, and activity of Gr32a neurons is necessary and sufficient to inhibit interspecies courtship. Male-specific Fruitless (Fru(M)), a master regulator of courtship, also inhibits interspecies courtship. Gr32a and Fru(M) are not coexpressed, but Fru(M) neurons contact Gr32a neurons, suggesting that these genes influence a shared neural circuit that inhibits interspecies courtship. Gr32a and Fru(M) also suppress within-species intermale courtship, but we show that distinct mechanisms preclude sexual displays toward conspecific males and other species. Although this chemosensory pathway does not inhibit interspecies mating in D. melanogaster females, similar mechanisms appear to inhibit this behavior in many other male drosophilids.
Collapse
Affiliation(s)
- Pu Fan
- State Key Laboratory of Biomembrane and Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Devanand S. Manoli
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Dept. of Psychiatry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Osama M. Ahmed
- Neuroscience Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yi Chen
- Dept. of Biological Chemistry, HHMI, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Neha Agarwal
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sara Kwong
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Allen G. Cai
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Neitz
- Small Molecule Discovery Center, Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam Renslo
- Small Molecule Discovery Center, Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Bruce S. Baker
- Janelia Farm Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Nirao M. Shah
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Neuroscience Program, University of California San Francisco, San Francisco, CA 94158, USA
- Correspondence:
| |
Collapse
|
39
|
Latham KL, Liu YS, Taylor BJ. A small cohort of FRU(M) and Engrailed-expressing neurons mediate successful copulation in Drosophila melanogaster. BMC Neurosci 2013; 14:57. [PMID: 23688386 PMCID: PMC3664081 DOI: 10.1186/1471-2202-14-57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Drosophila, male flies require the expression of the male-specific Fruitless protein (FRU(M)) within the developing pupal and adult nervous system in order to produce male courtship and copulation behaviors. Recent evidence has shown that specific subsets of FRU(M) neurons are necessary for particular steps of courtship and copulation. In these neurons, FRU(M) function has been shown to be important for determining sex-specific neuronal characteristics, such as neurotransmitter profile and morphology. RESULTS We identified a small cohort of FRU(M) interneurons in the brain and ventral nerve cord by their co-expression with the transcription factor Engrailed (En). We used an En-GAL4 driver to express a fru(M) RNAi construct in order to selectively deplete FRU(M) in these En/FRU(M) co-expressing neurons. In courtship and copulation tests, these males performed male courtship at wild-type levels but were frequently sterile. Sterility was a behavioral phenotype as these En-fru(M)RNAi males were less able to convert a copulation attempt into a stable copulation, or did not maintain copulation for long enough to transfer sperm and/or seminal fluid. CONCLUSIONS We have identified a population of interneurons necessary for successful copulation in Drosophila. These data confirm a model in which subsets of FRU(M) neurons participate in independent neuronal circuits necessary for individual steps of male behavior. In addition, we have determined that these neurons in wild-type males have homologues in females and fru mutants, with similar placement, projection patterns, and neurochemical profiles.
Collapse
Affiliation(s)
- Kristin L Latham
- Department of Zoology, Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331-2914, USA.
| | | | | |
Collapse
|
40
|
Meier N, Käppeli SC, Hediger Niessen M, Billeter JC, Goodwin SF, Bopp D. Genetic control of courtship behavior in the housefly: evidence for a conserved bifurcation of the sex-determining pathway. PLoS One 2013; 8:e62476. [PMID: 23630634 PMCID: PMC3632534 DOI: 10.1371/journal.pone.0062476] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/21/2013] [Indexed: 12/30/2022] Open
Abstract
In Drosophila melanogaster, genes of the sex-determination hierarchy orchestrate the development and differentiation of sex-specific tissues, establishing sex-specific physiology and neural circuitry. One of these sex-determination genes, fruitless (fru), plays a key role in the formation of neural circuits underlying Drosophila male courtship behavior. Conservation of fru gene structure and sex-specific expression has been found in several insect orders, though it is still to be determined whether a male courtship role for the gene is employed in these species due to the lack of mutants and homologous experimental evidence. We have isolated the fru ortholog (Md-fru) from the common housefly, Musca domestica, and show the gene's conserved genomic structure. We demonstrate that male-specific Md-fru transcripts arise by conserved mechanisms of sex-specific splicing. Here we show that Md-fru, is similarly involved in controlling male courtship behavior. A male courtship behavioral function for Md-fru was revealed by the behavioral and neuroanatomical analyses of a hypomorphic allele, Md-tra(man) , which specifically disrupted the expression of Md-fru in males, leading to severely impaired male courtship behavior. In line with a role in nervous system development, we found that expression of Md-fru was confined to neural tissues in the brain, most prominently in optic neuropil and in peripheral sensory organs. We propose that, like in Drosophila, overt sexual differentiation of the housefly depends on a sex-determining pathway that bifurcates downstream of the Md-tra gene to coordinate dimorphic development of non-neuronal tissues mediated by Md-dsx with that of neuronal tissues largely mediated by Md-fru.
Collapse
Affiliation(s)
- Nicole Meier
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | | | | | | - Stephen F. Goodwin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Daniel Bopp
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
41
|
Abstract
Many complex behaviors are genetically hardwired. Based on previous findings on genetic control of mating and other behaviors in invertebrate and mammalian systems, I suggest that genetic control of complex behaviors is modular: first, dedicated genes specify different behavioral patterns; secondly, separable genetic networks govern distinct behavioral components. I speculate that modular genetic encoding of complex behaviors may in part reflect modularity in brain development and function. Editor's suggested further reading in BioEssays From songs to synapses: Molecular mechanisms of birdsong memory Abstract.
Collapse
Affiliation(s)
- Xiaohong Xu
- Institute of Neuroscience, Shanghai Institute of Biological Sciences, Chinese Academy of Science, P. R. China.
| |
Collapse
|
42
|
Van Wielendaele P, Wynant N, Dillen S, Zels S, Badisco L, Vanden Broeck J. Neuropeptide F regulates male reproductive processes in the desert locust, Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:252-259. [PMID: 23295785 DOI: 10.1016/j.ibmb.2012.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/08/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
Although Neuropeptide F (NPF) has been identified in different insect species, its function has mainly been studied in the fruit fly, Drosophila melanogaster, where it regulates diverse physiological processes, such as learning, stress responses and male courtship behavior. In locusts, only a truncated form of the "full-length" NPF (the biologically active "trNPF") has been isolated. This 9 AA peptide stimulates oocyte maturation, food intake and weight increase in adult desert locusts (Schistocerca gregaria [Forskål]). In this study, we investigated whether this peptide is also involved in the regulation of male reproductive physiology in this orthopteran species. Daily injections of trNPF in adult males resulted in proportionally heavier testes and seminal vesicles, while RNAi-mediated knockdown of the Schgr-NPF precursor transcript gave rise to proportionally lighter testes and seminal vesicles. Furthermore, adult males precociously displayed courtship behavior when injected daily with trNPF, while this behavior was inhibited or delayed by RNAi knockdown of the Schgr-NPF precursor transcript. In order to further analyze these effects of trNPF on male reproductive physiology, fertility of males was tested by analyzing progeny numbers following copulation with untreated females. In this way, we showed that daily trNPF injection in adult males resulted in a larger egg pod size and a higher percentage of hatched eggs per egg pod after copulation, while RNAi knockdown caused the opposite effects. Taken together, we provide clear evidence for a role of trNPF in the regulation of reproductive physiology in adult males of the desert locust, S. gregaria. Possible modes of action of trNPF in influencing these reproductive processes in male locusts are discussed.
Collapse
Affiliation(s)
- Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
43
|
Hoxha V, Lama C, Chang PL, Saurabh S, Patel N, Olate N, Dauwalder B. Sex-specific signaling in the blood-brain barrier is required for male courtship in Drosophila. PLoS Genet 2013; 9:e1003217. [PMID: 23359644 PMCID: PMC3554526 DOI: 10.1371/journal.pgen.1003217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/20/2012] [Indexed: 01/12/2023] Open
Abstract
Soluble circulating proteins play an important role in the regulation of mating behavior in Drosophila melanogaster. However, how these factors signal through the blood–brain barrier (bbb) to interact with the sex-specific brain circuits that control courtship is unknown. Here we show that male identity of the blood–brain barrier is necessary and that male-specific factors in the bbb are physiologically required for normal male courtship behavior. Feminization of the bbb of adult males significantly reduces male courtship. We show that the bbb–specific G-protein coupled receptor moody and bbb–specific Go signaling in adult males are necessary for normal courtship. These data identify sex-specific factors and signaling processes in the bbb as important regulators of male mating behavior. Complex behaviors such as mating behavior are controlled by the brain. Ensembles of brain cells work in networks to ensure proper behavior at the right time. While the state of these cells plays an important role in whether and how the behavior is displayed, information from outside the brain is also required. Often, this information is provided by hormones that are present in the circulating fluid (such as the blood). However, the brain is protected by a layer of very tight cells, the so-called blood–brain barrier, that keeps unwanted molecules out. So how then do hormones and other regulatory factors “talk” to the brain? We are studying this question by examining the mating behavior of males of a model organism, the fruit fly Drosophila melanogaster. We have found that the blood–brain barrier cells themselves contain male-specific molecules that play an important role. When they are absent, courtship behavior is compromised. We have also identified how outside factors talk to the brain: by using a cellular signaling protein and a particular signaling pathway. Together they are well suited to pass on outside information to the brain network that regulates mating behavior.
Collapse
Affiliation(s)
- Valbona Hoxha
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Chamala Lama
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Peter L. Chang
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Sumit Saurabh
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Naiya Patel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Nicole Olate
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Mellert DJ, Robinett CC, Baker BS. doublesex functions early and late in gustatory sense organ development. PLoS One 2012; 7:e51489. [PMID: 23240029 PMCID: PMC3519885 DOI: 10.1371/journal.pone.0051489] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/02/2012] [Indexed: 01/05/2023] Open
Abstract
Somatic sexual dimorphisms outside of the nervous system in Drosophila melanogaster are largely controlled by the male- and female-specific Doublesex transcription factors (DSX(M) and DSX(F), respectively). The DSX proteins must act at the right times and places in development to regulate the diverse array of genes that sculpt male and female characteristics across a variety of tissues. To explore how cellular and developmental contexts integrate with doublesex (dsx) gene function, we focused on the sexually dimorphic number of gustatory sense organs (GSOs) in the foreleg. We show that DSX(M) and DSX(F) promote and repress GSO formation, respectively, and that their relative contribution to this dimorphism varies along the proximodistal axis of the foreleg. Our results suggest that the DSX proteins impact specification of the gustatory sensory organ precursors (SOPs). DSX(F) then acts later in the foreleg to regulate gustatory receptor neuron axon guidance. These results suggest that the foreleg provides a unique opportunity for examining the context-dependent functions of DSX.
Collapse
Affiliation(s)
- David J. Mellert
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Biology Department, Stanford University, Stanford, California, United States of America
| | - Carmen C. Robinett
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| | - Bruce S. Baker
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Biology Department, Stanford University, Stanford, California, United States of America
| |
Collapse
|
45
|
Identification of gene expression changes associated with long-term memory of courtship rejection in Drosophila males. G3-GENES GENOMES GENETICS 2012; 2:1437-45. [PMID: 23173095 PMCID: PMC3484674 DOI: 10.1534/g3.112.004119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/16/2012] [Indexed: 11/18/2022]
Abstract
Long-term memory formation in Drosophila melanogaster is an important neuronal function shaping the insect’s behavioral repertoire by allowing an individual to modify behaviors on the basis of previous experiences. In conditioned courtship or courtship suppression, male flies that have been repeatedly rejected by mated females during courtship advances are less likely than naïve males to subsequently court another mated female. This long-term courtship suppression can last for several days after the initial rejection period. Although genes with known functions in many associative learning paradigms, including those that function in cyclic AMP signaling and RNA translocation, have been identified as playing critical roles in long-term conditioned courtship, it is clear that additional mechanisms also contribute. We have used RNA sequencing to identify differentially expressed genes and transcript isoforms between naïve males and males subjected to courtship-conditioning regimens that are sufficient for inducing long-term courtship suppression. Transcriptome analyses 24 hours after the training regimens revealed differentially expressed genes and transcript isoforms with predicted and known functions in nervous system development, chromatin biology, translation, cytoskeletal dynamics, and transcriptional regulation. A much larger number of differentially expressed transcript isoforms were identified, including genes previously implicated in associative memory and neuronal development, including fruitless, that may play functional roles in learning during courtship conditioning. Our results shed light on the complexity of the genetics that underlies this behavioral plasticity and reveal several new potential areas of inquiry for future studies.
Collapse
|
46
|
Song choice is modulated by female movement in Drosophila males. PLoS One 2012; 7:e46025. [PMID: 23049926 PMCID: PMC3458092 DOI: 10.1371/journal.pone.0046025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 08/27/2012] [Indexed: 11/20/2022] Open
Abstract
Mate selection is critical to ensuring the survival of a species. In the fruit fly, Drosophila melanogaster, genetic and anatomical studies have focused on mate recognition and courtship initiation for decades. This model system has proven to be highly amenable for the study of neural systems controlling the decision making process. However, much less is known about how courtship quality is regulated in a temporally dynamic manner in males and how a female assesses male performance as she makes her decision of whether to accept copulation. Here, we report that the courting male dynamically adjusts the relative proportions of the song components, pulse song or sine song, by assessing female locomotion. Male flies deficient for olfaction failed to perform the locomotion-dependent song modulation, indicating that olfactory cues provide essential information regarding proximity to the target female. Olfactory mutant males also showed lower copulation success when paired with wild-type females, suggesting that the male's ability to temporally control song significantly affects female mating receptivity. These results depict the consecutive inter-sex behavioral decisions, in which a male smells the close proximity of a female as an indication of her increased receptivity and accordingly coordinates his song choice, which then enhances the probability of his successful copulation.
Collapse
|
47
|
Joint control of Drosophila male courtship behavior by motion cues and activation of male-specific P1 neurons. Proc Natl Acad Sci U S A 2012; 109:10065-70. [PMID: 22645338 DOI: 10.1073/pnas.1207107109] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sexual behaviors in animals are governed by inputs from multiple external sensory modalities. However, how these inputs are integrated to jointly control animal behavior is still poorly understood. Whereas visual information alone is not sufficient to induce courtship behavior in Drosophila melanogaster males, when a subset of male-specific fruitless (fru)- and doublesex (dsx)-expressing neurons that respond to chemosensory cues (P1 neurons) were artificially activated via a temperature-sensitive cation channel (dTRPA1), males followed and extended their wing toward moving objects (even a moving piece of rubber band) intensively. When stationary, these objects were not courted. Our results indicate that motion input and activation of P1 neurons are individually necessary, and under our assay conditions, jointly sufficient to elicit early courtship behaviors, and provide insights into how courtship decisions are made via sensory integration.
Collapse
|
48
|
Xu X, Coats JK, Yang CF, Wang A, Ahmed OM, Alvarado M, Izumi T, Shah NM. Modular genetic control of sexually dimorphic behaviors. Cell 2012; 148:596-607. [PMID: 22304924 DOI: 10.1016/j.cell.2011.12.018] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 09/22/2011] [Accepted: 12/16/2011] [Indexed: 12/18/2022]
Abstract
Sex hormones such as estrogen and testosterone are essential for sexually dimorphic behaviors in vertebrates. However, the hormone-activated molecular mechanisms that control the development and function of the underlying neural circuits remain poorly defined. We have identified numerous sexually dimorphic gene expression patterns in the adult mouse hypothalamus and amygdala. We find that adult sex hormones regulate these expression patterns in a sex-specific, regionally restricted manner, suggesting that these genes regulate sex typical behaviors. Indeed, we find that mice with targeted disruptions of each of four of these genes (Brs3, Cckar, Irs4, Sytl4) exhibit extremely specific deficits in sex specific behaviors, with single genes controlling the pattern or extent of male sexual behavior, male aggression, maternal behavior, or female sexual behavior. Taken together, our findings demonstrate that various components of sexually dimorphic behaviors are governed by separable genetic programs.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Boerjan B, Tobback J, Vandersmissen HP, Huybrechts R, Schoofs L. Fruitless RNAi knockdown in the desert locust, Schistocerca gregaria, influences male fertility. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:265-269. [PMID: 22138053 DOI: 10.1016/j.jinsphys.2011.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 05/31/2023]
Abstract
In Drosophila melanogaster, the male-specific splice isoform of the fruitless gene (Fru(M)) encodes a set of transcription factors that are involved in the regulation of male courtship and copulation. Recent insights from non-drosophilid insects suggest a conserved evolutionary role for the transcription factor Fruitless. In the desert locust, Schistocerca gregaria and the German cockroach, Blatella germanica, both orthopteran insects, a conserved functional role for fruitless has been proposed. Fru specific RNAi knockdown in the third nymphal stage of male Schistocera gregaria delays copulation initiation and results in reduced progeny. In order to identify the origin of the observed phenotypic effects following a fruitless RNAi treatment in the male, we show that the fru knockdown has no detectable effect on spermio- or spermatogenesis and on the transfer of spermatozoa during copulation. Nevertheless, it is clear that the male seminal vesicles contain significantly less spermatozoa after fru RNAi as compared to gfp RNAi controls. We conclude that a lowered male fertility, caused by the fru knockdown in male desert locusts may be the direct cause for the reduction of the progeny numbers in their naïve female copulation partners.
Collapse
Affiliation(s)
- Bart Boerjan
- Research Group Functional Genomics and Proteomics, K.U. Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Most animals exhibit innate auditory behaviors driven by genetically hardwired neural circuits. In Drosophila, acoustic information is relayed by Johnston organ neurons from the antenna to the antennal mechanosensory and motor center (AMMC) in the brain. Here, by using structural connectivity analysis, we identified five distinct types of auditory projection neurons (PNs) interconnecting the AMMC, inferior ventrolateral protocerebrum (IVLP), and ventrolateral protocerebrum (VLP) regions of the central brain. These auditory PNs are also functionally distinct; AMMC-B1a, AMMC-B1b, and AMMC-A2 neurons differ in their responses to sound (i.e., they are narrowly tuned or broadly tuned); one type of audioresponsive IVLP commissural PN connecting the two hemispheres is GABAergic; and one type of IVLP-VLP PN acts as a generalist responding to all tested audio frequencies. Our findings delineate an auditory processing pathway involving AMMC→IVLP→VLP in the Drosophila brain.
Collapse
|