1
|
Liu W, Pluta A, Charpentier CJ, Rosenblau G. A computational cognitive neuroscience approach for characterizing individual differences in autism: Introduction to Special Issue. PERSONALITY NEUROSCIENCE 2025; 8:e2. [PMID: 40297514 PMCID: PMC12035782 DOI: 10.1017/pen.2025.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 04/30/2025]
Abstract
Traditional psychological research has often treated inter-subject variability as statistical noise (even, nuisance variance), focusing instead on averages rather than individual differences. This approach has limited our understanding of the substantial heterogeneity observed in neuropsychiatric disorders, particularly autism spectrum disorder (ASD). In this introduction to a special issue on this theme, we discuss recent advances in cognitive computational neuroscience that can lead to a more systematic notion of core symptom dimensions that differentiate between ASD subtypes. These advances include large participant databases and data-sharing initiatives to increase sample sizes of autistic individuals across a wider range of cultural and socioeconomic backgrounds. Our perspective helps to build bridges between autism symptomatology and individual differences in autistic traits in the non-autistic population and introduces finer-grained dynamic methods to capture behavioral dynamics at the individual level. We specifically focus on how cognitive computational models have emerged as powerful tools to better characterize autistic traits in the general population and autistic population, particularly with respect to social decision-making. We finally outline how we can combine and harness these recent advances, on the one hand, big data initiatives, and on the other hand, cognitive computational models, to achieve a more systematic and nuanced understanding of autism that can lead to improved diagnostic accuracy and personalized interventions.
Collapse
Affiliation(s)
- Wenda Liu
- Department of Psychological and Brain Sciences, George Washington University, Washington, DC, USA
- Autism and Neurodevelopmental Disorders Institute, George Washington University and Children’s National Medical Center, Washington, DC, USA
| | - Agnieszka Pluta
- Faculty of Psychology, University of Warsaw, Warszawa, Poland
| | - Caroline J. Charpentier
- Department of Psychology, University of Maryland College Park, College Park, MD, USA
- Brain and Behavior Institute, University of Maryland College Park, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland College Park, College Park, MD, USA
| | - Gabriela Rosenblau
- Department of Psychological and Brain Sciences, George Washington University, Washington, DC, USA
- Autism and Neurodevelopmental Disorders Institute, George Washington University and Children’s National Medical Center, Washington, DC, USA
| |
Collapse
|
2
|
Sun Y, Yu N, Chen G, Liu T, Wen S, Chen W. What Else Is Happening to the Mirror Neurons?-A Bibliometric Analysis of Mirror Neuron Research Trends and Future Directions (1996-2024). Brain Behav 2025; 15:e70486. [PMID: 40205860 PMCID: PMC11982629 DOI: 10.1002/brb3.70486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Since its discovery in the late 20th century, research on mirror neurons has become a pivotal area in neuroscience, linked to various cognitive and social functions. This bibliometric analysis explores the research trajectory, key research topics, and future trends in the field of mirror neuron research. METHODS We searched the Web of Science Core Collection (WoSCC) database for publications from 1996 to 2024 on mirror neuron research. Statistical and visualization analyses were performed using CiteSpace and VOSviewer. RESULTS Publication output on mirror neurons peaked in 2013 and remained active. High-impact journals such as Science, Brain, Neuron, PNAS, and NeuroImage frequently feature findings on the mirror neuron system, including its distribution, neural coding, and roles in intention understanding, affective empathy, motor learning, autism, and neurological disorders. Keyword clustering reveals major directions in cognitive neuroscience, motor neuroscience, and neurostimulation, whereas burst detection underscores the emerging significance of brain-computer interfaces (BCIs). Research methodologies have been evolving from traditional electrophysiological recordings to advanced techniques such as functional magnetic resonance imaging, transcranial magnetic stimulation, and BCIs, highlighting a dynamic, multidisciplinary progression. CONCLUSIONS This study identifies key areas associated with mirror neurons and anticipates that future work will integrate findings with artificial intelligence, clinical interventions, and novel neuroimaging techniques, providing new perspectives on complex socio-cognitive issues and their applications in both basic science and clinical practice.
Collapse
Affiliation(s)
- Yangyang Sun
- Center for Brain, Mind and EducationShaoxing UniversityShaoxingChina
- Faculty of EducationUniversiti Kebangsaan MalaysiaBangiMalaysia
| | - Ningyao Yu
- Department of PsychologyShaoxing UniversityShaoxingChina
| | - Guanchu Chen
- Department of PsychologyShaoxing UniversityShaoxingChina
| | - Tongwei Liu
- Department of PhilosophyShanghai Normal UniversityShanghaiChina
| | - Shengjun Wen
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Wei Chen
- Center for Brain, Mind and EducationShaoxing UniversityShaoxingChina
- Department of PsychologyShaoxing UniversityShaoxingChina
- Interdisciplinary Center for Philosophy and Cognitive SciencesRenmin University of ChinaBeijingChina
| |
Collapse
|
3
|
Niu R, Jiang Y, Sun C, Tang R. Is Dyadic Fitts' Law Task Affected by Action Observation? J Mot Behav 2024; 57:153-164. [PMID: 39647838 DOI: 10.1080/00222895.2024.2438715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
According to Fitts' law, an individual's speed-accuracy tradeoff is only related to the object's properties. According to previous research, the movement time to hit the current target can be affected by the target of different size on the previous trial where the Fitts' law task is affected by trial history. However, in a dyadic context, the question is whether there is still a trial-to-trial transfer across individuals. In this study, Experiment 1 was conducted to investigate whether the current trial would be affected by the previous trial performed by the partner in a dyadic task. The results showed trial-to-trial transfer between individuals was affected by the difficulty of the action. The current movement was only affected by the previous difficult trial but not simple task. In order to investigate whether observing only novel targets would affect the current movement, we conducted Experiment 2, which showed that observing the target was not sufficient to generate effect transfer between trials. These findings suggest that the goal-directed movement can be affected by the observation of others. In addition, the effect of trial-to-trial transfer between individuals was influenced by task difficulty, which proved this effect was not a simple imitation.
Collapse
Affiliation(s)
- Ruoyu Niu
- Department of Psychology, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yan Jiang
- Department of Psychology, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chuyang Sun
- Department of Psychology, Nanjing University, Nanjing, Jiangsu Province, China
| | - Rixin Tang
- Department of Psychology, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
4
|
Huber E, Harju E, Stark E, Fringer A, Preusse-Bleuler B. A Real-Life Laboratory Setting for Clinical Practice, Education, and Research in Family Systems Care: Protocol for a Transformational Action Research Study. JMIR Res Protoc 2024; 13:e53090. [PMID: 39476850 PMCID: PMC11561450 DOI: 10.2196/53090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/31/2024] [Accepted: 08/16/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Burdening health and illness issues such as physical or mental illnesses, accidents, disabilities, and life events such as birth or death influence the health and functioning of families and contribute to the complexity of care and health care costs. Considerable research has confirmed the benefits of a family systems-centered care approach for patients, family caregivers, families, and health care professionals. However, health care professionals face barriers in working with families, such as feeling unprepared. Family systems-centered therapeutic conversations support families' day-to-day coping, resilience, and health. A family systems care unit (FSCU) was recently established as a real-life laboratory at one of the Swiss Universities of Applied Sciences. In this unit, health care professionals offer therapeutic conversations to families and individual family members to support daily symptom management and functioning, soften suffering, and increase health and well-being. These conversations are observed in real time through a 1-way window by other health care professionals, students, and trainees and are recorded with video for research and education. Little is known about how therapeutic conversations contribute to meaningful changes in burdened families and the benefits of vicarious learning in a real-life laboratory setting for family systems care. OBJECTIVE In this research program, we aim to deepen our understanding of how therapeutic conversations support families and individuals experiencing burdening health and illness issues and how the FSCU laboratory setting supports the learning of students, clinical trainees, and health care professionals. METHODS Here we apply a transformational action research design, including parallel and subsequent substudies, to advance knowledge and practice in family systems care. Qualitative multiple-case study designs will be used to explore the benefits of therapeutic conversations by analyzing recordings of the therapeutic conversations. The learning processes of students, trainees, and professionals will be investigated with descriptive qualitative study designs based on single and focus group interviews. The data will be analyzed with established coding methods. RESULTS Therapeutic conversations have been investigated in 3 single-case studies, each involving a sequence of 3 therapeutic conversation units. Data collection regarding the second research question is planned. CONCLUSIONS Preliminary results confirm the therapeutic conversations to support families' coping. This renders the FSCU a setting for ethically sensitive research. This program will not only support the health and well-being of families, but also contribute to relieving the financial and workforce burdens in the health and social care system. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/53090.
Collapse
Affiliation(s)
- Evelyn Huber
- Institute of Nursing, School of Health Sciences, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Erika Harju
- Institute of Nursing, School of Health Sciences, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Elisabeth Stark
- Institute of Nursing, School of Health Sciences, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| | - André Fringer
- Institute of Nursing, School of Health Sciences, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Barbara Preusse-Bleuler
- Institute of Nursing, School of Health Sciences, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| |
Collapse
|
5
|
Rudisch J, Holzhauer LKH, Kravanja K, Hamker FH, Voelcker-Rehage C. A systematic review of observational practice for adaptation of reaching movements. NPJ SCIENCE OF LEARNING 2024; 9:61. [PMID: 39362866 PMCID: PMC11449917 DOI: 10.1038/s41539-024-00271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Observational practice is discussed as a substitute for physical practice for motor learning and adaptation. We systematically reviewed the literature on observational practice in reaching and aiming tasks. Our objectives were to identify (i) performance differences between observational and physical practice; (ii) factors that contribute to adaptation following observational practice; and (iii) the neural correlates of observational practice. We found 18 studies, all investigated adaptation of reaching in visuomotor rotations or force-field perturbations. Results of the studies showed that observational practice led to adaptation in both, visuomotor rotation and force-field paradigms (d = -2.16 as compared to no practice). However, direct effects were considerably smaller as compared to physical practice (d = 4.38) and aftereffects were absent, suggesting that observational practice informed inverse, but not forward modes. Contrarily, neurophysiological evidence in this review showed that observational and physical practice involved similar brain regions.
Collapse
Affiliation(s)
- Julian Rudisch
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany.
| | - Luis K H Holzhauer
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany
- Department of Sports Analytics, Institute for Sport Science, Saarland University, Saarbrücken, Germany
| | - Karmen Kravanja
- Department of Psychology, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Fred H Hamker
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Claudia Voelcker-Rehage
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Marchesi S, De Tommaso D, Kompatsiari K, Wu Y, Wykowska A. Tools and methods to study and replicate experiments addressing human social cognition in interactive scenarios. Behav Res Methods 2024; 56:7543-7560. [PMID: 38782872 PMCID: PMC11362199 DOI: 10.3758/s13428-024-02434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
In the last decade, scientists investigating human social cognition have started bringing traditional laboratory paradigms more "into the wild" to examine how socio-cognitive mechanisms of the human brain work in real-life settings. As this implies transferring 2D observational paradigms to 3D interactive environments, there is a risk of compromising experimental control. In this context, we propose a methodological approach which uses humanoid robots as proxies of social interaction partners and embeds them in experimental protocols that adapt classical paradigms of cognitive psychology to interactive scenarios. This allows for a relatively high degree of "naturalness" of interaction and excellent experimental control at the same time. Here, we present two case studies where our methods and tools were applied and replicated across two different laboratories, namely the Italian Institute of Technology in Genova (Italy) and the Agency for Science, Technology and Research in Singapore. In the first case study, we present a replication of an interactive version of a gaze-cueing paradigm reported in Kompatsiari et al. (J Exp Psychol Gen 151(1):121-136, 2022). The second case study presents a replication of a "shared experience" paradigm reported in Marchesi et al. (Technol Mind Behav 3(3):11, 2022). As both studies replicate results across labs and different cultures, we argue that our methods allow for reliable and replicable setups, even though the protocols are complex and involve social interaction. We conclude that our approach can be of benefit to the research field of social cognition and grant higher replicability, for example, in cross-cultural comparisons of social cognition mechanisms.
Collapse
Affiliation(s)
- Serena Marchesi
- Social Cognition in Human-Robot Interaction, Italian Institute of Technology, Genova, Italy
- Robotics and Autonomous Systems Department, A*STAR Institute for Infocomm Research, Singapore, Singapore
| | - Davide De Tommaso
- Social Cognition in Human-Robot Interaction, Italian Institute of Technology, Genova, Italy
| | - Kyveli Kompatsiari
- Social Cognition in Human-Robot Interaction, Italian Institute of Technology, Genova, Italy
| | - Yan Wu
- Robotics and Autonomous Systems Department, A*STAR Institute for Infocomm Research, Singapore, Singapore
| | - Agnieszka Wykowska
- Social Cognition in Human-Robot Interaction, Italian Institute of Technology, Genova, Italy.
| |
Collapse
|
7
|
Poikonen H, Tervaniemi M, Trainor L. Cortical oscillations are modified by expertise in dance and music: Evidence from live dance audience. Eur J Neurosci 2024; 60:6000-6014. [PMID: 39279232 DOI: 10.1111/ejn.16525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
Over the past decades, the focus of brain research has expanded from using strictly controlled stimuli towards understanding brain functioning in complex naturalistic contexts. Interest has increased in measuring brain processes in natural interaction, including classrooms, theatres, concerts and museums to understand the brain functions in the real world. Here, we examined how watching a live dance performance with music in a real-world dance performance setting engages the brains of the spectators. Expertise in dance or music has been shown to modify brain functions, including when watching dance or listening to music. Therefore, we recorded electroencephalography (EEG) from an audience of dancers, musicians and novices as they watched the live dance performance and analysed their cortical oscillations. We compared intrabrain oscillations when participants watched the performance (with music) or listened to the music alone without the dance. We found that dancers have stronger fronto-central and parieto-occipital theta phase synchrony (4-8 Hz) than novices when watching dance, likely reflecting the effects of dance experience on motor imagery, multisensory and social interaction processes. Also, compared with novices, dancers had stronger delta phase synchrony (0.5-4 Hz) when listening to music, and musicians had stronger delta phase synchrony when watching dance, suggesting expertise in music and dance enhances sensitivity or attention to temporal regularities in movement and sound.
Collapse
Affiliation(s)
- Hanna Poikonen
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
- Professorship for Social Brain Sciences, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Mari Tervaniemi
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland
- Cognitive Brain Research Unit, Department of Psychology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laurel Trainor
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Canada
- McMaster Institute for Music and the Mind, McMaster University, Hamilton, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, Canada
| |
Collapse
|
8
|
Eaves DL, Hodges NJ, Buckingham G, Buccino G, Vogt S. Enhancing motor imagery practice using synchronous action observation. PSYCHOLOGICAL RESEARCH 2024; 88:1891-1907. [PMID: 36574019 PMCID: PMC11315722 DOI: 10.1007/s00426-022-01768-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/07/2022] [Indexed: 12/28/2022]
Abstract
In this paper, we discuss a variety of ways in which practising motor actions by means of motor imagery (MI) can be enhanced via synchronous action observation (AO), that is, by AO + MI. We review the available research on the (mostly facilitatory) behavioural effects of AO + MI practice in the early stages of skill acquisition, discuss possible theoretical explanations, and consider several issues related to the choice and presentation schedules of suitable models. We then discuss considerations related to AO + MI practice at advanced skill levels, including expertise effects, practical recommendations such as focussing attention on specific aspects of the observed action, using just-ahead models, and possible effects of the perspective in which the observed action is presented. In section "Coordinative AO + MI", we consider scenarios where the observer imagines performing an action that complements or responds to the observed action, as a promising and yet under-researched application of AO + MI training. In section "The dual action simulation hypothesis of AO + MI", we review the neurocognitive hypothesis that AO + MI practice involves two parallel action simulations, and we consider opportunities for future research based on recent neuroimaging work on parallel motor representations. In section "AO + MI training in motor rehabilitation", we review applications of AO, MI, and AO + MI training in the field of neurorehabilitation. Taken together, this evidence-based, exploratory review opens a variety of avenues for future research and applications of AO + MI practice, highlighting several clear advantages over the approaches of purely AO- or MI-based practice.
Collapse
Affiliation(s)
- Daniel L Eaves
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Nicola J Hodges
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Gavin Buckingham
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Giovanni Buccino
- Division of Neuroscience, IRCCS San Raffaele and Vita Salute San Raffaele University, Milan, Italy
| | - Stefan Vogt
- Department of Psychology, Lancaster University, Lancaster, UK.
| |
Collapse
|
9
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
10
|
Schultner DT, Lindström BR, Cikara M, Amodio DM. Transmission of social bias through observational learning. SCIENCE ADVANCES 2024; 10:eadk2030. [PMID: 38941465 PMCID: PMC11212708 DOI: 10.1126/sciadv.adk2030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/22/2024] [Indexed: 06/30/2024]
Abstract
People often rely on social learning-learning by observing others' actions and outcomes-to form preferences in advance of their own direct experiences. Although typically adaptive, we investigated whether social learning may also contribute to the formation and spread of prejudice. In six experiments (n = 1550), we demonstrate that by merely observing interactions between a prejudiced actor and social group members, observers acquired the prejudices of the actor. Moreover, observers were unaware of the actors' bias, misattributing their acquired group preferences to the behavior of group members, despite identical behavior between groups. Computational modeling revealed that this effect was due to value shaping, whereby one's preferences are shaped by another's actions toward a target, in addition to the target's reward feedback. These findings identify social learning as a potent mechanism of prejudice formation that operates implicitly and supports the transmission of intergroup bias.
Collapse
Affiliation(s)
- David T. Schultner
- Faculty of Social and Behavioral Sciences, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Björn R. Lindström
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mina Cikara
- Graduate School of Arts and Sciences, Department of Psychology, Harvard University, Cambridge, MA, USA
| | - David M. Amodio
- Faculty of Social and Behavioral Sciences, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Peng Y, Huang S, Yang X, Ma J. Efficacy and safety of mirror therapy for post-stroke aphasia: A systematic review and meta-analysis protocol. PLoS One 2024; 19:e0301468. [PMID: 38718090 PMCID: PMC11078370 DOI: 10.1371/journal.pone.0301468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Aphasia is one of the most common complications of stroke. Mirror therapy (MT) is promising rehabilitation measure for the treatment of post-stroke aphasia. Although some studies suggested that MT is effective and safe for aphasia, the effects and safety remain uncertain due to lacking strong evidence, such as the relevant systematic review and meta- analysis. METHODS This study will search PubMed, Web of Science, Cochrane Library, EMBASE, Medline, China Knowledge Network (CNKI), WANFANG, China Biomedical Literature Database (CBM), from inception to 1th May 2023 to identify any eligible study. No language or date of publication shall be limited. We will only include randomised controlled trials of MT in the Treatment of poststroke aphasia. Two investigators will work separately on the study selection, data extraction, and study quality assessment. The western aphasia battery (WAB) and aphasia quotient (AQ) will be included as the main outcomes. Boston diagnostic aphasia examination method (BDAE), Chinese standard aphasia examination (CRRCAE) will be included as the secondary outcomes. The statistical analysis will be conducted by RevMan V.5.4 software. The risk of bias of included studies will be assessed by the Cochrane 'Risk of bias' tool. The quality of proof of the results will be evaluated by using the Grading of Recommendations Assessment, Development and Evaluation guidelines. RESULTS The finding will be presented in a journal or related conferences. CONCLUSION This study will provide a basis for whether mirror therapy (MT) is effective and safe in the treatment of post-stroke aphasia. TRIAL REGISTRATION Systematic review registration INPLASY registration number: INPLASY 202340054.
Collapse
Affiliation(s)
- Yufeng Peng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shouqiang Huang
- Department of Emergency Medicine, Taihe Hospital, Hubei, China
| | - Xiaotong Yang
- Department of Emergency Medicine, Taihe Hospital, Hubei, China
| | - Jiao Ma
- Department of Emergency Medicine, Taihe Hospital, Hubei, China
| |
Collapse
|
12
|
Bégel V, Demos AP, Palmer C. Duet synchronization interventions affect social interactions. Sci Rep 2024; 14:9930. [PMID: 38688922 PMCID: PMC11061167 DOI: 10.1038/s41598-024-60485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Humans' complex behavior, such as speech, music, or dance, requires us to coordinate our actions with external sounds as well as with social partners. The presence of a partner can influence individuals' synchronization, and, in turn, social connection with the partner may depend on the degree of synchronization. We manipulated the synchronization quality in intervention conditions to address the causal relationship between observed temporal synchrony and perceived social interaction. Pairs of musician and nonmusician participants first performed a turn-taking task consisting of alternating which partner tapped their melody in synchrony with a metronome (each tap generated the next tone in the melody). In two intervention conditions, participants attempted to synchronize their melodies simultaneously with their partner, either with normal auditory feedback (normal feedback) or randomly placed delayed feedback on 25% of melodic tones (delayed feedback). After each intervention, the turn-taking condition was repeated, and participants completed a questionnaire about connectedness, relationship, and feeling of synchronization with their partner. Results showed that partners' mean asynchronies were more negative following the delayed feedback intervention. In addition, nonmusician partners' tapping variability was larger following the delayed feedback intervention when they had the delayed feedback intervention first. Ratings of connectedness, relationship, and feeling of synchronization with their partner were reduced for all participants after the delayed feedback Intervention. We modeled participants' synchronization performance in the post-intervention turn-taking conditions using delay-coupling oscillator models. Reductions in synchronization performance after delayed feedback intervention were reflected in reduced coupling strength. These findings suggest that turn-taking synchronization performance and social connectedness are altered following short interventions that disrupt synchronization with a partner.
Collapse
Affiliation(s)
- Valentin Bégel
- Department of Psychology, McGill University, Montreal, Canada.
- Institut des Sciences du Sport-Santé de Paris (I3SP), Paris Cité University, 1 Rue Lacretelle, 75015, Paris, France.
| | - Alexander P Demos
- Department of Psychology, University of Illinois at Chicago, Chicago, USA
| | - Caroline Palmer
- Department of Psychology, McGill University, Montreal, Canada
| |
Collapse
|
13
|
McLeod J, Chavan A, Lee H, Sattari S, Kurry S, Wake M, Janmohamed Z, Hodges NJ, Virji-Babul N. Distinct Effects of Brain Activation Using tDCS and Observational Practice: Implications for Motor Rehabilitation. Brain Sci 2024; 14:175. [PMID: 38391749 PMCID: PMC10886768 DOI: 10.3390/brainsci14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Complex motor skills can be acquired while observing a model without physical practice. Transcranial direct-current stimulation (tDCS) applied to the primary motor cortex (M1) also facilitates motor learning. However, the effectiveness of observational practice for bimanual coordination skills is debated. We compared the behavioural and brain causal connectivity patterns following three interventions: primary motor cortex stimulation (M1-tDCS), action-observation (AO) and a combined group (AO+M1-tDCS) when acquiring a bimanual, two-ball juggling skill. Thirty healthy young adults with no juggling experience were randomly assigned to either video observation of a skilled juggler, anodal M1-tDCS or video observation combined with M1-tDCS. Thirty trials of juggling were performed and scored after the intervention. Resting-state EEG data were collected before and after the intervention. Information flow rate was applied to EEG source data to measure causal connectivity. The two observation groups were more accurate than the tDCS alone group. In the AO condition, there was strong information exchange from (L) parietal to (R) parietal regions, strong bidirectional information exchange between (R) parietal and (R) occipital regions and an extensive network of activity that was (L) lateralized. The M1-tDCS condition was characterized by bilateral long-range connections with the strongest information exchange from the (R) occipital region to the (R) temporal and (L) occipital regions. AO+M1-tDCS induced strong bidirectional information exchange in occipital and temporal regions in both hemispheres. Uniquely, it was the only condition that was characterized by information exchange between the (R) frontal and central regions. This study provides new results about the distinct network dynamics of stimulating the brain for skill acquisition, providing insights for motor rehabilitation.
Collapse
Affiliation(s)
- Julianne McLeod
- Rehabilitation Science, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Anuj Chavan
- Electronics and Telecommunication Engineering, Sardar Patel Institute of Technology, Mumbai 400058, India
| | - Harvey Lee
- Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Sahar Sattari
- Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| | - Simrut Kurry
- Neuroscience, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Miku Wake
- Neuroscience, Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zia Janmohamed
- Neuroscience, Faculty of Science, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nicola Jane Hodges
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Naznin Virji-Babul
- Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
14
|
Kausel L, Basso JC, Grinspun N, Alain C. Editorial: Effects of performing arts training on the brain, (socio)cognitive and motor functions across the lifespan. Front Hum Neurosci 2023; 17:1342325. [PMID: 38125714 PMCID: PMC10731360 DOI: 10.3389/fnhum.2023.1342325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Leonie Kausel
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Julia C. Basso
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Noemí Grinspun
- Núcleo de Bienestar y Desarrollo Humano, Education Research Center (CIE-UMCE), Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- The School of Creative Arts Therapies, University of Haifa, Haifa, Israel
| | - Claude Alain
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Kraeutner SN, Karlinsky A, Besler Z, Welsh TN, Hodges NJ. What we imagine learning from watching others: how motor imagery modulates competency perceptions resulting from the repeated observation of a juggling action. PSYCHOLOGICAL RESEARCH 2023; 87:2583-2593. [PMID: 37266707 PMCID: PMC10236399 DOI: 10.1007/s00426-023-01838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Although motor learning can occur from observing others perform a motor skill (action observation; AO), observers' confidence in their own ability to perform the skill can be falsely increased compared to their actual ability. This illusion of motor competence (i.e., 'over-confidence') may arise because the learner does not gain access to sensory feedback about their own performance-a source of information that can help individuals understand their veridical motor capabilities. Unlike AO, motor imagery (MI; the mental rehearsal of a motor skill) is thought to be linked to an understanding of movement consequences and kinaesthetic information. MI may thus provide the learner with movement-related diagnostic information, leading to greater accuracy in assessing ability. The present study was designed to evaluate the effects of MI when paired with AO in assessments of one's own motor capabilities in an online observation task. Two groups rated their confidence in performing a juggling task following repeated observations of the action without MI (OBS group; n = 45) or with MI following observation (OBS+MI; n = 39). As predicted, confidence increased with repeated observation for both groups, yet increased to a greater extent in the OBS relative to the OBS+MI group. The addition of MI appeared to reduce confidence that resulted from repeated AO alone. Data support the hypothesis that AO and MI are separable and that MI allows better access to sensory information than AO. However, further research is required to assess changes in confidence that result from MI alone and motor execution.
Collapse
Affiliation(s)
- Sarah N Kraeutner
- Neuroplasticity, Imagery, and Motor Behaviour Laboratory, Department of Psychology, Rm 204 -Arts and Sciences Centre (ASC), University of British Columbia, 3187 University Way, Okanagan, Kelowna, BC, V1V1V7, Canada.
| | - April Karlinsky
- Department of Kinesiology, California State University, San Bernardino, CA, 92407, USA
| | - Zachary Besler
- Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
| | - Timothy N Welsh
- Centre for Motor Control Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, M5S 2C9, Canada
| | - Nicola J Hodges
- Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
| |
Collapse
|
16
|
Binks JA, Wilson CJ, Van Schaik P, Eaves DL. Motor learning without physical practice: The effects of combined action observation and motor imagery practice on cup-stacking speed. PSYCHOLOGY OF SPORT AND EXERCISE 2023; 68:102468. [PMID: 37665909 DOI: 10.1016/j.psychsport.2023.102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 09/06/2023]
Abstract
In this study we explored training effects for combined action observation and motor imagery (AO + MI) instructions on a complex cup-stacking task, without physical practice. Using a Graeco-Latin Square design, we randomly assigned twenty-six participants into four groups. This counterbalanced the within-participant factor of practice condition (AO + MI, AO, MI, Control) across four cup-stacking tasks, which varied in their complexity. On each of the three consecutive practice days participants experienced twenty trials under each of the three mental practice conditions. On each trial, a first-person perspective video depicted bilateral cup-stacking performed by an experienced model. During AO, participants passively observed this action, responding only to occasional colour cues. For AO + MI, participants imagined performing the observed action and synchronised their concurrent MI with the display. For MI, a sequence of pictures cued imagery of each stage of the task. Analyses revealed a significant main effect of practice condition both at the 'surprise' post-test (Day 3) and at the one-week retention test. At both time points movement execution times were significantly shorter for AO + MI compared with AO, MI and the Control. Execution times were also shorter overall at the retention compared with the post-test. These results demonstrate that a complex novel motor task can be acquired without physical training. Practitioners can therefore use AO + MI practice to supplement physical practice and optimise skill learning.
Collapse
Affiliation(s)
- J A Binks
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK.
| | - C J Wilson
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - P Van Schaik
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - D L Eaves
- Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
17
|
Llobera J, Charbonnier C. Physics-based character animation and human motor control. Phys Life Rev 2023; 46:190-219. [PMID: 37480729 DOI: 10.1016/j.plrev.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/24/2023]
Abstract
Motor neuroscience and physics-based character animation (PBCA) approach human and humanoid control from different perspectives. The primary goal of PBCA is to control the movement of a ragdoll (humanoid or animal) applying forces and torques within a physical simulation. The primary goal of motor neuroscience is to understand the contribution of different parts of the nervous system to generate coordinated movements. We review the functional principles and the functional anatomy of human motor control and the main strategies used in PBCA. We then explore common research points by discussing the functional anatomy and ongoing debates in motor neuroscience from the perspective of PBCA. We also suggest there are several benefits to be found in studying sensorimotor integration and human-character coordination through closer collaboration between these two fields.
Collapse
Affiliation(s)
- Joan Llobera
- Artanim Foundation, 40, chemin du Grand-Puits, 1217 Meyrin - Geneva, Switzerland.
| | - Caecilia Charbonnier
- Artanim Foundation, 40, chemin du Grand-Puits, 1217 Meyrin - Geneva, Switzerland
| |
Collapse
|
18
|
Yang CJ, Yu HY, Hong TY, Shih CH, Yeh TC, Chen LF, Hsieh JC. Trait representation of embodied cognition in dancers pivoting on the extended mirror neuron system: a resting-state fMRI study. Front Hum Neurosci 2023; 17:1173993. [PMID: 37492559 PMCID: PMC10364845 DOI: 10.3389/fnhum.2023.1173993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction Dance is an art form that integrates the body and mind through movement. Dancers develop exceptional physical and mental abilities that involve various neurocognitive processes linked to embodied cognition. We propose that dancers' primary trait representation is movement-actuated and relies on the extended mirror neuron system (eMNS). Methods A total of 29 dancers and 28 non-dancer controls were recruited. A hierarchical approach of intra-regional and inter-regional functional connectivity (FC) analysis was adopted to probe trait-like neurodynamics within and between regions in the eMNS during rest. Correlation analyses were employed to examine the associations between dance training, creativity, and the FC within and between different brain regions. Results Within the eMNS, dancers exhibited increased intra-regional FC in various brain regions compared to non-dancers. These regions include the left inferior frontal gyrus, left ventral premotor cortex, left anterior insula, left posterior cerebellum (crus II), and bilateral basal ganglia (putamen and globus pallidus). Dancers also exhibited greater intrinsic inter-regional FC between the cerebellum and the core/limbic mirror areas within the eMNS. In dancers, there was a negative correlation observed between practice intensity and the intrinsic FC within the eMNS involving the cerebellum and basal ganglia. Additionally, FCs from the basal ganglia to the dorsolateral prefrontal cortex were found to be negatively correlated with originality in dancers. Discussion Our results highlight the proficient communication within the cortical-subcortical hierarchy of the eMNS in dancers, linked to the automaticity and cognitive-motor interactions acquired through training. Altered functional couplings in the eMNS can be regarded as a unique neural signature specific to virtuoso dancers, which might predispose them for skilled dancing performance, perception, and creation.
Collapse
Affiliation(s)
- Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei City, Taiwan
| | - Tzu-Yi Hong
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Chung-Heng Shih
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Tzu-Chen Yeh
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
19
|
Gaudfernau F, Lefebvre A, Engemann DA, Pedoux A, Bánki A, Baillin F, Landman B, Maruani A, Amsellem F, Bourgeron T, Delorme R, Dumas G. Cortico-Cerebellar neurodynamics during social interaction in Autism Spectrum Disorders. Neuroimage Clin 2023; 39:103465. [PMID: 37454469 PMCID: PMC10368923 DOI: 10.1016/j.nicl.2023.103465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Exploring neural network dynamics during social interaction could help to identify biomarkers of Autism Spectrum Disorders (ASD). A cerebellar involvement in autism has long been suspected and recent methodological advances now enable studying cerebellar functioning in a naturalistic setting. Here, we investigated the electrophysiological activity of the cerebro-cerebellar network during real-time social interaction in ASD. We focused our analysis on theta oscillations (3-8 Hz), which have been associated with large-scale coordination of distant brain areas and might contribute to interoception, motor control, and social event anticipation, all skills known to be altered in ASD. METHODS We combined the Human Dynamic Clamp, a paradigm for studying realistic social interactions using a virtual avatar, with high-density electroencephalography (HD-EEG). Using source reconstruction, we investigated power in the cortex and the cerebellum, along with coherence between the cerebellum and three cerebral-cortical areas, and compared our findings in a sample of participants with ASD (n = 107) and with typical development (TD) (n = 33). We developed an open-source pipeline to analyse neural dynamics at the source level from HD-EEG data. RESULTS Individuals with ASD showed a significant increase in theta band power over the cerebellum and the frontal and temporal cortices during social interaction compared to resting state, along with significant coherence increases between the cerebellum and the sensorimotor, frontal and parietal cortices. However, a phase-based connectivity measure did not support a strict activity increase in the cortico-cerebellar functional network. We did not find any significant differences between the ASD and the TD group. CONCLUSIONS This exploratory study uncovered increases in the theta band activity of participants with ASD during social interaction, pointing at the presence of neural interactions between the cerebellum and cerebral networks associated with social cognition. It also emphasizes the need for complementary functional connectivity measures to capture network-level alterations. Future work will focus on optimizing artifact correction to include more participants with TD and increase the statistical power of group-level contrasts.
Collapse
Affiliation(s)
- Fleur Gaudfernau
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris Diderot, Paris, France; Inria, HeKA, PariSantéCampus, Paris, France; Inserm, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris Cité, Paris, France
| | - Aline Lefebvre
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris Diderot, Paris, France; Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Denis-Alexander Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland; Université Paris-Saclay, Inria, CEA, Palaiseau, France
| | - Amandine Pedoux
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Anna Bánki
- Research Unit Developmental Psychology, Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Florence Baillin
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Benjamin Landman
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Anna Maruani
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Frederique Amsellem
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris Diderot, Paris, France
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris Diderot, Paris, France; Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Guillaume Dumas
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris Diderot, Paris, France; Department of Psychiatry, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada; Precision Psychiatry and Social Physiology laboratory, CHU Sainte-Justine Research Centre, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
20
|
Jiang Y, Mi Q, Zhu L. Neurocomputational mechanism of real-time distributed learning on social networks. Nat Neurosci 2023; 26:506-516. [PMID: 36797365 DOI: 10.1038/s41593-023-01258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023]
Abstract
Social networks shape our decisions by constraining what information we learn and from whom. Yet, the mechanisms by which network structures affect individual learning and decision-making remain unclear. Here, by combining a real-time distributed learning task with functional magnetic resonance imaging, computational modeling and social network analysis, we studied how humans learn from observing others' decisions on seven-node networks with varying topological structures. We show that learning on social networks can be approximated by a well-established error-driven process for observational learning, supported by an action prediction error encoded in the lateral prefrontal cortex. Importantly, learning is flexibly weighted toward well-connected neighbors, according to activity in the dorsal anterior cingulate cortex, but only insofar as social observations contain secondhand, potentially intertwining, information. These data suggest a neurocomputational mechanism of network-based filtering on the sources of information, which may give rise to biased learning and the spread of misinformation in an interconnected society.
Collapse
Affiliation(s)
- Yaomin Jiang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qingtian Mi
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Lusha Zhu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China. .,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
21
|
De Felice S, Hamilton AFDC, Ponari M, Vigliocco G. Learning from others is good, with others is better: the role of social interaction in human acquisition of new knowledge. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210357. [PMID: 36571126 PMCID: PMC9791495 DOI: 10.1098/rstb.2021.0357] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Learning in humans is highly embedded in social interaction: since the very early stages of our lives, we form memories and acquire knowledge about the world from and with others. Yet, within cognitive science and neuroscience, human learning is mainly studied in isolation. The focus of past research in learning has been either exclusively on the learner or (less often) on the teacher, with the primary aim of determining developmental trajectories and/or effective teaching techniques. In fact, social interaction has rarely been explicitly taken as a variable of interest, despite being the medium through which learning occurs, especially in development, but also in adulthood. Here, we review behavioural and neuroimaging research on social human learning, specifically focusing on cognitive models of how we acquire semantic knowledge from and with others, and include both developmental as well as adult work. We then identify potential cognitive mechanisms that support social learning, and their neural correlates. The aim is to outline key new directions for experiments investigating how knowledge is acquired in its ecological niche, i.e. socially, within the framework of the two-person neuroscience approach. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.
Collapse
Affiliation(s)
- Sara De Felice
- Institute of Cognitive Neuroscience, University College London (UCL), 17–19 Alexandra House Queen Square, London WC1N 3AZ, UK
| | - Antonia F. de C. Hamilton
- Institute of Cognitive Neuroscience, University College London (UCL), 17–19 Alexandra House Queen Square, London WC1N 3AZ, UK
| | - Marta Ponari
- School of Psychology, University of Kent, Canterbury CT2 7NP, UK
| | | |
Collapse
|
22
|
Majeed M, Irshad M, Khan I, Saeed I. The Impact of Team Mindfulness on Project Team Performance: The Moderating Role of Effective Team Leadership. PROJECT MANAGEMENT JOURNAL 2023. [DOI: 10.1177/87569728221140807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The current study aims to investigate the consequences of team mindfulness in project-based organizations by proposing team cohesion as an underlying mechanism and effective team leadership as a boundary condition through which team mindfulness promotes project team performance. Data were collected through a time-lagged survey from Pakistani employees (N = 379). The data supported the proposed model revealing that team mindfulness enhances team cohesion among employees, which increases project team performance and effective team leadership moderates this relationship. This study has identified the team-level factors that can be used by project managers to increase project team performance.
Collapse
Affiliation(s)
- Mehwish Majeed
- Faculty of Management Sciences, International Islamic University, Islamabad
| | - Muhammad Irshad
- Department of Management Sciences, University of Modern Languages Islamabad
| | - Ikram Khan
- Faculty of Management Sciences, Capital University of Science and Technology, Islamabad
| | | |
Collapse
|
23
|
Lalani B, Gray S, Mitra-Ganguli T. Systems Thinking in an era of climate change: Does cognitive neuroscience hold the key to improving environmental decision making? A perspective on Climate-Smart Agriculture. Front Integr Neurosci 2023; 17:1145744. [PMID: 37181865 PMCID: PMC10174047 DOI: 10.3389/fnint.2023.1145744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/02/2023] [Indexed: 05/16/2023] Open
Abstract
Systems Thinking (ST) can be defined as a mental construct that recognises patterns and connections in a particular complex system to make the "best decision" possible. In the field of sustainable agriculture and climate change, higher degrees of ST are assumed to be associated with more successful adaptation strategies under changing conditions, and "better" environmental decision making in a number of environmental and cultural settings. Future climate change scenarios highlight the negative effects on agricultural productivity worldwide, particularly in low-income countries (LICs) situated in the Global South. Alongside this, current measures of ST are limited by their reliance on recall, and are prone to possible measurement errors. Using Climate-Smart Agriculture (CSA), as an example case study, in this article we explore: (i) ST from a social science perspective; (ii) cognitive neuroscience tools that could be used to explore ST abilities in the context of LICs; (iii) an exploration of the possible correlates of systems thinking: observational learning, prospective thinking/memory and the theory of planned behaviour and (iv) a proposed theory of change highlighting the integration of social science frameworks and a cognitive neuroscience perspective. We find, recent advancements in the field of cognitive neuroscience such as Near-Infrared Spectroscopy (NIRS) provide exciting potential to explore previously hidden forms of cognition, especially in a low-income country/field setting; improving our understanding of environmental decision-making and the ability to more accurately test more complex hypotheses where access to laboratory studies is severely limited. We highlight that ST may correlate with other key aspects involved in environmental decision-making and posit motivating farmers via specific brain networks would: (a) enhance understanding of CSA practices (e.g., via the frontoparietal network extending from the dorsolateral prefrontal cortex (DLPFC) to the parietal cortex (PC) a control hub involved in ST and observational learning) such as tailoring training towards developing improved ST abilities among farmers and involving observational learning more explicitly and (b) motivate farmers to use such practices [e.g., via the network between the DLPFC and nucleus accumbens (NAc)] which mediates reward processing and motivation by focussing on a reward/emotion to engage farmers. Finally, our proposed interdisciplinary theory of change can be used as a starting point to encourage discussion and guide future research in this space.
Collapse
Affiliation(s)
- Baqir Lalani
- Natural Resources Institute, University of Greenwich, Chatham Maritime, United Kingdom
- *Correspondence: Baqir Lalani
| | - Steven Gray
- Department of Community Sustainability, Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
24
|
O’Shea H. Mapping relational links between motor imagery, action observation, action-related language, and action execution. Front Hum Neurosci 2022; 16:984053. [DOI: 10.3389/fnhum.2022.984053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Actions can be physically executed, observed, imagined, or simply thought about. Unifying mental processes, such as simulation, emulation, or predictive processing, are thought to underlie different action types, whether they are mental states, as in the case of motor imagery and action observation, or involve physical execution. While overlapping brain activity is typically observed across different actions which indicates commonalities, research interest is also concerned with investigating the distinct functional components of these action types. Unfortunately, untangling subtleties associated with the neurocognitive bases of different action types is a complex endeavour due to the high dimensional nature of their neural substrate (e.g., any action process is likely to activate multiple brain regions thereby having multiple dimensions to consider when comparing across them). This has impeded progress in action-related theorising and application. The present study addresses this challenge by using the novel approach of multidimensional modeling to reduce the high-dimensional neural substrate of four action-related behaviours (motor imagery, action observation, action-related language, and action execution), find the least number of dimensions that distinguish or relate these action types, and characterise their neurocognitive relational links. Data for the model comprised brain activations for action types from whole-brain analyses reported in 53 published articles. Eighty-two dimensions (i.e., 82 brain regions) for the action types were reduced to a three-dimensional model, that mapped action types in ordination space where the greater the distance between the action types, the more dissimilar they are. A series of one-way ANOVAs and post-hoc comparisons performed on the mean coordinates for each action type in the model showed that across all action types, action execution and concurrent action observation (AO)-motor imagery (MI) were most neurocognitively similar, while action execution and AO were most dissimilar. Most action types were similar on at least one neurocognitive dimension, the exception to this being action-related language. The import of the findings are discussed in terms of future research and implications for application.
Collapse
|
25
|
Liu Q, Zhang J, Dong D, Chen W. A glimpse into social perception in light of vitality forms. Front Psychol 2022; 13:823971. [PMID: 36176787 PMCID: PMC9514774 DOI: 10.3389/fpsyg.2022.823971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The American psychoanalyst and developmental psychologist Daniel Stern's idea of vitality forms might suggest a new solution to explain how other minds are intensely expressed in their actions. Vitality forms characterize the expressive style of actions. The effective perception of vitality forms allows people to recognize the affective states and intentions of others in their actions, and could even open the possibility of properties of objects that are indicated by the given actions. Currently, neurophysiological studies present that there might be a neural mirror mechanism in the dorso-central insula (DCI), middle cingulate cortex (MCC), and other related cerebral areas, which serve to preferably perceive and deliver vitality forms of actions. In this article, possible types of vitality forms related to other minds, which have been brought to particular attention in recent years, have been collected and discussed in the following four areas: (1) Vitality forms on understanding non-verbal intention, (2) on understanding verbal intention, (3) vitality forms as grounding social cognition, and (4) as grounding social emotion. These four areas, however, might refer to an entirety of a binary actor-observer communicative landscape. In this review, we try to simplify the analysis by relying on two fundamental dimensions of criteria: first, the idea of vitality forms is conceived as the most basic way of observing subsequent higher-order dimensions of action, that is, understanding intention in the style of action. Thus, in the first two subsections, the relationships between vitality forms and their roles in understanding non-verbal and verbal intention have been discussed. Second, vitality forms could also be conceived as background conditions of all the other mental categories, that is, vitality forms can ground cognition and emotion in a social context. In the second dimension, the existence of social cognition or emotion depends on the existence of the stylistic kinematics of action. A grounding relation is used to distinguish a ground, that is, vitality forms, and its grounded mental categories. As relating with the domain of social perception, in this review, it has been discussed vitality forms possibly could ground social cognition and social emotion, respectively.
Collapse
Affiliation(s)
- Qingming Liu
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Jinxin Zhang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Da Dong
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Wei Chen
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
- Interdisciplinary Center for Philosophy and Cognitive Sciences, Renmin University of China, Beijing, China
| |
Collapse
|
26
|
Karimova ED, Gulyaeva AS, Katermin NS. The degree of mu rhythm suppression in women is associated with presence of children as well as empathy and anxiety level. Soc Neurosci 2022; 17:382-396. [PMID: 35950700 DOI: 10.1080/17470919.2022.2112753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
In experiments on observing and performing social gestures, the level of mu rhythm suppression is associated with the activity of the mirror neuron system (MNS), which is responsible for the perception and understanding of nonverbal signals in social communication. In turn, while MNS activity may be associated primarily with empathy, it is also associated with other psychological and demographic factors affecting the effectiveness of cortical neural networks.In this study, we verified the influence of empathy, state and trait anxiety levels, presence and number of children, age, and menstrual cycle phase on the mu-suppression level in 40 women. We used 32-channel EEG recorded during observation, and synchronous execution of various hand movements. The ICA infomax method was used for decomposing and selecting the left hemisphere component of the mu-rhythm.Mu-suppression was higher in women with one child, with higher levels of empathy, and with lower anxiety levels. It is possible that MNS activity is stronger in women during parental care.
Collapse
Affiliation(s)
- Ekaterina D Karimova
- Institute of Higher Nervous Activity and Neurophysiology of RAS (IHNA&NPh RAS), Moscow, Russia
| | - Alena S Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology of RAS (IHNA&NPh RAS), Moscow, Russia
| | - Nikita S Katermin
- Institute of Higher Nervous Activity and Neurophysiology of RAS (IHNA&NPh RAS), Moscow, Russia
| |
Collapse
|
27
|
Nagano A. Training of Motion Control May Not Improve Tool-Manipulation Ability in Rats (Rattus norvegicus). Front Psychol 2022; 13:931957. [PMID: 35911044 PMCID: PMC9326322 DOI: 10.3389/fpsyg.2022.931957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
In recent times, previous studies have reported the manipulation of tools by rats and degus in controlled experimental settings. However, a previous study reported that only one out of eight experimentally naïve rats could manipulate a rake-shaped tool according to the position of a food reward without prior experience of obtaining the reward with the tool before the test. The present study aimed to improve the training of rats and investigate rodents’ ability to manipulate tools according to food position. Stricter criteria were employed when training the rats to promote the rats’ monitoring of their own tool manipulation. Additional training was introduced to give them the opportunity to learn that the reward moved closer to them by pulling an object connected to the reward. The present study showed that only one of eight rats could manipulate a tool according to the position of the reward without prior experience of obtaining the reward with the tool or perceiving that part of the tool came in contact with the reward, as the previous study showed. The change in training did not enhance the rats’ tool-manipulation ability according to the food position. These procedures should be conducted in a wider variety of animals to investigate whether the training in motion control can promote the subjects’ effective tool-use behavior.
Collapse
Affiliation(s)
- Akane Nagano
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Japan
- *Correspondence: Akane Nagano,
| |
Collapse
|
28
|
Reward System Dysfunction and the Motoric-Cognitive Risk Syndrome in Older Persons. Biomedicines 2022; 10:biomedicines10040808. [PMID: 35453558 PMCID: PMC9029623 DOI: 10.3390/biomedicines10040808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
During aging, many physiological systems spontaneously change independent of the presence of chronic diseases. The reward system is not an exception and its dysfunction generally includes a reduction in dopamine and glutamate activities and the loss of neurons of the ventral tegmental area (VTA). These impairments are even more pronounced in older persons who have neurodegenerative diseases and/or are affected by cognitive and motoric frailty. All these changes may result in the occurrence of cognitive and motoric frailty and accelerated progression of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases. In particular, the loss of neurons in VTA may determine an acceleration of depressive symptoms and cognitive and motor frailty trajectory, producing an increased risk of disability and mortality. Thus, we hypothesize the existence of a loop between reward system dysfunction, depression, and neurodegenerative diseases in older persons. Longitudinal studies are needed to evaluate the determinant role of the reward system in the onset of motoric-cognitive risk syndrome.
Collapse
|
29
|
Model expertise does not influence automatic imitation. Exp Brain Res 2022; 240:1267-1277. [PMID: 35212771 DOI: 10.1007/s00221-022-06338-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
Social learning theories state that new skills can be learned by observing others. Automatic imitation is thought to play an important role in this process. However, whether imitation is beneficial to learning critically depends on the expertise of the imitated person. Therefore, the aim of this study was to investigate the influence of model expertise on automatic imitation, by comparing automatic imitation of an expert and non-expert model in two within-subject experiments. In a first experiment (N = 61), we manipulated the perception of expertise in one task and tested how this influenced automatic imitation in a separate task. However, in contrast to our hypothesis, and in spite of a successful manipulation check, we did not find evidence for an effect of model expertise on imitative behavior. To exclude the alternative explanation that this was due to a lack of transfer of expertise attribution, we then conducted a second, preregistered experiment (N = 125), in which we manipulated model expertise using the same task also used to measure automatic imitation. However, in line with the results of Experiment 1, we found no evidence for an effect of model expertise on imitative behavior. These results put important constraints on the role of automatic imitation in motor learning.
Collapse
|
30
|
Bayani KYT, Natraj N, Khresdish N, Pargeter J, Stout D, Wheaton LA. Emergence of perceptuomotor relationships during paleolithic stone toolmaking learning: intersections of observation and practice. Commun Biol 2021; 4:1278. [PMID: 34764417 PMCID: PMC8585878 DOI: 10.1038/s42003-021-02768-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022] Open
Abstract
Stone toolmaking is a human motor skill which provides the earliest archeological evidence motor skill and social learning. Intentionally shaping a stone into a functional tool relies on the interaction of action observation and practice to support motor skill acquisition. The emergence of adaptive and efficient visuomotor processes during motor learning of such a novel motor skill requiring complex semantic understanding, like stone toolmaking, is not understood. Through the examination of eye movements and motor skill, the current study sought to evaluate the changes and relationship in perceptuomotor processes during motor learning and performance over 90 h of training. Participants' gaze and motor performance were assessed before, during and following training. Gaze patterns reveal a transition from initially high gaze variability during initial observation to lower gaze variability after training. Perceptual changes were strongly associated with motor performance improvements suggesting a coupling of perceptual and motor processes during motor learning.
Collapse
Affiliation(s)
| | - Nikhilesh Natraj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Division of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, CA, USA
| | - Nada Khresdish
- Anthropology Department, Emory University, Atlanta, GA, USA
| | - Justin Pargeter
- Anthropology Department, Emory University, Atlanta, GA, USA
- Department of Anthropology, New York University, New York, NY, USA
| | - Dietrich Stout
- Anthropology Department, Emory University, Atlanta, GA, USA
| | - Lewis A Wheaton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
31
|
Orban GA, Sepe A, Bonini L. Parietal maps of visual signals for bodily action planning. Brain Struct Funct 2021; 226:2967-2988. [PMID: 34508272 PMCID: PMC8541987 DOI: 10.1007/s00429-021-02378-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
The posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others’ actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the physical and social world to encode potential bodily actions appropriate for the current context. We further extend the model to actions performed with man-made objects (e.g., tools) and artifacts, because they become integral parts of the subject’s body schema and motor repertoire. Finally, we conclude that existing evidence supports a generally conserved neural circuitry that transforms integrated sensory signals into the variety of bodily actions that primates are capable of preparing and performing to interact with their physical and social world.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| | - Alessia Sepe
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|