1
|
Vaisvaser S. Meeting the multidimensional self: fostering selfhood at the interface of Creative Arts Therapies and neuroscience. Front Psychol 2024; 15:1417035. [PMID: 39386142 PMCID: PMC11461312 DOI: 10.3389/fpsyg.2024.1417035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Intriguing explorations at the intersection of the fields of neuroscience and psychology are driven by the quest to understand the neural underpinnings of "the self" and their psychotherapeutic implications. These translational efforts pertain to the unique Creative Arts Therapies (CATs) and the attributes and value of the self-related processes they offer. The self is considered as a multi-layered complex construct, comprising bodily and mental constituents, subjective-objective perspectives, spatial and temporal dimensions. Neuroscience research, mostly functional brain imaging, has proposed cogent models of the constitution, development and experience of the self, elucidating how the multiple dimensions of the self are supported by integrated hierarchical brain processes. The psychotherapeutic use of the art-forms, generating aesthetic experiences and creative processes, touch upon and connect the various layers of self-experience, nurturing the sense of self. The present conceptual analysis will describe and interweave the neural mechanisms and neural network configuration suggested to lie at the core of the ongoing self-experience, its deviations in psychopathology, and implications regarding the psychotherapeutic use of the arts. The well-established, parsimonious and neurobiologically plausible predictive processing account of brain-function will be discussed with regard to selfhood and consciousness. The epistemic affordance of the experiential CATs will further be portrayed, enabling and facilitating the creation of updated self-models of the body in the world. The neuropsychological impact of the relational therapeutic encounter will be delineated, acknowledging the intersubjective brain synchronization through communicative verbal and non-verbal means and aesthetic experiences. The recognition and assimilation of neuroscientific, phenomenological and clinical perspectives concerning the nested dimensionality of the self, ground the relational therapeutic process and the neuroplastic modulations that CATs have to offer on the premise of fostering, shaping and integrating selfhood.
Collapse
Affiliation(s)
- Sharon Vaisvaser
- School of Society and the Arts, Ono Academic College, Kiryat Ono, Israel
| |
Collapse
|
2
|
Becker M, Troje NF, Schmidt F, Haberkamp A. Moving spiders do not boost visual search in spider fear. Sci Rep 2024; 14:19006. [PMID: 39152224 PMCID: PMC11329515 DOI: 10.1038/s41598-024-69468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Previous research on attention to fear-relevant stimuli has largely focused on static pictures or drawings, and thus did not consider the potential effect of natural motion. Here, we aimed to investigate the effect of motion on attentional capture in spider-fearful and non-fearful participants by using point-light stimuli and naturalistic videos. Point-light stimuli consist of moving dots representing joints and thereby visualizing biological motion (e.g. of a walking human or cat) without needing a visible body. Spider-fearful (n = 30) and non-spider-fearful (n = 31) participants completed a visual search task with moving targets (point-light/naturalistic videos) and static distractors (images), static targets and moving distractors, or static targets and static distractors. Participants searched for a specified animal type (snakes, spiders, cats, or doves) as quickly as possible. We replicated previous findings with static stimuli: snakes were detected faster and increased distraction, while spiders just increased distraction. However, contrary to our hypotheses, spider targets did not speed up responses, neither in the group of control nor in the group of spider-fearful participants. Interestingly, stimuli-specific effects were toned down, abolished, or even changed direction when motion was introduced. Also, we demonstrated that point-light stimuli were of similar efficiency as naturalistic videos, indicating that for testing effects of motion in visual search, "pure" motion stimuli might be sufficient. As we do show a substantial modulation of visual search phenomena by biological motion, we advocate for future studies to use moving stimuli, equivalent to our dynamic environment, to increase ecological validity.
Collapse
Affiliation(s)
- Miriam Becker
- Clinical Psychology and Psychotherapy, University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany.
| | | | - Filipp Schmidt
- Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Anke Haberkamp
- Clinical Psychology and Psychotherapy, University of Marburg, Gutenbergstr. 18, 35032, Marburg, Germany
- Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
3
|
Pezzulo G, D'Amato L, Mannella F, Priorelli M, Van de Maele T, Stoianov IP, Friston K. Neural representation in active inference: Using generative models to interact with-and understand-the lived world. Ann N Y Acad Sci 2024; 1534:45-68. [PMID: 38528782 DOI: 10.1111/nyas.15118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This paper considers neural representation through the lens of active inference, a normative framework for understanding brain function. It delves into how living organisms employ generative models to minimize the discrepancy between predictions and observations (as scored with variational free energy). The ensuing analysis suggests that the brain learns generative models to navigate the world adaptively, not (or not solely) to understand it. Different living organisms may possess an array of generative models, spanning from those that support action-perception cycles to those that underwrite planning and imagination; namely, from explicit models that entail variables for predicting concurrent sensations, like objects, faces, or people-to action-oriented models that predict action outcomes. It then elucidates how generative models and belief dynamics might link to neural representation and the implications of different types of generative models for understanding an agent's cognitive capabilities in relation to its ecological niche. The paper concludes with open questions regarding the evolution of generative models and the development of advanced cognitive abilities-and the gradual transition from pragmatic to detached neural representations. The analysis on offer foregrounds the diverse roles that generative models play in cognitive processes and the evolution of neural representation.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Leo D'Amato
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
- Polytechnic University of Turin, Turin, Italy
| | - Francesco Mannella
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Matteo Priorelli
- Institute of Cognitive Sciences and Technologies, National Research Council, Padua, Italy
| | - Toon Van de Maele
- IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium
| | - Ivilin Peev Stoianov
- Institute of Cognitive Sciences and Technologies, National Research Council, Padua, Italy
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- VERSES Research Lab, Los Angeles, California, USA
| |
Collapse
|
4
|
Polanía R, Burdakov D, Hare TA. Rationality, preferences, and emotions with biological constraints: it all starts from our senses. Trends Cogn Sci 2024; 28:264-277. [PMID: 38341322 DOI: 10.1016/j.tics.2024.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Is the role of our sensory systems to represent the physical world as accurately as possible? If so, are our preferences and emotions, often deemed irrational, decoupled from these 'ground-truth' sensory experiences? We show why the answer to both questions is 'no'. Brain function is metabolically costly, and the brain loses some fraction of the information that it encodes and transmits. Therefore, if brains maximize objective functions that increase the fitness of their species, they should adapt to the objective-maximizing rules of the environment at the earliest stages of sensory processing. Consequently, observed 'irrationalities', preferences, and emotions stem from the necessity for our early sensory systems to adapt and process information while considering the metabolic costs and internal states of the organism.
Collapse
Affiliation(s)
- Rafael Polanía
- Decision Neuroscience Laboratory, Department of Health Sciences and Technology, ETH, Zurich, Zurich, Switzerland.
| | - Denis Burdakov
- Neurobehavioral Dynamics Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Todd A Hare
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Magalhães AC, Silva F, Lameirinha I, Rodrigues M, Soares SC. Think positive! Resolving human motion ambiguity in the presence of disease threat. Cogn Emot 2024; 38:71-89. [PMID: 37847269 DOI: 10.1080/02699931.2023.2269831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/18/2023]
Abstract
Recently, approach-avoidance tendencies and visual perception biases have been increasingly studied using bistable point-light walkers (PLWs). Prior studies have found a facing-the-viewer bias when one is primed with general threat stimuli (e.g. angry faces), explained by the "error management theory", as failing to detect a threat as approaching is riskier than the opposite. Importantly, no study has explored how disease threat - linked to the behavioural immune system - might affect this bias. This study aimed to explore whether disease-signalling cues can alter how we perceive the motion direction of ambiguous PLWs. Throughout 3 experiments, participants indicated the motion direction of a bistable PLW previously primed with a control or disease-signalling stimuli - that is, face with a surgical mask (Experiment 1), sickness sound (Experiment 2), or face with a disease cue (Experiment 3). Results showed that sickness cues do not significantly modulate the perception of approach-avoidance behaviours. However, a pattern emerged in Experiments 2 and 3, suggesting that sickness stimuli led to more facing away percepts. Unlike other types of threat, this implies that disease-related threat stimuli might trigger a distinct perceptual bias, indicating a preference to avoid a possible infection source. Nonetheless, this finding warrants future investigations.
Collapse
Affiliation(s)
- Ana C Magalhães
- William James Center for Research, University of Aveiro, Aveiro, Portugal
| | - Fábio Silva
- William James Center for Research, University of Aveiro, Aveiro, Portugal
| | - Inês Lameirinha
- Department of Education and Psychology, University of Aveiro, Aveiro, Portugal
| | - Mariana Rodrigues
- Department of Education and Psychology, University of Aveiro, Aveiro, Portugal
| | - Sandra C Soares
- William James Center for Research, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Marly A, Yazdjian A, Soto-Faraco S. The role of conflict processing in multisensory perception: behavioural and electroencephalography evidence. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220346. [PMID: 37545310 PMCID: PMC10404919 DOI: 10.1098/rstb.2022.0346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
To form coherent multisensory perceptual representations, the brain must solve a causal inference problem: to decide if two sensory cues originated from the same event and should be combined, or if they came from different events and should be processed independently. According to current models of multisensory integration, during this process, the integrated (common cause) and segregated (different causes) internal perceptual models are entertained. In the present study, we propose that the causal inference process involves competition between these alternative perceptual models that engages the brain mechanisms of conflict processing. To test this hypothesis, we conducted two experiments, measuring reaction times (RTs) and electroencephalography, using an audiovisual ventriloquist illusion paradigm with varying degrees of intersensory disparities. Consistent with our hypotheses, incongruent trials led to slower RTs and higher fronto-medial theta power, both indicative of conflict. We also predicted that intermediate disparities would yield slower RTs and higher theta power when compared to congruent stimuli and to large disparities, owing to the steeper competition between causal models. Although this prediction was only validated in the RT study, both experiments displayed the anticipated trend. In conclusion, our findings suggest a potential involvement of the conflict mechanisms in multisensory integration of spatial information. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Adrià Marly
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Arek Yazdjian
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Salvador Soto-Faraco
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08005 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Zhang X, Tan Q, Mu H. Flying enhances viewing from above bias on ambiguous visual stimuli. J Vis 2023; 23:11. [PMID: 37335570 DOI: 10.1167/jov.23.6.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
The human spatial orientation system is well designed on the ground but is imperfect in the aeronautical three-dimensional (3D) environment. However, human perception systems perform Bayesian statistics based on encountered environments and form shortcuts to improve perceptual efficiency. It is unknown whether our perception of spatial orientation is modified by flying experience and forms perceptual biases. The current study tested pilot perceptual biases on ambiguous visual stimuli, the bistable point-light walkers, and found that flying experiences increased the pilot's tendency to perceive himself as higher than the target and the target as farther away from them. Such perceptual effects due to flight are likely to be attributed to experience of variable vestibular state in a higher position in 3D space, rather than the experience of a higher viewpoint. Our findings suggest that flying experience will modifies our visual perceptual biases, and that more attention should be paid to the enhanced viewing from above bias when flying to avoid overestimating altitude or viewing angle when the visual conditions are ambiguous.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Aviation Human Factors and Cognitive Neuroscience, Department of Aviation Psychology, Flight Technology College, Civil Aviation Flight University of China, Guanghan, China
| | - Qilong Tan
- Institute of Aviation Human Factors and Cognitive Neuroscience, Department of Aviation Psychology, Flight Technology College, Civil Aviation Flight University of China, Guanghan, China
| | - Haiying Mu
- Institute of Aviation Human Factors and Cognitive Neuroscience, Department of Aviation Psychology, Flight Technology College, Civil Aviation Flight University of China, Guanghan, China
| |
Collapse
|
8
|
Safavi S, Dayan P. Multistability, perceptual value, and internal foraging. Neuron 2022; 110:3076-3090. [PMID: 36041434 DOI: 10.1016/j.neuron.2022.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/03/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
Abstract
Substantial experimental, theoretical, and computational insights into sensory processing have been derived from the phenomena of perceptual multistability-when two or more percepts alternate or switch in response to a single sensory input. Here, we review a range of findings suggesting that alternations can be seen as internal choices by the brain responding to values. We discuss how elements of external, experimenter-controlled values and internal, uncertainty- and aesthetics-dependent values influence multistability. We then consider the implications for the involvement in switching of regions, such as the anterior cingulate cortex, which are more conventionally tied to value-dependent operations such as cognitive control and foraging.
Collapse
Affiliation(s)
- Shervin Safavi
- University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Peter Dayan
- University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
9
|
Caporuscio C, Fink SB, Sterzer P, Martin JM. When seeing is not believing: A mechanistic basis for predictive divergence. Conscious Cogn 2022; 102:103334. [DOI: 10.1016/j.concog.2022.103334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 02/13/2022] [Accepted: 04/10/2022] [Indexed: 11/15/2022]
|
10
|
Maier M, Blume F, Bideau P, Hellwich O, Abdel Rahman R. Knowledge-augmented face perception: Prospects for the Bayesian brain-framework to align AI and human vision. Conscious Cogn 2022; 101:103301. [DOI: 10.1016/j.concog.2022.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/27/2021] [Accepted: 01/04/2022] [Indexed: 11/03/2022]
|