1
|
Chai R, Wang N, Nie J, Xu Z, Zhang S, Deng S, Wang R, Li M, Gao X, Geng R, Li H, Li L, Wu H, Li Z, Cheng TL, Xu XH, Shu Y, Hong H, Huang X, Wang W. Endocannabinoids disinhibit the ventral tegmental nucleus of Gudden to dorsal premammillary nucleus pathway to enhance escape behavior following learned threat experience. Nat Commun 2025; 16:4885. [PMID: 40419467 PMCID: PMC12106801 DOI: 10.1038/s41467-025-60080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Innate escape behaviors, while not requiring prior learning, are shaped by an animal's learned experiences, such as previous exposure. Here, we found that learned threat experience in mice enhances flight behaviors, which is linked to increased activation of cholecystokinin-expressing neurons in the dorsal premammillary nucleus (PMdCCK neurons), a population that controls circa-strike escape responses. This heightened activity coincides with reduced inhibition from parvalbumin-expressing GABAergic neurons in the ventral tegmental nucleus of Gudden (VTgPV), which typically suppress PMdCCK activity and escape behaviors. Furthermore, threat memory prompts a prefrontal projection to stimulate the release of endocannabinoids, inhibiting the axon terminals of VTgPV neurons. The necessity of this endocannabinoid-mediated disinhibition for the observed enhancement in flight behaviors is confirmed through genetic deletion or pharmacological blockade of endocannabinoid receptors on VTgPV neurons. Thus, our study uncovers a neural mechanism by which experience amplifies innate escape behaviors, highlighting the crucial role of endocannabinoids.
Collapse
Affiliation(s)
- Ruikai Chai
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Nawen Wang
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Jinlu Nie
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Zongyi Xu
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Shuqian Zhang
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Suixin Deng
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Rongxin Wang
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Mu Li
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Xinyi Gao
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Ruijie Geng
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haibin Li
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Li
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Hebi Wu
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Zhiming Li
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China
| | - Tian-Lin Cheng
- Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiao-Hong Xu
- Institute for Brain Science, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yousheng Shu
- Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Huilin Hong
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China.
| | - Xiao Huang
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Weisheng Wang
- Department of Neurology, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Brain Function and Disorders, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
2
|
Shadli SM, Russell BR, Lodhia V, Kirk IJ, Glue P, McNaughton N. Frontal localisation of a theory-based anxiety disorder biomarker - Goal conflict specific rhythmicity. J Affect Disord 2025; 372:287-295. [PMID: 39644930 DOI: 10.1016/j.jad.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/07/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
PURPOSE Anxiety disorders are a major global issue. Diagnosis via symptoms, not biological causes, delivers poor treatment outcomes. Our frontal EEG biomarker, Goal Conflict Specific Rhythmicity (GCSR; 4-12 Hz), developed from our long-standing detailed neuropsychological theory of anxiety processes, is reduced by all chemical types of selective anxiolytic and is high in cases across a range of currently diagnosed anxiety disorders. METHODS We assessed frontal sources of GCSR, recording scalp EEG at either low resolution (Experiment 1, 32 channels, University of Otago, ♀:33, ♂:16) or high resolution (Experiment 2, 128 channels, University of Auckland, ♀:10, ♂:8) in healthy participants performing a Stop Signal Task to generate GCSR as previously. PRINCIPAL RESULTS sLORETA demonstrated GCSR sources consistently in the right inferior frontal gyrus and, more strongly but less consistently, medial frontal gyrus. Variation was consistent with that of stopping in the same Stop Signal Task, depending on task demands. MAJOR CONCLUSIONS The sources of GCSR are consistent with our theory that hippocampal output receives goal information, detects conflict, and returns a negative biasing signal to the areas encoding goals in the current task. They match the variation in the control of stopping when response urgency changes. GCSR appears to index a biological type of anxiety unlike any current diagnosis and should help improve accuracy of diagnosis - anchored to actions of selective anxiolytic drugs. This task-related frontal "theta" rhythmicity provides proof-of-concept for further development of our theory of the neuropsychology of anxiety in direct human tests.
Collapse
Affiliation(s)
- Shabah M Shadli
- Dept. Psychology, New Zealand; School of Psychology, Charles Sturt University, Bathurst, NSW, Australia
| | | | - Veema Lodhia
- Dept. Psychology, University of Auckland, Auckland, New Zealand
| | - Ian J Kirk
- Dept. Psychology, University of Auckland, Auckland, New Zealand
| | - Paul Glue
- Dept. Psychological Medicine, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
3
|
Bősz E, Plattner VM, Biró L, Kóta K, Diana MA, Acsády L. A cortico-subcortical loop for motor control via the pontine reticular formation. Cell Rep 2025; 44:115230. [PMID: 39847485 PMCID: PMC11860761 DOI: 10.1016/j.celrep.2025.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/13/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
Movement and locomotion are controlled by large neuronal circuits like the cortex-basal ganglia (BG)-thalamus loop. Besides the inhibitory thalamic output, the BG directly control movement via specialized connections with the brainstem. Whether other parallel loops with similar logic exist is presently unclear. Here, we demonstrate that the secondary motor and cingulate cortices (M2/Cg) target and strongly control the activity of glycine transporter 2-positive (GlyT2+) cells in the pontine reticular formation (PRF). In turn, PRF/GlyT2+ cells project to and powerfully inhibit the intralaminar/parafascicular nuclei of the thalamus (IL/Pf). M2/Cg cells co-innervate PRF/GlyT2+ cells and the IL/Pf. Thalamus-projecting PRF/GlyT2+ cells target ipsilateral subcortical regions distinct from BG targets. Activation of the thalamus-projecting PRF/GlyT2+ cells leads to contralateral turning. These results demonstrate that the PRF is part of a cortico-subcortical loop that regulates motor activity parallel to BG circuits. The cortico-PRF-thalamus loop can control turning synergistically with the BG loops via distinct descending pathways.
Collapse
Affiliation(s)
- Emília Bősz
- Lendület Thalamus Research Group, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Viktor M Plattner
- Lendület Thalamus Research Group, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary; Sainsbury Wellcome Ctr., London W1T 4JG, UK
| | - László Biró
- Lendület Thalamus Research Group, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Kata Kóta
- Lendület Thalamus Research Group, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary; Semmelweis University, 1083 Budapest, Hungary
| | - Marco A Diana
- Université Paris Cité, CNRS, Saint-Pères Paris Institute for the Neurosciences, 75006 Paris, France
| | - László Acsády
- Lendület Thalamus Research Group, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary.
| |
Collapse
|
4
|
Shadli SM, Donegan CJ, Bin Mohd Fahmi MSS, Russell BR, Glue P, McNaughton N. Is lack of goal-conflict-specific rhythmicity a biomarker for treatment resistance in generalised anxiety but not social anxiety or major depression? J Psychopharmacol 2024; 38:789-797. [PMID: 39219452 PMCID: PMC11453030 DOI: 10.1177/02698811241275627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Anxiety and depression cause major detriment to the patient, family, and society - particularly in treatment-resistant (TR) cases, which are highly prevalent. TR prevalence may be due to current diagnoses being based not on biological measures but on symptom lists that suffer from clinical subjectivity, variation in symptom presentation, and comorbidity. AIMS Goal-conflict-specific rhythmicity (GCSR) measured using the Stop-Signal Task (SST) may provide the first neural biomarker for an anxiety process and disorder. This GCSR has been validated with selective drugs for anxiety. So, we proposed that GCSR could differ between TR and non-TR individuals and do so differently between those diagnoses normally sensitive to selective anxiolytics and those not. METHODS We recorded electroencephalograms (EEG) from 20 TR participants (4 GAD, 5 SAD and 11 MDD) and 24 non-TR participants (4 GAD, 5 SAD and 15 Comorbid GAD/MDD (GMD)) while they performed the SST. RESULTS There was significant positive GCSR in all groups except the GAD-TR group. GAD-TR lacked GCSR in the low-frequency range. However, TR had little effect in SAD or MDD/GMD populations with apparent increases not decreases. CONCLUSIONS Overall, these results suggest that GAD may occur in two forms: one resulting from excessive GCSR and so being drug sensitive, and the other resulting from some other mechanism and so being TR. In SAD and MDD groups, heightened GCSR could be a consequence rather than the cause, driven by mechanisms that are normally more sensitive to non-selective panicolytic antidepressants.
Collapse
Affiliation(s)
- Shabah M Shadli
- Department of Psychology, University of Otago, Dunedin, New Zealand
- School of Psychology, Charles Sturt University, Bathurst, NSW, Australia
| | - Carina J Donegan
- Department of Psychology, University of Otago, Dunedin, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
| | | | - Bruce R Russell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Paul Glue
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Neil McNaughton
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Duma GM, Cuozzo S, Wilson L, Danieli A, Bonanni P, Pellegrino G. Excitation/Inhibition balance relates to cognitive function and gene expression in temporal lobe epilepsy: a high density EEG assessment with aperiodic exponent. Brain Commun 2024; 6:fcae231. [PMID: 39056027 PMCID: PMC11272395 DOI: 10.1093/braincomms/fcae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with epilepsy are characterized by a dysregulation of excitation/inhibition balance (E/I). The assessment of E/I may inform clinicians during the diagnosis and therapy management, even though it is rarely performed. An accessible measure of the E/I of the brain represents a clinically relevant feature. Here, we exploited the exponent of the aperiodic component of the power spectrum of the electroencephalography (EEG) signal, as a non-invasive and cost-effective proxy of the E/I balance. We recorded resting-state activity with high-density EEG from 67 patients with temporal lobe epilepsy and 35 controls. We extracted the exponent of the aperiodic fit of the power spectrum from source-reconstructed EEG and tested differences between patients with epilepsy and controls. Spearman's correlation was performed between the exponent and clinical variables (age of onset, epilepsy duration and neuropsychology) and cortical expression of epilepsy-related genes derived from the Allen Human Brain Atlas. Patients with temporal lobe epilepsy showed a significantly larger exponent, corresponding to inhibition-directed E/I balance, in bilateral frontal and temporal regions. Lower E/I in the left entorhinal and bilateral dorsolateral prefrontal cortices corresponded to a lower performance of short-term verbal memory. Limited to patients with temporal lobe epilepsy, we detected a significant correlation between the exponent and the cortical expression of GABRA1, GRIN2A, GABRD, GABRG2, KCNA2 and PDYN genes. EEG aperiodic exponent maps the E/I balance non-invasively in patients with epilepsy and reveals a close relationship between altered E/I patterns, cognition and genetics.
Collapse
Affiliation(s)
- Gian Marco Duma
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Simone Cuozzo
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Luc Wilson
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alberto Danieli
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Paolo Bonanni
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| |
Collapse
|
6
|
McNaughton N, Bannerman D. The homogenous hippocampus: How hippocampal cells process available and potential goals. Prog Neurobiol 2024; 240:102653. [PMID: 38960002 DOI: 10.1016/j.pneurobio.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
We present here a view of the firing patterns of hippocampal cells that is contrary, both functionally and anatomically, to conventional wisdom. We argue that the hippocampus responds to efference copies of goals encoded elsewhere; and that it uses these to detect and resolve conflict or interference between goals in general. While goals can involve space, hippocampal cells do not encode spatial (or other special types of) memory, as such. We also argue that the transverse circuits of the hippocampus operate in an essentially homogeneous way along its length. The apparently different functions of different parts (e.g. memory retrieval versus anxiety) result from the different (situational/motivational) inputs on which those parts perform the same fundamental computational operations. On this view, the key role of the hippocampus is the iterative adjustment, via Papez-like circuits, of synaptic weights in cell assemblies elsewhere.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin 9054, New Zealand.
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, England, UK
| |
Collapse
|
7
|
Höller Y, Eyjólfsdóttir S, Van Schalkwijk FJ, Trinka E. The effects of slow wave sleep characteristics on semantic, episodic, and procedural memory in people with epilepsy. Front Pharmacol 2024; 15:1374760. [PMID: 38725659 PMCID: PMC11079234 DOI: 10.3389/fphar.2024.1374760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Slow wave sleep (SWS) is highly relevant for verbal and non-verbal/spatial memory in healthy individuals, but also in people with epilepsy. However, contradictory findings exist regarding the effect of seizures on overnight memory retention, particularly relating to procedural and non-verbal memory, and thorough examination of episodic memory retention with ecologically valid tests is missing. This research explores the interaction of SWS duration with epilepsy-relevant factors, as well as the relation of spectral characteristics of SWS on overnight retention of procedural, verbal, and episodic memory. In an epilepsy monitoring unit, epilepsy patients (N = 40) underwent learning, immediate and 12 h delayed testing of memory retention for a fingertapping task (procedural memory), a word-pair task (verbal memory), and an innovative virtual reality task (episodic memory). We used multiple linear regression to examine the impact of SWS duration, spectral characteristics of SWS, seizure occurrence, medication, depression, seizure type, gender, and epilepsy duration on overnight memory retention. Results indicated that none of the candidate variables significantly predicted overnight changes for procedural memory performance. For verbal memory, the occurrence of tonic-clonic seizures negatively impacted memory retention and higher psychoactive medication load showed a tendency for lower verbal memory retention. Episodic memory was significantly impacted by epilepsy duration, displaying a potential nonlinear impact with a longer duration than 10 years negatively affecting memory performance. Higher drug load of anti-seizure medication was by tendency related to better overnight retention of episodic memory. Contrary to expectations longer SWS duration showed a trend towards decreased episodic memory performance. Analyses on associations between memory types and EEG band power during SWS revealed lower alpha-band power in the frontal right region as significant predictor for better episodic memory retention. In conclusion, this research reveals that memory modalities are not equally affected by important epilepsy factors such as duration of epilepsy and medication, as well as SWS spectral characteristics.
Collapse
Affiliation(s)
- Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland
| | | | - Frank Jasper Van Schalkwijk
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Tübingen, Germany
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Member of the European Reference Network EpiCARE, Neuroscience Institute, Paracelsus Medical University and Centre for Cognitive Neuroscience Salzburg, Salzburg, Austria
| |
Collapse
|
8
|
Dillingham CM, Wilson JJ, Vann SD. Electrophysiological Properties of the Medial Mammillary Bodies across the Sleep-Wake Cycle. eNeuro 2024; 11:ENEURO.0447-23.2024. [PMID: 38621991 PMCID: PMC11055652 DOI: 10.1523/eneuro.0447-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
The medial mammillary bodies (MBs) play an important role in the formation of spatial memories; their dense inputs from hippocampal and brainstem regions makes them well placed to integrate movement-related and spatial information, which is then extended to the anterior thalamic nuclei and beyond to the cortex. While the anatomical connectivity of the medial MBs has been well studied, much less is known about their physiological properties, particularly in freely moving animals. We therefore carried out a comprehensive characterization of medial MB electrophysiology across arousal states by concurrently recording from the medial MB and the CA1 field of the hippocampus in male rats. In agreement with previous studies, we found medial MB neurons to have firing rates modulated by running speed and angular head velocity, as well as theta-entrained firing. We extended the characterization of MB neuron electrophysiology in three key ways: (1) we identified a subset of neurons (25%) that exhibit dominant bursting activity; (2) we showed that ∼30% of theta-entrained neurons exhibit robust theta cycle skipping, a firing characteristic that implicates them in a network for prospective coding of position; and (3) a considerable proportion of medial MB units showed sharp-wave ripple (SWR) responsive firing (∼37%). The functional heterogeneity of MB electrophysiology reinforces their role as an integrative node for mnemonic processing and identifies potential roles for the MBs in memory consolidation through propagation of SWR-responsive activity to the anterior thalamus and prospective coding in the form of theta cycle skipping.
Collapse
Affiliation(s)
- Christopher M Dillingham
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Innovation Institute, Cardiff CF24 4HQ, United Kingdom
| | - Jonathan J Wilson
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Innovation Institute, Cardiff CF24 4HQ, United Kingdom
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Innovation Institute, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
9
|
Milczarek MM, Perry JC, Amin E, Haniffa S, Hathaway T, Vann SD. Impairments in the early consolidation of spatial memories via group II mGluR agonism in the mammillary bodies. Sci Rep 2024; 14:5977. [PMID: 38472268 PMCID: PMC10933409 DOI: 10.1038/s41598-024-56015-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
mGluR2 receptors are widely expressed in limbic brain regions associated with memory, including the hippocampal formation, retrosplenial and frontal cortices, as well as subcortical regions including the mammillary bodies. mGluR2/3 agonists have been proposed as potential therapeutics for neurological and psychiatric disorders, however, there is still little known about the role of these receptors in cognitive processes, including memory consolidation. To address this, we assessed the effect of the mGluR2/3 agonist, eglumetad, on spatial memory consolidation in both mice and rats. Using the novel place preference paradigm, we found that post-sample injections of eglumetad impaired subsequent spatial discrimination when tested 6 h later. Using the immediate early gene c-fos as a marker of neural activity, we showed that eglumetad injections reduced activity in a network of limbic brain regions including the hippocampus and mammillary bodies. To determine whether the systemic effects could be replicated with more targeted manipulations, we performed post-sample infusions of the mGluR2/3 agonist 2R,4R-APDC into the mammillary bodies. This impaired novelty discrimination on a place preference task and an object-in-place task, again highlighting the role of mGluR2/3 transmission in memory consolidation and demonstrating the crucial involvement of the mammillary bodies in post-encoding processing of spatial information.
Collapse
Affiliation(s)
- Michal M Milczarek
- School of Psychology & Neuroscience and Mental Health Innovation Institute, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - James C Perry
- School of Psychology & Neuroscience and Mental Health Innovation Institute, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Eman Amin
- School of Psychology & Neuroscience and Mental Health Innovation Institute, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Salma Haniffa
- School of Psychology & Neuroscience and Mental Health Innovation Institute, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Thomas Hathaway
- School of Psychology & Neuroscience and Mental Health Innovation Institute, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Seralynne D Vann
- School of Psychology & Neuroscience and Mental Health Innovation Institute, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
10
|
Tu MC, Huang SM, Hsu YH, Yang JJ, Lin CY, Kuo LW. Joint diffusional kurtosis magnetic resonance imaging analysis of white matter and the thalamus to identify subcortical ischemic vascular disease. Sci Rep 2024; 14:2570. [PMID: 38297073 PMCID: PMC10830492 DOI: 10.1038/s41598-024-52910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Identifying subcortical ischemic vascular disease (SIVD) in older adults is important but challenging. Growing evidence suggests that diffusional kurtosis imaging (DKI) can detect SIVD-relevant microstructural pathology, and a systematic assessment of the discriminant power of DKI metrics in various brain tissue microstructures is urgently needed. Therefore, the current study aimed to explore the value of DKI and diffusion tensor imaging (DTI) metrics in detecting early-stage SIVD by combining multiple diffusion metrics, analysis strategies, and clinical-radiological constraints. This prospective study compared DKI with diffusivity and macroscopic imaging evaluations across the aging spectrum including SIVD, Alzheimer's disease (AD), and cognitively normal (NC) groups. Using a white matter atlas and segregated thalamus analysis with considerations of the pre-identified macroscopic pathology, the most effective diffusion metrics were selected and then examined using multiple clinical-radiological constraints in a two-group or three-group paradigm. A total of 122 participants (mean age, 74.6 ± 7.38 years, 72 women) including 42 with SIVD, 50 with AD, and 30 NC were evaluated. Fractional anisotropy, mean kurtosis, and radial kurtosis were critical metrics in detecting early-stage SIVD. The optimal selection of diffusion metrics showed 84.4-100% correct classification of the results in a three-group paradigm, with an area under the curve of .909-.987 in a two-group paradigm related to SIVD detection (all P < .001). We therefore concluded that greatly resilient to the effect of pre-identified macroscopic pathology, the combination of DKI/DTI metrics showed preferable performance in identifying early-stage SIVD among adults across the aging spectrum.
Collapse
Affiliation(s)
- Min-Chien Tu
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-Hsuan Hsu
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan
| | - Jir-Jei Yang
- Department of Radiology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | | | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
11
|
Connaughton M, O’Hanlon E, Silk TJ, Paterson J, O’Neill A, Anderson V, Whelan R, McGrath J. The Limbic System in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder: A Longitudinal Structural Magnetic Resonance Imaging Analysis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:385-393. [PMID: 38298776 PMCID: PMC10829648 DOI: 10.1016/j.bpsgos.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 02/02/2024] Open
Abstract
Background During childhood and adolescence, attention-deficit/hyperactivity disorder (ADHD) is associated with changes in symptoms and brain structures, but the link between brain structure and function remains unclear. The limbic system, often termed the "emotional network," plays an important role in a number of neurodevelopmental disorders, yet this brain network remains largely unexplored in ADHD. Investigating the developmental trajectories of key limbic system structures during childhood and adolescence will provide novel insights into the neurobiological underpinnings of ADHD. Methods Structural magnetic resonance imaging data (380 scans), emotional regulation (Affective Reactivity Index), and ADHD symptom severity (Conners 3 ADHD Index) were measured at up to 3 time points between 9 and 14 years of age in a sample of children and adolescents with ADHD (n = 57) and control children (n = 109). Results Compared with the control group, the ADHD group had lower volume of the amygdala (left: β standardized [β_std] = -0.38; right: β_std = -0.34), hippocampus (left: β_std = -0.44; right: β_std = -0.34), cingulate gyrus (left: β_std = -0.42; right: β_std = -0.32), and orbitofrontal cortex (right: β_std = -0.33) across development (9-14 years). There were no significant group-by-age interactions in any of the limbic system structures. Exploratory analysis found a significant Conners 3 ADHD Index-by-age interaction effect on the volume of the left mammillary body (β_std = 0.17) in the ADHD group across the 3 study time points. Conclusions Children and adolescents with ADHD displayed lower volume and atypical development in limbic system structures. Furthermore, atypical limbic system development was associated with increased symptom severity, highlighting a potential neurobiological correlate of ADHD severity.
Collapse
Affiliation(s)
- Michael Connaughton
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Erik O’Hanlon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Timothy J. Silk
- Department of Developmental Neuroimaging, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Julia Paterson
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Aisling O’Neill
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Vicki Anderson
- Department of Developmental Neuroimaging, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Psychology, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Robert Whelan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Jane McGrath
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Aggleton JP, Vann SD, O'Mara SM. Converging diencephalic and hippocampal supports for episodic memory. Neuropsychologia 2023; 191:108728. [PMID: 37939875 DOI: 10.1016/j.neuropsychologia.2023.108728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
To understand the neural basis of episodic memory it is necessary to appreciate the significance of the fornix. This pathway creates a direct link between those temporal lobe and medial diencephalic sites responsible for anterograde amnesia. A collaboration with Andrew Mayes made it possible to recruit and scan 38 patients with colloid cysts in the third ventricle, a condition associated with variable fornix damage. Complete fornix loss was seen in three patients, who suffered chronic long-term memory problems. Volumetric analyses involving all 38 patients then revealed a highly consistent relationship between mammillary body volume and the recall of episodic memory. That relationship was not seen for working memory or tests of recognition memory. Three different methods all supported a dissociation between recollective-based recognition (impaired) and familiarity-based recognition (spared). This dissociation helped to show how the mammillary body-anterior thalamic nuclei axis, as well as the hippocampus, is vital for episodic memory yet is not required for familiarity-based recognition. These findings set the scene for a reformulation of temporal lobe and diencephalic amnesia. In this revised model, these two regions converge on overlapping cortical areas, including retrosplenial cortex. The united actions of the hippocampal formation and the anterior thalamic nuclei on these cortical areas enable episodic memory encoding and consolidation, impacting on subsequent recall.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, Wales, United Kingdom.
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, Wales, United Kingdom
| | - Shane M O'Mara
- School of Psychology and Trinity College Institute of Neuroscience, Trinity College, Dublin - the University of Dublin, Dublin, D02 PN40, Ireland.
| |
Collapse
|
13
|
Milczarek MM, Gilani SIA, Lequin MH, Vann SD. Reduced mammillary body volume in individuals with a schizophrenia diagnosis: an analysis of the COBRE data set. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:48. [PMID: 37528127 PMCID: PMC10394056 DOI: 10.1038/s41537-023-00376-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
While the frontal cortices and medial temporal lobe are well associated with schizophrenia, the involvement of wider limbic areas is less clear. The mammillary bodies are important for both complex memory formation and anxiety and are implicated in several neurological disorders that present with memory impairments. However, little is known about their role in schizophrenia. Post-mortem studies have reported a loss of neurons in the mammillary bodies but there are also reports of increased mammillary body volume. The findings from in vivo MRI studies have also been mixed, but studies have typically only involved small sample sizes. To address this, we acquired mammillary body volumes from the open-source COBRE dataset, where we were able to manually measure the mammillary bodies in 72 individuals with a schizophrenia diagnosis and 74 controls. Participant age ranged from 18 to 65. We found the mammillary bodies to be smaller in the patient group, across both hemispheres, after accounting for the effects of total brain volume and gender. Hippocampal volumes, but not subiculum or total grey matter volumes, were also significantly lower in patients. Given the importance of the mammillary bodies for both memory and anxiety, this atrophy could contribute to the symptomology in schizophrenia.
Collapse
Affiliation(s)
- Michal M Milczarek
- School of Psychology, Cardiff University, Tower Building, Cardiff, CF10 3AT, UK
- Neuroscience and Mental Health Innovation Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - Syed Irtiza A Gilani
- School of Psychology, Cardiff University, Tower Building, Cardiff, CF10 3AT, UK
- CUBRIC, School of Psychology, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Maarten H Lequin
- Division Imaging & Oncology, Department of Radiology & Nuclear Medicine, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology, 3508 GA, Utrecht, The Netherlands
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Tower Building, Cardiff, CF10 3AT, UK.
- Neuroscience and Mental Health Innovation Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
14
|
Qin Y, Sheremet A, Cooper TL, Burke SN, Maurer AP. Nonlinear Theta-Gamma Coupling between the Anterior Thalamus and Hippocampus Increases as a Function of Running Speed. eNeuro 2023; 10:ENEURO.0470-21.2023. [PMID: 36858827 PMCID: PMC10027116 DOI: 10.1523/eneuro.0470-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
The hippocampal theta rhythm strongly correlates to awake behavior leading to theories that it represents a cognitive state of the brain. As theta has been observed in other regions of the Papez circuit, it has been theorized that activity propagates in a reentrant manner. These observations complement the energy cascade hypothesis in which large-amplitude, slow-frequency oscillations reflect activity propagating across a large population of neurons. Higher frequency oscillations, such as gamma, are related to the speed with which inhibitory and excitatory neurons interact and distribute activity on the local level. The energy cascade hypothesis suggests that the larger anatomic loops, maintaining theta, drive the smaller loops. As hippocampal theta increases in power with running speed, so does the power and frequency of the gamma rhythm. If theta is propagated through the circuit, it stands to reason that the local field potential (LFP) recorded in other regions would be coupled to the hippocampal theta, with the coupling increasing with running speed. We explored this hypothesis using open-source simultaneous recorded data from the CA1 region of the hippocampus and the anterior dorsal and anterior ventral thalamus. Cross-regional theta coupling increased with running speed. Although the power of the gamma rhythm was lower in the anterior thalamus, there was an increase in the coupling of hippocampal theta to anterior thalamic gamma. Broadly, the data support models of how activity moves across the nervous system, suggesting that the brain uses large-scale volleys of activity to support higher cognitive processes.
Collapse
Affiliation(s)
- Yu Qin
- Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611
| | - Alex Sheremet
- Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Tara L Cooper
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Sara N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Andrew P Maurer
- Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|
15
|
Liu Y, Liu S, Tang C, Tang K, Liu D, Chen M, Mao Z, Xia X. Transcranial alternating current stimulation combined with sound stimulation improves cognitive function in patients with Alzheimer's disease: Study protocol for a randomized controlled trial. Front Aging Neurosci 2023; 14:1068175. [PMID: 36698862 PMCID: PMC9869764 DOI: 10.3389/fnagi.2022.1068175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background The number of patients with Alzheimer's disease (AD) worldwide is increasing yearly, but the existing treatment methods have poor efficacy. Transcranial alternating current stimulation (tACS) is a new treatment for AD, but the offline effect of tACS is insufficient. To prolong the offline effect, we designed to combine tACS with sound stimulation to maintain the long-term post-effect. Materials and methods To explore the safety and effectiveness of tACS combined with sound stimulation and its impact on the cognition of AD patients. This trial will recruit 87 patients with mild to moderate AD. All patients were randomly divided into three groups. The change in Alzheimer's Disease Assessment Scale-Cognitive (ADAS-Cog) scores from the day before treatment to the end of treatment and 3 months after treatment was used as the main evaluation index. We will also explore the changes in the brain structural network, functional network, and metabolic network of AD patients in each group after treatment. Discussion We hope to conclude that tACS combined with sound stimulation is safe and tolerable in 87 patients with mild to moderate AD under three standardized treatment regimens. Compared with tACS alone or sound alone, the combination group had a significant long-term effect on cognitive improvement. To screen out a better treatment plan for AD patients. tACS combined with sound stimulation is a previously unexplored, non-invasive joint intervention to improve patients' cognitive status. This study may also identify the potential mechanism of tACS combined with sound stimulation in treating mild to moderate AD patients. Clinical Trial Registration Clinicaltrials.gov, NCT05251649. Registered on February 22, 2022.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | | | - Can Tang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Keke Tang
- Guangzhou Kangzhi Digital Technology Co., Ltd., Guangzhou, China
| | - Di Liu
- Guangzhou Kangzhi Digital Technology Co., Ltd., Guangzhou, China
| | - Meilian Chen
- Guangzhou Kangzhi Digital Technology Co., Ltd., Guangzhou, China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
16
|
Pelekanos V, Premereur E, Mitchell AS. Structural Connectivity Changes After Fornix Transection in Macaques Using Probabilistic Diffusion Tractography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:11-20. [PMID: 37525029 DOI: 10.1007/978-3-031-31978-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The fornix, the limbic system's white matter tract connecting the extended hippocampal system to subcortical structures of the medial diencephalon, is strongly associated with learning and memory in humans and nonhuman primates (NHPs). Here, we sought to investigate alterations in structural connectivity across key cortical and subcortical regions after fornix transection in NHPs. We collected diffusion-weighted MRI (dMRI) data from three macaque monkeys that underwent bilateral fornix transection during neurosurgery and from four age- and cohort-matched control macaques that underwent surgery to implant a head-post but remained neurologically intact. dMRI data were collected from both groups at two time points, before and after the surgeries, and scans took place at around the same time for the two groups. We used probabilistic tractography and employed the number of tracking streamlines to quantify connectivity across our regions of interest (ROIs), in all dMRI sessions. In the neurologically intact monkeys, we observed high connectivity across certain ROIs, including the CA3 hippocampal subfield with the retrosplenial cortex (RSC), the anterior thalamus with the RSC, and the RSC with the anterior cingulate cortex (ACC). However, we found that, compared to the control group, the fornix-transected monkeys showed marked, significant, connectivity changes including increases between the anterior thalamus and the ACC and between the CA3 and the ACC, as well as decreases between the CA3 and the RSC. Our results highlight cortical and subcortical network changes after fornix transection and identify candidate indirect connectivity routes that may support memory functions after damage and/or neurodegeneration.
Collapse
Affiliation(s)
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Department of Psychology, Hearing and Speech, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
17
|
Vann SD, Zachiu C, Meys KM, Ambrosino S, Durston S, de Vries LS, Groenendaal F, Lequin MH. Normative mammillary body volumes: From the neonatal period to young adult. NEUROIMAGE. REPORTS 2022; 2:None. [PMID: 36507070 PMCID: PMC9726681 DOI: 10.1016/j.ynirp.2022.100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
The mammillary bodies may be small, but they have an important role in encoding complex memories. Mammillary body pathology often occurs following thiamine deficiency but there is increasing evidence that the mammillary bodies are also compromised in other neurological conditions and in younger ages groups. For example, the mammillary bodies are frequently affected in neonates with hypoxic-ischemic encephalopathy. At present, there is no normative data for the mammillary bodies in younger groups making it difficult to identify abnormalities in neurological disorders. To address this, the present study set out to develop a normative dataset for neonates and for children to young adult. A further aim was to determine whether there were laterality or sex differences in mammillary body volumes. Mammillary body volumes were obtained from MRI scans from 506 participants across two datasets. Measures for neonates were acquired from the Developing Human Connectome Project database (156 male; 100 female); volumes for individuals aged 6-24 were acquired from the NICHE database (166 males; 84 females). Volume measurements were acquired using a semi-automated multi-atlas segmentation approach. Mammillary body volumes increased up to approximately 15 years-of-age. The left mammillary body was marginally, but significantly, larger than the right in the neonates with a similar pattern in older children/young adults. In neonates, the mammillary bodies in males were slightly bigger than females but no sex differences were present in older children/young adults. Given the increasing presentation of mammillary body pathology in neonates and children, these normative data will enable better assessment of the mammillary bodies in healthy and at-risk populations.
Collapse
Affiliation(s)
- Seralynne D. Vann
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Cornel Zachiu
- Department of Radiotherapy, University Medical Center Utrecht, 3584 CX, Utrecht, Utrecht, the Netherlands
| | - Karlijn M.E. Meys
- Division Imaging & Oncology, Department of Radiology & Nuclear Medicine, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology, 3508 GA, Utrecht, the Netherlands
| | - Sara Ambrosino
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Sarah Durston
- Education Center, Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Linda S. de Vries
- Deparment of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Floris Groenendaal
- Deparment of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Maarten H. Lequin
- Division Imaging & Oncology, Department of Radiology & Nuclear Medicine, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology, 3508 GA, Utrecht, the Netherlands
| |
Collapse
|
18
|
Zhou Y, Sheremet A, Kennedy JP, Qin Y, DiCola NM, Lovett SD, Burke SN, Maurer AP. Theta dominates cross-frequency coupling in hippocampal-medial entorhinal circuit during awake-behavior in rats. iScience 2022; 25:105457. [PMID: 36405771 PMCID: PMC9667293 DOI: 10.1016/j.isci.2022.105457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022] Open
Abstract
Hippocampal theta and gamma rhythms are hypothesized to play a role in the physiology of higher cognition. Prior research has reported that an offset in theta cycles between the entorhinal cortex, CA3, and CA1 regions promotes independence of population activity across the hippocampus. In line with this idea, it has recently been observed that CA1 pyramidal cells can establish and maintain coordinated place cell activity intrinsically, with minimal reliance on afferent input. Counter to these observations is the contemporary hypothesis that CA1 neuron activity is driven by a gamma oscillation arising from the medial entorhinal cortex (MEC) that relays information by providing precisely timed synchrony between MEC and CA1. Reinvestigating this in rats during appetitive track running, we found that theta is the dominant frequency of cross-frequency coupling between the MEC and hippocampus, with hippocampal gamma largely independent of entorhinal gamma. Theta, theta harmonic, and gamma power increase with running speed in the HPC and MEC Intra-regionally, theta-theta harmonic and theta-gamma coupling increases with speed Cross-regionally, theta is the dominant frequency of coupling between HPC and MEC Marginal gamma coupling can be explained by local gamma modulated by coherent theta
Collapse
|
19
|
Unravelling biological roles and mechanisms of GABA BR on addiction and depression through mood and memory disorders. Biomed Pharmacother 2022; 155:113700. [PMID: 36152411 DOI: 10.1016/j.biopha.2022.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The metabotropic γ-aminobutyric acid type B receptor (GABABR) remains a hotspot in the recent research area. Being an idiosyncratic G-protein coupled receptor family member, the GABABR manifests adaptively tailored functionality under multifarious modulations by a constellation of agents, pointing to cross-talk between receptors and effectors that converge on the domains of mood and memory. This review systematically summarizes the latest achievements in signal transduction mechanisms of the GABABR-effector-regulator complex and probes how the up-and down-regulation of membrane-delimited GABABRs are associated with manifold intrinsic and extrinsic agents in synaptic strength and plasticity. Neuropsychiatric conditions depression and addiction share the similar pathophysiology of synapse inadaptability underlying negative mood-related processes, memory formations, and impairments. In the attempt to emphasize all convergent discoveries, we hope the insights gained on the GABABR system mechanisms of action are conducive to designing more therapeutic candidates so as to refine the prognosis rate of diseases and minimize side effects.
Collapse
|