1
|
van Bree S, Levenstein D, Krause MR, Voytek B, Gao R. Processes and measurements: a framework for understanding neural oscillations in field potentials. Trends Cogn Sci 2025; 29:448-466. [PMID: 39753446 DOI: 10.1016/j.tics.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 05/09/2025]
Abstract
Various neuroscientific theories maintain that brain oscillations are important for neuronal computation, but opposing views claim that these macroscale dynamics are 'exhaust fumes' of more relevant processes. Here, we approach the question of whether oscillations are functional or epiphenomenal by distinguishing between measurements and processes, and by reviewing whether causal or inferentially useful links exist between field potentials, electric fields, and neurobiological events. We introduce a vocabulary for the role of brain signals and their underlying processes, demarcating oscillations as a distinct entity where both processes and measurements can exhibit periodicity. Leveraging this distinction, we suggest that electric fields, oscillating or not, are causally and computationally relevant, and that field potential signals can carry information even without causality.
Collapse
Affiliation(s)
- Sander van Bree
- Department of Medicine, Justus Liebig University, Giessen, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Daniel Levenstein
- MILA - Quebec AI Institute, Montreal, QC, Canada; Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Matthew R Krause
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıŏglu Data Science Institute, Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA, USA
| | - Richard Gao
- Machine Learning in Science, Excellence Cluster Machine Learning and Tübingen AI Center, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Drieu C, Zhu Z, Wang Z, Fuller K, Wang A, Elnozahy S, Kuchibhotla K. Rapid emergence of latent knowledge in the sensory cortex drives learning. Nature 2025; 641:960-970. [PMID: 40108473 DOI: 10.1038/s41586-025-08730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
Rapid learning confers significant advantages on animals in ecological environments. Despite the need for speed, animals appear to only slowly learn to associate rewarded actions with predictive cues1-4. This slow learning is thought to be supported by gradual changes to cue representation in the sensory cortex2,5. However, evidence is growing that animals learn more rapidly than classical performance measures suggest6,7, challenging the prevailing model of sensory cortical plasticity. Here we investigated the relationship between learning and sensory cortical representations. We trained mice on an auditory go/no-go task that dissociated the rapid acquisition of task contingencies (learning) from its slower expression (performance)7. Optogenetic silencing demonstrated that the auditory cortex drives both rapid learning and slower performance gains but becomes dispensable once mice achieve 'expert' performance. Instead of enhanced cue representations8, two-photon calcium imaging of auditory cortical neurons throughout learning revealed two higher-order signals that were causal to learning and performance. A reward-prediction signal emerged rapidly within tens of trials, was present after action-related errors early in training, and faded in expert mice. Silencing at the time of this signal impaired rapid learning, suggesting that it serves an associative role. A distinct cell ensemble encoded and controlled licking suppression that drove slower performance improvements. These ensembles were spatially clustered but uncoupled from sensory representations, indicating higher-order functional segregation within auditory cortex. Our results reveal that the sensory cortex manifests higher-order computations that separably drive rapid learning and slower performance improvements, reshaping our understanding of the fundamental role of the sensory cortex.
Collapse
Affiliation(s)
- Céline Drieu
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA.
| | - Ziyi Zhu
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ziyun Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kylie Fuller
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Aaron Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Sainsbury Wellcome Centre, London, UK
| | - Kishore Kuchibhotla
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA.
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Potter H, Mitchell K. Beyond Mechanism-Extending Our Concepts of Causation in Neuroscience. Eur J Neurosci 2025; 61:e70064. [PMID: 40075160 PMCID: PMC11903913 DOI: 10.1111/ejn.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
In neuroscience, the search for the causes of behaviour is often just taken to be the search for neural mechanisms. This view typically involves three forms of causal reduction: first, from the ontological level of cognitive processes to that of neural mechanisms; second, from the activity of the whole brain to that of isolated parts; and third, from a consideration of temporally extended, historical processes to a focus on synchronic states. While modern neuroscience has made impressive progress in identifying synchronic neural mechanisms, providing unprecedented real-time control of behaviour, we contend that this does not amount to a full causal explanation. In particular, there is an attendant danger of eliminating the cognitive from our explanatory framework, and even eliminating the organism itself. To fully understand the causes of behaviour, we need to understand not just what happens when different neurons are activated, but why those things happen. In this paper, we introduce a range of well-developed, non-reductive, and temporally extended notions of causality from philosophy, which neuroscientists may be able to draw on in order to build more complete causal explanations of behaviour. These include concepts of criterial causation, triggering versus structuring causes, constraints, macroscopic causation, historicity, and semantic causation-all of which, we argue, can be used to undergird a naturalistic understanding of mental causation and agent causation. These concepts can, collectively, help bring cognition and the organism itself back into the picture, as a causal agent unto itself, while still grounding causation in respectable scientific terms.
Collapse
Affiliation(s)
- Henry D. Potter
- Smurfit Institute of Genetics and Institute of NeuroscienceTrinity College DublinDublin 2Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics and Institute of NeuroscienceTrinity College DublinDublin 2Ireland
| |
Collapse
|
4
|
Drieu C, Zhu Z, Wang Z, Fuller K, Wang A, Elnozahy S, Kuchibhotla K. Rapid emergence of latent knowledge in the sensory cortex drives learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.597946. [PMID: 38915657 PMCID: PMC11195094 DOI: 10.1101/2024.06.10.597946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Rapid learning confers significant advantages to animals in ecological environments. Despite the need for speed, animals appear to only slowly learn to associate rewarded actions with predictive cues1-4. This slow learning is thought to be supported by a gradual expansion of predictive cue representation in the sensory cortex2,5. However, evidence is growing that animals learn more rapidly than classical performance measures suggest6-8, challenging the prevailing model of sensory cortical plasticity. Here, we investigated the relationship between learning and sensory cortical representations. We trained mice on an auditory go/no-go task that dissociated the rapid acquisition of task contingencies (learning) from its slower expression (performance)7. Optogenetic silencing demonstrated that the auditory cortex (AC) drives both rapid learning and slower performance gains but becomes dispensable at expert. Rather than enhancement or expansion of cue representations9, two-photon calcium imaging of AC excitatory neurons throughout learning revealed two higher-order signals that were causal to learning and performance. First, a reward prediction (RP) signal emerged rapidly within tens of trials, was present after action-related errors only early in training, and faded at expert levels. Strikingly, silencing at the time of the RP signal impaired rapid learning, suggesting it serves an associative and teaching role. Second, a distinct cell ensemble encoded and controlled licking suppression that drove the slower performance improvements. These two ensembles were spatially clustered but uncoupled from underlying sensory representations, indicating a higher-order functional segregation within AC. Our results reveal that the sensory cortex manifests higher-order computations that separably drive rapid learning and slower performance improvements, reshaping our understanding of the fundamental role of the sensory cortex.
Collapse
Affiliation(s)
- Céline Drieu
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA
| | - Ziyi Zhu
- Department of Neuroscience, School of Medicine, Johns Hopkins University, MD, USA
| | - Ziyun Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kylie Fuller
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Aaron Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Present address: Sainsbury Wellcome Centre, London, UK
| | - Kishore Kuchibhotla
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, MD, USA
| |
Collapse
|
5
|
Ross LN, Bassett DS. Causation in neuroscience: keeping mechanism meaningful. Nat Rev Neurosci 2024; 25:81-90. [PMID: 38212413 DOI: 10.1038/s41583-023-00778-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/13/2024]
Abstract
A fundamental goal of research in neuroscience is to uncover the causal structure of the brain. This focus on causation makes sense, because causal information can provide explanations of brain function and identify reliable targets with which to understand cognitive function and prevent or change neurological conditions and psychiatric disorders. In this research, one of the most frequently used causal concepts is 'mechanism' - this is seen in the literature and language of the field, in grant and funding inquiries that specify what research is supported, and in journal guidelines on which contributions are considered for publication. In these contexts, mechanisms are commonly tied to expressions of the main aims of the field and cited as the 'fundamental', 'foundational' and/or 'basic' unit for understanding the brain. Despite its common usage and perceived importance, mechanism is used in different ways that are rarely distinguished. Given that this concept is defined in different ways throughout the field - and that there is often no clarification of which definition is intended - there remains a marked ambiguity about the fundamental goals, orientation and principles of the field. Here we provide an overview of causation and mechanism from the perspectives of neuroscience and philosophy of science, in order to address these challenges.
Collapse
Affiliation(s)
- Lauren N Ross
- Department of Logic and Philosophy of Science, University of California, Irvine, Irvine, CA, USA.
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
6
|
Azadi R, Lopez E, Taubert J, Patterson A, Afraz A. Inactivation of face-selective neurons alters eye movements when free viewing faces. Proc Natl Acad Sci U S A 2024; 121:e2309906121. [PMID: 38198528 PMCID: PMC10801883 DOI: 10.1073/pnas.2309906121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/06/2023] [Indexed: 01/12/2024] Open
Abstract
During free viewing, faces attract gaze and induce specific fixation patterns corresponding to the facial features. This suggests that neurons encoding the facial features are in the causal chain that steers the eyes. However, there is no physiological evidence to support a mechanistic link between face-encoding neurons in high-level visual areas and the oculomotor system. In this study, we targeted the middle face patches of the inferior temporal (IT) cortex in two macaque monkeys using an functional magnetic resonance imaging (fMRI) localizer. We then utilized muscimol microinjection to unilaterally suppress IT neural activity inside and outside the face patches and recorded eye movements while the animals free viewing natural scenes. Inactivation of the face-selective neurons altered the pattern of eye movements on faces: The monkeys found faces in the scene but neglected the eye contralateral to the inactivation hemisphere. These findings reveal the causal contribution of the high-level visual cortex in eye movements.
Collapse
Affiliation(s)
- Reza Azadi
- Unit on Neurons, Circuits and Behavior, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Emily Lopez
- Unit on Neurons, Circuits and Behavior, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Jessica Taubert
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD20892
- School of Psychology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Amanda Patterson
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Arash Afraz
- Unit on Neurons, Circuits and Behavior, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD20892
| |
Collapse
|
7
|
Cavallo A, Casartelli L. Is rich behavior the solution or just a (relevant) piece of the puzzle?: Comment on "Beyond simple laboratory studies: Developing sophisticated models to study rich behavior" by Maselli, Gordon, Eluchans, Lancia, Thiery, Moretti, Cisek, and Pezzulo. Phys Life Rev 2023; 47:186-188. [PMID: 37926019 DOI: 10.1016/j.plrev.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Andrea Cavallo
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy; C'MoN Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E. MEDEA, Bosisio Parini (LC), Italy
| |
Collapse
|
8
|
Casartelli L, Maronati C, Cavallo A. From neural noise to co-adaptability: Rethinking the multifaceted architecture of motor variability. Phys Life Rev 2023; 47:245-263. [PMID: 37976727 DOI: 10.1016/j.plrev.2023.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In the last decade, the source and the functional meaning of motor variability have attracted considerable attention in behavioral and brain sciences. This construct classically combined different levels of description, variable internal robustness or coherence, and multifaceted operational meanings. We provide here a comprehensive review of the literature with the primary aim of building a precise lexicon that goes beyond the generic and monolithic use of motor variability. In the pars destruens of the work, we model three domains of motor variability related to peculiar computational elements that influence fluctuations in motor outputs. Each domain is in turn characterized by multiple sub-domains. We begin with the domains of noise and differentiation. However, the main contribution of our model concerns the domain of adaptability, which refers to variation within the same exact motor representation. In particular, we use the terms learning and (social)fitting to specify the portions of motor variability that depend on our propensity to learn and on our largely constitutive propensity to be influenced by external factors. A particular focus is on motor variability in the context of the sub-domain named co-adaptability. Further groundbreaking challenges arise in the modeling of motor variability. Therefore, in a separate pars construens, we attempt to characterize these challenges, addressing both theoretical and experimental aspects as well as potential clinical implications for neurorehabilitation. All in all, our work suggests that motor variability is neither simply detrimental nor beneficial, and that studying its fluctuations can provide meaningful insights for future research.
Collapse
Affiliation(s)
- Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E. MEDEA, Italy
| | - Camilla Maronati
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy
| | - Andrea Cavallo
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy; C'MoN Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
9
|
Livneh Y. FENS-Kavli Network of Excellence: Bridging levels and model systems in neuroscience: Challenges and solutions. Eur J Neurosci 2023; 58:4460-4465. [PMID: 37060154 DOI: 10.1111/ejn.15990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
"But what's the mechanism? And what's the behavioral relevance?" These very common questions reflect that obvious fact that neural systems can be described at multiple levels. They further reflect the fact that many neuroscientists view the achievement of such multilevel descriptions as an important accomplishment. Neuroscientists have achieved a remarkable level of understanding at each different level, yet comprehensive descriptions that bridge across multiple levels remain a substantial challenge in neuroscience. Many of us may take the importance and the considerable difficulty of this endeavour for granted and, therefore, expect that it will be somehow solved in the future as we make more progress. In contrast, I argue here that concerted action is needed to address this outstanding challenge. I discuss the need to bridge different levels and model systems in neuroscience. I briefly review key concepts from philosophy of science that can create a conceptual framework to do so. Finally, I suggest concrete "bottom-up" and "top-down" steps the neuroscience community can take to make progress in this direction. I hope these suggestions will serve an initial basis for further fruitful discussions that will advance us towards achieving this important goal.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Garwood IC, Major AJ, Antonini MJ, Correa J, Lee Y, Sahasrabudhe A, Mahnke MK, Miller EK, Brown EN, Anikeeva P. Multifunctional fibers enable modulation of cortical and deep brain activity during cognitive behavior in macaques. SCIENCE ADVANCES 2023; 9:eadh0974. [PMID: 37801492 PMCID: PMC10558126 DOI: 10.1126/sciadv.adh0974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Recording and modulating neural activity in vivo enables investigations of the neurophysiology underlying behavior and disease. However, there is a dearth of translational tools for simultaneous recording and localized receptor-specific modulation. We address this limitation by translating multifunctional fiber neurotechnology previously only available for rodent studies to enable cortical and subcortical neural recording and modulation in macaques. We record single-neuron and broader oscillatory activity during intracranial GABA infusions in the premotor cortex and putamen. By applying state-space models to characterize changes in electrophysiology, we uncover that neural activity evoked by a working memory task is reshaped by even a modest local inhibition. The recordings provide detailed insight into the electrophysiological effect of neurotransmitter receptor modulation in both cortical and subcortical structures in an awake macaque. Our results demonstrate a first-time application of multifunctional fibers for causal studies of neuronal activity in behaving nonhuman primates and pave the way for clinical translation of fiber-based neurotechnology.
Collapse
Affiliation(s)
- Indie C. Garwood
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex J. Major
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Josefina Correa
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Youngbin Lee
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Meredith K. Mahnke
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Earl K. Miller
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emery N. Brown
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
11
|
Kass RE, Bong H, Olarinre M, Xin Q, Urban KN. Identification of interacting neural populations: methods and statistical considerations. J Neurophysiol 2023; 130:475-496. [PMID: 37465897 PMCID: PMC10642974 DOI: 10.1152/jn.00131.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
As improved recording technologies have created new opportunities for neurophysiological investigation, emphasis has shifted from individual neurons to multiple populations that form circuits, and it has become important to provide evidence of cross-population coordinated activity. We review various methods for doing so, placing them in six major categories while avoiding technical descriptions and instead focusing on high-level motivations and concerns. Our aim is to indicate what the methods can achieve and the circumstances under which they are likely to succeed. Toward this end, we include a discussion of four cross-cutting issues: the definition of neural populations, trial-to-trial variability and Poisson-like noise, time-varying dynamics, and causality.
Collapse
Affiliation(s)
- Robert E Kass
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Heejong Bong
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Motolani Olarinre
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Qi Xin
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Konrad N Urban
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
12
|
Rowland JM, van der Plas TL, Loidolt M, Lees RM, Keeling J, Dehning J, Akam T, Priesemann V, Packer AM. Propagation of activity through the cortical hierarchy and perception are determined by neural variability. Nat Neurosci 2023; 26:1584-1594. [PMID: 37640911 PMCID: PMC10471496 DOI: 10.1038/s41593-023-01413-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Brains are composed of anatomically and functionally distinct regions performing specialized tasks, but regions do not operate in isolation. Orchestration of complex behaviors requires communication between brain regions, but how neural dynamics are organized to facilitate reliable transmission is not well understood. Here we studied this process directly by generating neural activity that propagates between brain regions and drives behavior, assessing how neural populations in sensory cortex cooperate to transmit information. We achieved this by imaging two densely interconnected regions-the primary and secondary somatosensory cortex (S1 and S2)-in mice while performing two-photon photostimulation of S1 neurons and assigning behavioral salience to the photostimulation. We found that the probability of perception is determined not only by the strength of the photostimulation but also by the variability of S1 neural activity. Therefore, maximizing the signal-to-noise ratio of the stimulus representation in cortex relative to the noise or variability is critical to facilitate activity propagation and perception.
Collapse
Affiliation(s)
- James M Rowland
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Thijs L van der Plas
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Matthias Loidolt
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robert M Lees
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Science and Technology Facilities Council, Octopus Imaging Facility, Research Complex at Harwell, Harwell Campus, Oxfordshire, UK
| | - Joshua Keeling
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Jonas Dehning
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Adam M Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Afraz A. Behavioral optogenetics in nonhuman primates; a psychological perspective. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100101. [PMID: 38020813 PMCID: PMC10663131 DOI: 10.1016/j.crneur.2023.100101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 12/01/2023] Open
Abstract
Optogenetics has been a promising and developing technology in systems neuroscience throughout the past decade. It has been difficult though to reliably establish the potential behavioral effects of optogenetic perturbation of the neural activity in nonhuman primates. This poses a challenge on the future of optogenetics in humans as the concepts and technology need to be developed in nonhuman primates first. Here, I briefly summarize the viable approaches taken to improve nonhuman primate behavioral optogenetics, then focus on one approach: improvements in the measurement of behavior. I bring examples from visual behavior and show how the choice of method of measurement might conceal large behavioral effects. I will then discuss the "cortical perturbation detection" task in detail as an example of a sensitive task that can record the behavioral effects of optogenetic cortical stimulation with high fidelity. Finally, encouraged by the rich scientific landscape ahead of behavioral optogenetics, I invite technology developers to improve the chronically implantable devices designed for simultaneous neural recording and optogenetic intervention in nonhuman primates.
Collapse
Affiliation(s)
- Arash Afraz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Wang Q, Wang Q, Zhang RY. Claim causality with clarity. PSYCHORADIOLOGY 2023; 3:kkad007. [PMID: 38666114 PMCID: PMC10917363 DOI: 10.1093/psyrad/kkad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 04/28/2024]
Affiliation(s)
- Qing Wang
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, 600 S. Wanping Road, Shanghai 200030, Shanghai, China
| | - Qiao Wang
- Department of Biostatistics and Bioinformatics, Duke University, 2424 Erwin Road, Durham NC, 27705, USA
| | - Ru-Yuan Zhang
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, 600 S. Wanping Road, Shanghai 200030, Shanghai, China
- Institute of Psychology and Behavioral Science, Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
15
|
Kay K, Bonnen K, Denison RN, Arcaro MJ, Barack DL. Tasks and their role in visual neuroscience. Neuron 2023; 111:1697-1713. [PMID: 37040765 DOI: 10.1016/j.neuron.2023.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/13/2023]
Abstract
Vision is widely used as a model system to gain insights into how sensory inputs are processed and interpreted by the brain. Historically, careful quantification and control of visual stimuli have served as the backbone of visual neuroscience. There has been less emphasis, however, on how an observer's task influences the processing of sensory inputs. Motivated by diverse observations of task-dependent activity in the visual system, we propose a framework for thinking about tasks, their role in sensory processing, and how we might formally incorporate tasks into our models of vision.
Collapse
Affiliation(s)
- Kendrick Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Kathryn Bonnen
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Rachel N Denison
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Mike J Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - David L Barack
- Departments of Neuroscience and Philosophy, University of Pennsylvania, Philadelphia, PA 19146, USA
| |
Collapse
|
16
|
McFarlan AR, Chou CYC, Watanabe A, Cherepacha N, Haddad M, Owens H, Sjöström PJ. The plasticitome of cortical interneurons. Nat Rev Neurosci 2023; 24:80-97. [PMID: 36585520 DOI: 10.1038/s41583-022-00663-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/31/2022]
Abstract
Hebb postulated that, to store information in the brain, assemblies of excitatory neurons coding for a percept are bound together via associative long-term synaptic plasticity. In this view, it is unclear what role, if any, is carried out by inhibitory interneurons. Indeed, some have argued that inhibitory interneurons are not plastic. Yet numerous recent studies have demonstrated that, similar to excitatory neurons, inhibitory interneurons also undergo long-term plasticity. Here, we discuss the many diverse forms of long-term plasticity that are found at inputs to and outputs from several types of cortical inhibitory interneuron, including their plasticity of intrinsic excitability and their homeostatic plasticity. We explain key plasticity terminology, highlight key interneuron plasticity mechanisms, extract overarching principles and point out implications for healthy brain functionality as well as for neuropathology. We introduce the concept of the plasticitome - the synaptic plasticity counterpart to the genome or the connectome - as well as nomenclature and definitions for dealing with this rich diversity of plasticity. We argue that the great diversity of interneuron plasticity rules is best understood at the circuit level, for example as a way of elucidating how the credit-assignment problem is solved in deep biological neural networks.
Collapse
Affiliation(s)
- Amanda R McFarlan
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Christina Y C Chou
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Airi Watanabe
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Nicole Cherepacha
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Maria Haddad
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Hannah Owens
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
17
|
Abstract
An impactful understanding of the brain will require entirely new approaches and unprecedented collaborative efforts. The next steps will require brain researchers to develop theoretical frameworks that allow them to tease apart dependencies and causality in complex dynamical systems, as well as the ability to maintain awe while not getting lost in the effort. The outstanding question is: How do we go about it?
Collapse
|