1
|
Zhao X, Cooper M, Michael JV, Yarman Y, Baltz A, Chuprun JK, Koch WJ, McKenzie SE, Tomaiuolo M, Stalker TJ, Zhu L, Ma P. GRK2 regulates ADP signaling in platelets via P2Y1 and P2Y12. Blood Adv 2022; 6:4524-4536. [PMID: 35793439 PMCID: PMC9636328 DOI: 10.1182/bloodadvances.2022007007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
The critical role of G protein-coupled receptor kinase 2 (GRK2) in regulating cardiac function has been well documented for >3 decades. Targeting GRK2 has therefore been extensively studied as a novel approach to treating cardiovascular disease. However, little is known about its role in hemostasis and thrombosis. We provide here the first evidence that GRK2 limits platelet activation and regulates the hemostatic response to injury. Deletion of GRK2 in mouse platelets causes increased platelet accumulation after laser-induced injury in the cremaster muscle arterioles, shortens tail bleeding time, and enhances thrombosis in adenosine 5'-diphosphate (ADP)-induced pulmonary thromboembolism and in FeCl3-induced carotid injury. GRK2-/- platelets have increased integrin activation, P-selectin exposure, and platelet aggregation in response to ADP stimulation. Furthermore, GRK2-/- platelets retain the ability to aggregate in response to ADP restimulation, indicating that GRK2 contributes to ADP receptor desensitization. Underlying these changes in GRK2-/- platelets is an increase in Ca2+ mobilization, RAS-related protein 1 activation, and Akt phosphorylation stimulated by ADP, as well as an attenuated rise of cyclic adenosine monophosphate levels in response to ADP in the presence of prostaglandin I2. P2Y12 antagonist treatment eliminates the phenotypic difference in platelet accumulation between wild-type and GRK2-/- mice at the site of injury. Pharmacologic inhibition of GRK2 activity in human platelets increases platelet activation in response to ADP. Finally, we show that GRK2 binds to endogenous Gβγ subunits during platelet activation. Collectively, these results show that GRK2 regulates ADP signaling via P2Y1 and P2Y12, interacts with Gβγ, and functions as a signaling hub in platelets for modulating the hemostatic response to injury.
Collapse
Affiliation(s)
- Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - James V. Michael
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Yanki Yarman
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Aiden Baltz
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - J. Kurt Chuprun
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Steven E. McKenzie
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Maurizio Tomaiuolo
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA
| | - Timothy J. Stalker
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Li Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
2
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
3
|
Hwang IY, Park C, Harrison K, Kehrl JH. Biased S1PR1 Signaling in B Cells Subverts Responses to Homeostatic Chemokines, Severely Disorganizing Lymphoid Organ Architecture. THE JOURNAL OF IMMUNOLOGY 2019; 203:2401-2414. [PMID: 31548329 DOI: 10.4049/jimmunol.1900678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/29/2019] [Indexed: 11/19/2022]
Abstract
Ligand-engaged chemoattractant receptors trigger Gαi subunit nucleotide exchange, stimulating the activation of downstream effector molecules. Activated chemoattractant receptors also dock G protein-coupled receptor kinases (GRKs) that help mediate receptor desensitization. In this study, we show that the B cell-specific loss of GRK2 severely disrupts B cell trafficking and immune cell homeostasis. The GRK2 deficiency in developing murine B cells leads to a severe immune phenotype, including a major reduction of bone marrow IgD+ cells, splenomegaly with a loss of white pulp and grossly expanded red pulp, a deficit of Peyer patches, and small lymph nodes with marked reductions in B cell numbers. The major phenotypes in these mice arise from excessive S1PR1 signaling combined with inadequate homeostatic chemokine receptor signaling. CXCL13 signaling is the most severely compromised. In B cells, our data also indicate that S1PR1 signals constitutively, as blocking S1PR1 signaling with an S1PR1 antagonist enhanced CXCL13-triggered wild-type B cell migration. Furthermore, blocking S1PR1 signaling in the GRK2-deficient B cells partially corrected their poor response to chemokines. Treating mice lacking GRK2 expression in their B cells with an S1PR1 antagonist partially normalized B cell trafficking into lymph node and splenic follicles. These findings reveal the critical interdependence of Gαi-linked signaling pathways in controlling B lymphocyte trafficking.
Collapse
Affiliation(s)
- Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Chung Park
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kathleen Harrison
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John H Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
4
|
Zhang Z, Xue L, Guo H, Li Y, Ding H, Huang S. Phosphorylation-independent desensitization of metabotropic glutamate receptor 5 by G protein-coupled receptor kinase 2 in HEK 293 cells. Mol Biol 2013. [DOI: 10.1134/s0026893313010160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Li X, Huston E, Lynch M, Houslay M, Baillie G. Phosphodiesterase-4 influences the PKA phosphorylation status and membrane translocation of G-protein receptor kinase 2 (GRK2) in HEK-293beta2 cells and cardiac myocytes. Biochem J 2006; 394:427-35. [PMID: 16356165 PMCID: PMC1408673 DOI: 10.1042/bj20051560] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/09/2005] [Accepted: 12/15/2005] [Indexed: 11/17/2022]
Abstract
Membrane-recruitment of GRK2 (G-protein receptor kinase 2) provides a fundamental step in the desensitization process controlling GPCRs (G-protein-coupled receptors), such as the beta2AR (beta2-adrenergic receptor). In the present paper, we show that challenge of HEK-293beta2 [human embryonic kidney cells stably overexpressing the FLAG-tagged beta2AR-GFP (green fluorescent protein)] cells with the beta-adrenoceptor agonist, isoprenaline, causes GRK2 to become phosphorylated by PKA (cAMP-dependent protein kinase). This action is facilitated when cAMP-specific PDE4 (phosphodiesterase-4) activity is selectively inactivated, either chemically with rolipram or by siRNA (small interfering RNA)-mediated knockdown of PDE4B and PDE4D. PDE4-selective inhibition by rolipram facilitates the isoprenaline-induced membrane translocation of GRK2, phosphorylation of the beta2AR by GRK2, membrane translocation of beta-arrestin and internalization of beta2ARs. PDE4-selective inhibition also enhances the ability of isoprenaline to trigger the PKA phosphorylation of GRK2 in cardiac myocytes. In the absence of isoprenaline, rolipram-induced inhibition of PDE4 activity in HEK-293beta2 cells acts to stimulate PKA phosphorylation of GRK2, with consequential effects on GRK2 membrane recruitment and GRK2-mediated phosphorylation of the beta2AR. We propose that a key role for PDE4 enzymes is: (i) to gate the action of PKA on GRK2, influencing the rate of GRK2 phosphorylation of the beta2AR and consequential recruitment of beta-arrestin subsequent to beta-adrenoceptor agonist challenge, and (ii) to protect GRK2 from inappropriate membrane recruitment in unstimulated cells through its phosphorylation by PKA in response to fluctuations in basal levels of cAMP.
Collapse
Key Words
- β2-adrenoceptor
- camp-dependent protein kinase (pka)
- g-protein receptor kinase 2 (grk2)
- phosphodiesterase 4 (pde4)
- rolipram
- β2ar, β2-adrenergic receptor
- erk, extracellular-regulated-protein kinase
- gfp, green fluorescent protein
- gpcr, g-protein-coupled receptor
- grk, g-protein receptor kinase
- hek-293β2, human embryonic kidney cells stably overexpressing the flag-tagged β2ar–gfp
- pde, phosphodiesterase
- pka, camp-dependent protein kinase
- pkc, protein kinase c
- sirna, small interfering rna
- tbs, tris-buffered saline
Collapse
Affiliation(s)
- Xiang Li
- Molecular Pharmacology Group, Division of Biochemistry & Molecular Biology, IBLS, Wolfson Link Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, U.K
| | - Elaine Huston
- Molecular Pharmacology Group, Division of Biochemistry & Molecular Biology, IBLS, Wolfson Link Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, U.K
| | - Martin J. Lynch
- Molecular Pharmacology Group, Division of Biochemistry & Molecular Biology, IBLS, Wolfson Link Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, U.K
| | - Miles D. Houslay
- Molecular Pharmacology Group, Division of Biochemistry & Molecular Biology, IBLS, Wolfson Link Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, U.K
| | - George S. Baillie
- Molecular Pharmacology Group, Division of Biochemistry & Molecular Biology, IBLS, Wolfson Link Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, U.K
| |
Collapse
|