1
|
The Impact of Early Life Exposure to Cannabis: The Role of the Endocannabinoid System. Int J Mol Sci 2021; 22:ijms22168576. [PMID: 34445282 PMCID: PMC8395329 DOI: 10.3390/ijms22168576] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
Cannabis use during pregnancy has continued to rise, particularly in developed countries, as a result of the trend towards legalization and lack of consistent, evidence-based knowledge on the matter. While there is conflicting data regarding whether cannabis use during pregnancy leads to adverse outcomes such as stillbirth, preterm birth, low birthweight, or increased admission to neonatal intensive care units, investigations into long-term effects on the offspring’s health are limited. Historically, studies have focused on the neurobehavioral effects of prenatal cannabis exposure on the offspring. The effects of cannabis on other physiological aspects of the developing fetus have received less attention. Importantly, our knowledge about cannabinoid signaling in the placenta is also limited. The endocannabinoid system (ECS) is present at early stages of development and represents a potential target for exogenous cannabinoids in utero. The ECS is expressed in a broad range of tissues and influences a spectrum of cellular functions. The aim of this review is to explore the current evidence surrounding the effects of prenatal exposure to cannabinoids and the role of the ECS in the placenta and the developing fetus.
Collapse
|
2
|
Carty DR, Thornton C, Gledhill JH, Willett KL. Developmental Effects of Cannabidiol and Δ9-Tetrahydrocannabinol in Zebrafish. Toxicol Sci 2019; 162:137-145. [PMID: 29106691 DOI: 10.1093/toxsci/kfx232] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cannabidiol (CBD) has gained much attention in the past several years for its therapeutic potential in the treatment of drug-resistant epilepsy, such as Dravet syndrome. Although CBD has shown anecdotal efficacy in reducing seizure frequency, little is known regarding the potential adverse side effects of CBD on physiology, development, organogenesis, or behavior. The goal of this project was to compare the relative morphological, behavioral, and gene expression phenotypes resulting after a developmental exposure to Δ9-tetrahydrocannabinol (THC) or CBD. Zebrafish were exposed from blastula through larval stage (96 h postfertilization [hpf]) to 0.3, 0.6, 1.25, 2.5, 5 mg/l (1, 2, 4, 8, 16 µM) THC or 0.07, 0.1, 0.3, 0.6, 1.25 mg/l CBD (0.25, 0.5, 1, 2, 4 µM). Despite the similarity in THC and CBD dysmorphologies, ie, edemas, curved axis, eye/snout/jaw/trunk/fin deformities, swim bladder distention, and behavioral abnormalities, the LC50 for CBD (0.53 mg/l) was nearly 7 times lower than THC (3.65 mg/l). At 96 hpf, c-fos, dazl, and vasa were differentially expressed following THC exposure, but only c-fos expression was significantly increased by CBD. Cannabidiol was more bioconcentrated compared with THC despite higher THC water concentrations. This work supports the potential for persistent developmental impacts of cannabinoid exposure, but more studies are needed to assess latent effects and their molecular mechanisms of toxicity.
Collapse
Affiliation(s)
- Dennis R Carty
- Division of Environmental Toxicology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| | - Cammi Thornton
- Division of Environmental Toxicology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| | - James H Gledhill
- Division of Environmental Toxicology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| | - Kristine L Willett
- Division of Environmental Toxicology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| |
Collapse
|
3
|
Dong C, Chen J, Harrington A, Vinod KY, Hegde ML, Hegde VL. Cannabinoid exposure during pregnancy and its impact on immune function. Cell Mol Life Sci 2019; 76:729-743. [PMID: 30374520 PMCID: PMC6632091 DOI: 10.1007/s00018-018-2955-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
Cannabinoids are the most commonly abused illicit drugs worldwide. While cannabis can be beneficial for certain heath conditions, abuse of potent synthetic cannabinoids has been on the rise. Exposure to cannabinoids is also prevalent in women of child-bearing age and pregnant women. These compounds can cross the placental barrier and directly affect the fetus. They mediate their effects primarily through G-protein coupled cannabinoid receptors, CB1 and CB2. In addition to significant neurological effects, cannabinoids can trigger robust immunomodulation by altering cytokine levels, causing apoptosis of lymphoid cells and inducing suppressor cells of the immune system. Profound effects of cannabinoids on the immune system as discussed in this review, suggest that maternal exposure during pregnancy could lead to dysregulation of innate and adaptive immune system of developing fetus and offspring potentially leading to weakening of immune defenses against infections and cancer later in life. Emerging evidence also indicates the underlying role of epigenetic mechanisms causing long-lasting impact following cannabinoid exposure in utero.
Collapse
Affiliation(s)
- Catherine Dong
- School of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Jingwen Chen
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29208, USA
| | - Amy Harrington
- School of Pharmacy, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - K Yaragudri Vinod
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Emotional Brain Institute, Orangeburg, NY, 10962, USA
- Child and Adolescent Psychiatry, New York School of Medicine, New York, NY, 10016, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Institute for Academic Medicine and Research Institute, The Houston Methodist Research Institute (HMRI), 6550 Fannin St, Smith 08-077, Houston, TX, 77030, USA
| | - Venkatesh L Hegde
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Radiation Oncology, Institute for Academic Medicine and Research Institute, The Houston Methodist Research Institute (HMRI), 6550 Fannin St, Smith 08-077, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Bukiya AN. Physiology of the Endocannabinoid System During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1162:13-37. [PMID: 31332732 DOI: 10.1007/978-3-030-21737-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endocannabinoid (eCB) system comprises endogenously produced cannabinoids (CBs), enzymes of their production and degradation, and CB-sensing receptors and transporters. The eCB system plays a critical role in virtually all stages of animal development. Studies on eCB system components and their physiological role have gained increasing attention with the rising legalization and medical use of marijuana products. The latter represent exogenous interventions that target the eCB system. This chapter summarizes knowledge in the field of CB contribution to gametogenesis, fertilization, embryo implantation, fetal development, birth, and adolescence-equivalent periods of ontogenesis. The material is complemented by the overview of data from our laboratory documenting the functional presence of the eCB system within cerebral arteries of baboons at different stages of development.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
5
|
Transcriptional abundance of type-1 endocannabinoid receptor (CB1) and fatty acid amide hydrolase (FAAH) in bull spermatozoa: Relationship with field fertility. Theriogenology 2018; 114:252-257. [PMID: 29660628 DOI: 10.1016/j.theriogenology.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022]
Abstract
A highly sophisticated endogenous cannabinoid system (ECS) has been shown to play a crucial role in controlling sperm functions and fertility in men. In the present study, we report the differences in the expression level of components of ECS [type-1 endocannabinoid receptor (CB1) and fatty acid amide hydrolase (FAAH)] in spermatozoa from bulls with different field fertility ratings. Cryopreserved spermatozoa from crossbred cattle bulls (n = 40) were utilized for the study. The bulls were classified into high-, medium- and low-fertile bulls based on field conception rates. Sperm viability, capacitation status and protamine deficiency were assessed. Spermatozoa RNA was isolated from all the bulls, cDNA was synthesized and quantitative real time PCR was carried out to study the transcriptional abundance of CB1 and FAAH genes. Sperm viability was lower and capacitation was higher (p < 0.05) in low fertile bulls compared to medium and high fertile bulls. The expression level of CB1 gene was significantly (p < 0.05) lower in spermatozoa from low and medium fertile bulls compared to high fertile bulls. The expression of CB1 gene was 21.07 and 4.23 times greater in high and medium fertile bulls, respectively compared to low fertile bulls. The correlation between CB1 gene expression and field conception rate of bulls was positive and significant (r = 0.57; p < 0.001). Unlike CB1 receptors, FAAH gene expression was similar among high, medium and low fertile bulls. The correlation of FAAH expression with bull conception rate was positive but not significant. It was concluded that the transcriptional abundance of type-1 endocannabinoid receptor (CB1) was positively and significantly related to bull fertility.
Collapse
|
6
|
Almada M, Amaral C, Diniz-da-Costa M, Correia-da-Silva G, Teixeira NA, Fonseca BM. The endocannabinoid anandamide impairs in vitro decidualization of human cells. Reproduction 2017; 152:351-61. [PMID: 27568210 DOI: 10.1530/rep-16-0364] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022]
Abstract
Endocannabinoids (eCBs) are endogenous mediators that along with the cannabinoid receptors (CB1 and CB2), a membrane transporter and metabolic enzymes form the endocannabinoid system (ECS). Several eCBs have been discovered with emphasis on anandamide (AEA). They are involved in several biological processes such as energy balance, immune response and reproduction. Decidualization occurs during the secretory phase of human menstrual cycle, which involves proliferation and differentiation of endometrial stromal cells into decidual cells and is crucial for the establishment and progression of pregnancy. In this study, a telomerase-immortalized human endometrial stromal cell line (St-T1b) and non-differentiated primary cultures of human decidual fibroblasts from term placenta were used to characterize the ECS using immunoblotting and qRT-PCR techniques. It was shown that St-T1b cells express CB1, but not CB2, and that both receptors are expressed in HdF cells. Furthermore, the expression of fatty acid amide hydrolase (FAAH), the main degrading enzyme of AEA, increased during stromal cell differentiation. AEA inhibited cell proliferation, through deregulation of cell cycle progression and induced polyploidy. Moreover, through CB1 binding receptor, AEA also impaired cell differentiation. Therefore, AEA is proposed as a modulator of human decidualization. Our findings may provide wider implications, as deregulated levels of AEA, due to Cannabis sativa consumption or altered expression of the metabolic enzymes, may negatively regulate human endometrial stromal cell decidualization with an impact on human (in)fertility.Free Portuguese abstract: A Portuguese translation of this abstract is freely available at http://www.reproduction-online.org/content/152/4/351/suppl/DC1.
Collapse
Affiliation(s)
- M Almada
- UCIBIO@REQUIMTELaboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - C Amaral
- UCIBIO@REQUIMTELaboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - M Diniz-da-Costa
- UCIBIO@REQUIMTELaboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO@REQUIMTELaboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - N A Teixeira
- UCIBIO@REQUIMTELaboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - B M Fonseca
- UCIBIO@REQUIMTELaboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Cui N, Wang C, Zhao Z, Zhang J, Xu Y, Yang Y, Hao G. The Roles of Anandamide, Fatty Acid Amide Hydrolase, and Leukemia Inhibitory Factor on the Endometrium during the Implantation Window. Front Endocrinol (Lausanne) 2017; 8:268. [PMID: 29085337 PMCID: PMC5650704 DOI: 10.3389/fendo.2017.00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/26/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND/AIMS We investigated the role of the endocannabinoid system (ECS) in the endometrium of unexplained infertility (UI) patients, and effect of anandamide (AEA) on leukemia inhibitory factor (LIF). METHODS Patients were divided into UI and control groups. Endometrium samples were collected at the midluteal phase. Levels of cannabinoid type 1 (CB1), fatty acid amide hydrolase (FAAH), and LIF were examined. LIF productions were measured after AEA, CB1 antagonist AM251, and CB2 antagonist AM630 stimulation. RESULTS Rates of available embryo, successful implantation and pregnancy, and the endometrial thickness of UI group were significantly lower than control, suggesting uterine receptivity was decreased in UI group. FAAH and LIF levels were significantly decreased, whereas endometrial CB1 was slightly increased in UI group. LIF production was promoted by low amount of AEA administration (1-10 μM), while the promotion was reduced by higher concentration of AEA (50 μM). LIF levels were decreased by AM251 or AM630, compared with AEA alone. Expressions of FAAH and LIF were closely associated with uterus receptivity and implantation rate of UI patients. Different concentrations of AEA could stimulate dynamic changes in LIF production. CONCLUSION Our data indicated the important role of the ECS in human fertility, which may promote new strategies for successful implantation and treatments for reproductive diseases.
Collapse
Affiliation(s)
- Na Cui
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Na Cui, ; Guimin Hao,
| | - Changyan Wang
- Department of Reproduction, Handan Center Hospital of Hebei Province, Handan, China
| | - Zhiming Zhao
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zhang
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yueming Xu
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Yang
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guimin Hao
- Department of Reproduction, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Na Cui, ; Guimin Hao,
| |
Collapse
|
8
|
Martella A, Sepe RM, Silvestri C, Zang J, Fasano G, Carnevali O, De Girolamo P, Neuhauss SCF, Sordino P, Di Marzo V. Important role of endocannabinoid signaling in the development of functional vision and locomotion in zebrafish. FASEB J 2016; 30:4275-4288. [DOI: 10.1096/fj.201600602r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/01/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Andrea Martella
- Endocannabinoid Research GroupInstitute of Biomolecular Chemistry Consiglio Nazionale delle Ricerche Pozzuoli Italy
| | - Rosa M. Sepe
- Biology and Evolution of Marine OrganismsStazione Zoologica Anton Dohrn Naples Italy
| | - Cristoforo Silvestri
- Endocannabinoid Research GroupInstitute of Biomolecular Chemistry Consiglio Nazionale delle Ricerche Pozzuoli Italy
| | - Jingjing Zang
- Institute of Molecular Life SciencesUniversity of Zurich Zurich Switzerland
| | - Giulia Fasano
- Biology and Evolution of Marine OrganismsStazione Zoologica Anton Dohrn Naples Italy
| | - Oliana Carnevali
- §Department of Life and Environment SciencesPolytechnic University of Marche Ancona Italy
| | - Paolo De Girolamo
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniverstity of Naples Federico II Naples Italy
| | | | - Paolo Sordino
- Biology and Evolution of Marine OrganismsStazione Zoologica Anton Dohrn Naples Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research GroupInstitute of Biomolecular Chemistry Consiglio Nazionale delle Ricerche Pozzuoli Italy
| |
Collapse
|
9
|
Rapino C, Battista N, Bari M, Maccarrone M. Endocannabinoids as biomarkers of human reproduction. Hum Reprod Update 2014; 20:501-16. [PMID: 24516083 DOI: 10.1093/humupd/dmu004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Infertility is a condition of the reproductive system that affects ∼10-15% of couples attempting to conceive a baby. More than half of all cases of infertility are a result of female conditions, while the remaining cases can be attributed to male factors, or to a combination of both. The search for suitable biomarkers of pregnancy outcome is a challenging issue in human reproduction, aimed at identifying molecules with predictive significance of the reproductive potential of male and female gametes. Among the various candidates, endocannabinoids (eCBs), and in particular anandamide (AEA), represent potential biomarkers of human fertility disturbances. Any perturbation of the balance between synthesis and degradation of eCBs will result in local changes of their tone in human female and male reproductive tracts, which in turn regulates various pathophysiological processes, oocyte and sperm maturation included. METHODS PubMed and Web of Science databases were searched for papers using relevant keywords like 'biomarker', 'endocannabinoid', 'infertility', 'pregnancy' and 'reproduction'. RESULTS In this review, we discuss different studies on the measurements of AEA and related eCBs in human reproductive cells, tissues and fluids, where the local contribution of these bioactive lipids could be critical in ensuring normal sperm fertilizing ability and pregnancy. CONCLUSION Based on the available data, we suggest that the AEA tone has the potential to be exploited as a novel diagnostic biomarker of infertility, to be used in association with assays of conventional hormones (e.g. progesterone, β-chorionic gonadotrophin) and semen analysis. However further quantitative research of its predictive capacity is required.
Collapse
Affiliation(s)
- Cinzia Rapino
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy StemTeCh Group, Chieti, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Monica Bari
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
10
|
Wolfson ML, Aisemberg J, Salazar AI, Domínguez Rubio AP, Vercelli CA, Franchi AM. Progesterone reverts LPS-reduced FAAH activity in murine peripheral blood mononuclear cells by a receptor-mediated fashion. Mol Cell Endocrinol 2013; 381:97-105. [PMID: 23906535 DOI: 10.1016/j.mce.2013.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/15/2013] [Accepted: 07/19/2013] [Indexed: 12/24/2022]
Abstract
Increased anandamide concentrations are associated with pregnancy failure. Anandamide levels are regulated by the fatty acid amide hydrolase (FAAH). The aim of the study was to investigate the role of progesterone (P) on FAAH modulation in murine peripheral blood mononuclear cells (PBMC) under septic conditions. We observed that in vivo administration of LPS to non-pregnant (NP) mice decreased FAAH activity of PBMC while in pregnant mice no changes in FAAH activity were observed. NP animals administered with P had a similar response to LPS as the pregnant animals. Also, NP mice injected with P antagonist and P showed that the effect of P on LPS-reduced FAAH activity was impaired. Furthermore, LPS produced a decrease in the ratio of PR-B/PR-A in NP animals. Our results showed that, in our model the endotoxin decreased PBMC's FAAH activity and this condition was reverted by P in a receptor-mediated fashion.
Collapse
Affiliation(s)
- Manuel L Wolfson
- Laboratory of Physiopathology of Pregnancy and Labor, Center for Pharmacological and Botanical Studies, National Research Council, School of Medicine, University of Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
11
|
Battista N, Meccariello R, Cobellis G, Fasano S, Di Tommaso M, Pirazzi V, Konje JC, Pierantoni R, Maccarrone M. The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. Mol Cell Endocrinol 2012; 355:1-14. [PMID: 22305972 DOI: 10.1016/j.mce.2012.01.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/05/2011] [Accepted: 01/16/2012] [Indexed: 02/07/2023]
Abstract
Endocannabinoids are natural lipids able to bind to cannabinoid and vanilloid receptors. Their biological actions at the central and peripheral level are under the tight control of the proteins responsible for their synthesis, transport and degradation. In the last few years, several reports have pointed out these lipid mediators as critical signals, together with sex hormones and cytokines, in various aspects of animal and human reproduction. The identification of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in reproductive cells and tissues of invertebrates, vertebrates and mammals highlights the key role played by these endogenous compounds along the evolutionary axis. Here, we review the main actions of endocannabinoids on female and male reproductive events, and discuss the interplay between them, steroid hormones and cytokines in regulating fertility. In addition, we discuss the involvement of endocannabinoid signalling in ensuring a correct chromatin remodeling, and hence a good DNA quality, in sperm cells.
Collapse
Affiliation(s)
- Natalia Battista
- Dipartimento di Scienze Biomediche Comparate, Università di Teramo, 64100 Teramo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Taylor AH, Finney M, Lam PMW, Konje JC. Modulation of the endocannabinoid system in viable and non-viable first trimester pregnancies by pregnancy-related hormones. Reprod Biol Endocrinol 2011; 9:152. [PMID: 22126420 PMCID: PMC3266649 DOI: 10.1186/1477-7827-9-152] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 11/29/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In early pregnancy, increased plasma levels of the endocannabinoid anandamide (AEA) are associated with miscarriage through mechanisms that might affect the developing placenta or maternal decidua. METHODS In this study, we compare AEA levels in failed and viable pregnancies with the levels of the trophoblastic hormones (beta-human chorionic gonadotrophin (beta-hCG), progesterone (P4) and (pregnancy-associated placental protein-A (PAPP-A)) essential for early pregnancy success and relate that to the expression of the cannabinoid receptors and enzymes that modulate AEA levels. RESULTS The median plasma AEA level in non-viable pregnancies (1.48 nM; n = 20) was higher than in viable pregnancies (1.21 nM; n = 25; P = 0.013), as were progesterone and beta-hCG levels (41.0 vs 51.5 ng/mL; P = 0.052 for P4 and 28,650 vs 6,560 mIU/L; P = 0.144 for beta-hCG, respectively, but were not statistically significant). Serum PAPP-A levels in the viable group were approximately 6.8 times lower than those in the non-viable group (1.82 vs 12.25 mg/L; P = 0.071), but again these differences were statistically insignificant. In the spontaneous miscarriage group, significant correlations between P4 and beta-hCG, P4 and PAPP-A and AEA and PAPP-A levels were observed. Simultaneously, immunohistochemical distributions of the two main cannabinoid receptors and the AEA-modifying enzymes, fatty acid amide hydrolase (FAAH) and N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD), changed within both the decidua and trophoblast. CONCLUSIONS The association of higher AEA levels with early pregnancy failure and with beta-hCG and PAPP-A, but not with progesterone concentrations suggest that plasma AEA levels and pregnancy failure are linked via a mechanism that may involve trophoblastic beta-hCG, and PAPP-A, but not, progesterone production. Although the trophoblast, decidua and embryo contain receptors for AEA, the main AEA target in early pregnancy failure remains unknown.
Collapse
Affiliation(s)
- Anthony H Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - Mark Finney
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - Patricia MW Lam
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - Justin C Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| |
Collapse
|
13
|
Karasu T, Marczylo TH, Maccarrone M, Konje JC. The role of sex steroid hormones, cytokines and the endocannabinoid system in female fertility. Hum Reprod Update 2011; 17:347-61. [PMID: 21227997 DOI: 10.1093/humupd/dmq058] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Marijuana, the most used recreational drug, has been shown to have adverse effects on human reproduction. Endogenous cannabinoids (also called endocannabinoids) bind to the same receptors as those of Δ(9)-tetrahydrocannabinol (THC), the psychoactive component of Cannabis sativa. The most extensively studied endocannabinoids are anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol. The endocannabinoids, their congeners and the cannabinoid receptors, together with the metabolic enzymes and putative transporters form the endocannabinoid system (ECS). In this review, we summarize current knowledge about the relationships of ECS, sex steroid hormones and cytokines in female fertility, and underline the importance of this endocannabinoid-hormone-cytokine network. METHODS Pubmed and the Web of Science databases were searched for studies published since 1985, looking into the ECS, sex hormones, type-1/2 T-helper (Th1/Th2) cytokines, leukaemia inhibitory factor, leptin and reproduction. RESULTS The ECS plays a pivotal role in human reproduction. The enzymes involved in the synthesis and degradation of endocannabinoids normalize levels of AEA for successful implantation. The AEA degrading enzyme (fatty acid amide hydrolase) activity as well as AEA content in blood may potentially be used for the monitoring of early pregnancies. Progesterone and oestrogen are involved in the maintenance of endocannabinoid levels. The ECS plays an important role in the immune regulation of human fertility. CONCLUSIONS The available studies suggest that tight control of the endocannabinoid-hormone-cytokine network is required for successful implantation and early pregnancy maintenance. This hormone-cytokine network is a key element at the maternal-foetal interface, and any defect in such a network may result in foetal loss.
Collapse
Affiliation(s)
- T Karasu
- Endocannabinoid Research Group (ERG), Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, PO Box 65, Leicester, Leicestershire LE2 7LX, UK
| | | | | | | |
Collapse
|
14
|
Bari M, Tedesco M, Battista N, Pasquariello N, Pucci M, Gasperi V, Scaldaferri ML, Farini D, De Felici M, Maccarrone M. Characterization of the endocannabinoid system in mouse embryonic stem cells. Stem Cells Dev 2010; 20:139-47. [PMID: 20446814 DOI: 10.1089/scd.2009.0515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we have ascertained the presence and functionality in mouse embryonic stem cells (ESCs) of members of the endocannabinoid system that have been proposed as possible modulators of the survival and differentiation of various type of stem cells. We show that mouse ESCs, in addition to classical CB(1) and CB(2) cannabinoid receptors, express the transient receptor potential vanilloid receptor, at mRNA, protein, and binding levels. Remarkably, we demonstrate that ESCs have the mRNA, protein, and enzyme activity to synthesize and degrade the prominent endocannabinoids anandamide (through N-acyl-phosphatidylethanolamine-specific phospholipase D and fatty acid amide hydrolase) and 2-arachidonoylglycerol (through diacylglycerol lipase and monoacylglycerol lipase). In addition, both endocannabinoids were detected in ESCs that were also shown to constitutively release a fatty acid amide hydrolase-activating compound. Finally, we document that the stimulation of ESCs by methanandamide, a nonhydrolysable analog of anandamide, does not lead to overt alteration of the expression of Oct3/4, Nanog, and Cdx2, genes that are involved in early cell fate in the preimplantation embryo and stemness, or of the expression patterns of Brachyury and Hnf4, genes that are used as late markers of lineage differentiation capability of ESC-derived embryoid bodies. Similarly ineffective on the expression of the tested stemness genes was 2-arachidonoylglycerol. Taken together, these results confirm and extend the notion that ESCs express several functional members of the endocannabinoid system, but they leave open the question about their role in stem cells as modulators of stemness and differentiation potential.
Collapse
Affiliation(s)
- Monica Bari
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Histomorphometric evaluation of cannabinoid receptor and anandamide modulating enzyme expression in the human endometrium through the menstrual cycle. Histochem Cell Biol 2010; 133:557-65. [DOI: 10.1007/s00418-010-0695-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2010] [Indexed: 02/05/2023]
|
16
|
El-Talatini MR, Taylor AH, Konje JC. The relationship between plasma levels of the endocannabinoid, anandamide, sex steroids, and gonadotrophins during the menstrual cycle. Fertil Steril 2010; 93:1989-96. [DOI: 10.1016/j.fertnstert.2008.12.033] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/28/2008] [Accepted: 12/11/2008] [Indexed: 11/25/2022]
|
17
|
Buznikov G, Nikitina L, Bezuglov V, Francisco M, Boysen G, Obispo-Peak I, Peterson R, Weiss E, Schuel H, Temple B, Morrow A, Lauder J. A putative 'pre-nervous' endocannabinoid system in early echinoderm development. Dev Neurosci 2010; 32:1-18. [PMID: 19907129 PMCID: PMC2866581 DOI: 10.1159/000235758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 08/17/2009] [Indexed: 01/20/2023] Open
Abstract
Embryos and larvae of sea urchins (Lytechinus variegatus, Strongylocentrotus droebachiensis, Strongylocentrotus purpuratus, Dendraster excentricus), and starfish (Pisaster ochraceus) were investigated for the presence of a functional endocannabinoid system. Anandamide (arachidonoyl ethanolamide, AEA), was measured in early L. variegatus embryos by liquid chromatography/mass spectrometry. AEA showed a strong developmental dynamic, increasing more than 5-fold between the 8-16 cell and mid-blastula 2 stage. 'Perturb-and-rescue' experiments in different sea urchin species and starfish showed that AEA blocked transition of embryos from the blastula to the gastrula stage, but had no effect on cleavage divisions, even at high doses. The non-selective cannabinoid receptor agonist, CP55940, had similar effects, but unlike AEA, also blocked cleavage divisions. CB1 antagonists, AEA transport inhibitors, and the cation channel transient membrane potential receptor V1 (TrpV1) agonist, arachidonoyl vanillic acid (arvanil), as well as arachidonoyl serotonin and dopamine (AA-5-HT, AA-DA) acted as rescue substances, partially or totally preventing abnormal embryonic phenotypes elicited by AEA or CP55940. Radioligand binding of [(3)H]CP55940 to membrane preparations from embryos/larvae failed to show significant binding, consistent with the lack of CB receptor orthologs in the sea urchin genome. However, when binding was conducted on whole cell lysates, a small amount of [(3)H]CP55940 binding was observed at the pluteus stage that was displaced by the CB2 antagonist, SR144528. Since AEA is known to bind with high affinity to TrpV1 and to certain G-protein-coupled receptors (GPCRs), the ability of arvanil, AA-5-HT and AA-DA to rescue embryos from AEA teratogenesis suggests that in sea urchins AEA and other endocannabinoids may utilize both Trp and GPCR orthologs. This possibility was explored using bioinformatic and phylogenetic tools to identify candidate orthologs in the S. purpuratus sea urchin genome. Candidate TrpA1 and TrpV1 orthologs were identified. The TrpA1 ortholog fell within a monophyletic clade, including both vertebrate and invertebrate orthologs, whereas the TrpV1 orthologs fell within two distinct TrpV-like invertebrate clades. One of the sea urchin TrpV orthologs was more closely related to the vertebrate epithelial calcium channels (TrpV5-6 family) than to the vertebrate TrpV1-4 family, as determined using profile-hidden Markov model (HMM) searches. Candidate dopamine and adrenergic GPCR orthologs were identified in the sea urchin genome, but no cannabinoid GPCRs were found, consistent with earlier studies. Candidate dopamine D(1), D(2) or alpha(1)-adrenergic receptor orthologs were identified as potential progenitors to the vertebrate cannabinoid receptors using HMM searches, depending on whether the multiple sequence alignment of CB receptor sequences consisted only of urochordate and cephalochordate sequences or also included vertebrate sequences.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Arachidonic Acids/pharmacology
- Chromatography, Liquid
- Computational Biology
- Dose-Response Relationship, Drug
- Endocannabinoids
- Immunohistochemistry
- Mass Spectrometry
- Nerve Net/drug effects
- Nerve Net/embryology
- Nerve Net/metabolism
- Phylogeny
- Polyunsaturated Alkamides/metabolism
- Polyunsaturated Alkamides/pharmacology
- Radioligand Assay
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Sea Urchins/drug effects
- Sea Urchins/embryology
- Sea Urchins/metabolism
- Starfish/drug effects
- Starfish/embryology
- Starfish/metabolism
Collapse
Affiliation(s)
- G.A. Buznikov
- Department of Cell and Developmental Biology, (UNCSM)
| | - L.A. Nikitina
- Department of Cell and Developmental Biology, (UNCSM)
| | - V.V. Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - G. Boysen
- Department of Environmental Sciences and Engineering, and Center of Environmental Health and Susceptibility, School of Public Health, University of North Carolina, Chapel Hill, N.C., USA
| | | | - R.E. Peterson
- Department of Cell and Developmental Biology, (UNCSM)
- Confocal Imaging Core, Neuroscience Center, UNCSM
| | - E.R. Weiss
- Department of Cell and Developmental Biology, (UNCSM)
| | - H. Schuel
- Division of Anatomy and Cell Biology, Department of Pathology and Anatomical Sciences, School of Medicine, State University of New York at Buffalo, Buffalo, N.Y., USA
| | - B.R.S Temple
- R.L. Juliano Structural Bioinformatics Core Facility, University of North Carolina, Chapel Hill, N.C., USA
| | - A.L. Morrow
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine (UNCSM)
| | - J.M. Lauder
- Department of Cell and Developmental Biology, (UNCSM)
| |
Collapse
|
18
|
Aquila S, Guido C, Santoro A, Gazzerro P, Laezza C, Baffa MF, Andò S, Bifulco M. Rimonabant (SR141716) induces metabolism and acquisition of fertilizing ability in human sperm. Br J Pharmacol 2010; 159:831-41. [PMID: 20067470 DOI: 10.1111/j.1476-5381.2009.00570.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid system and the cannabinoid CB(1) receptor have been identified in human sperm, and it is well known that endocannabinoids have pronounced adverse effects on male and female reproduction. In order to elucidate further the pathophysiological role of the endocannabinoid system in male fertility, we investigated the activity of the CB(1) receptor antagonist rimonabant (SR141716) on the fertilizing ability of human sperm. EXPERIMENTAL APPROACH We evaluated in vitro the effects of rimonabant on motility, survival, capacitation, acrosin activity and metabolism of human sperm. Particularly, capacitation was studied by using three different approaches: intracellular free Ca(2+) content assay, cholesterol efflux assay and protein tyrosine phosphorylation analysis. KEY RESULTS Rimonabant significantly increased sperm motility and viability through the induction of pAkt and pBcl2, key proteins of cell survival and metabolism, and it induced acrosome reaction and capacitation as well. Rimonabant reduced the triglyceride content of sperm, while enhancing lipase and acyl-CoA dehydrogenase activities, implying an overall lipolytic action in these cells. Rimonabant also affected sperm glucose metabolism by decreasing phosphorylation of glycogen synthase kinase 3 and increasing glucose-6-phosphate dehydrogenase activity, suggesting a role in inducing sperm energy expenditure. Intriguingly, agonism at the CB(1) receptor, with an anandamide analogue or a selective inhibitor of fatty acid amide hydrolase, produced opposing effects on human sperm functions. CONCLUSIONS AND IMPLICATIONS Our data suggest that blockade of the CB(1) receptor by rimonabant induces the acquisition of fertilizing ability and stimulates energy expenditure in human sperm.
Collapse
Affiliation(s)
- S Aquila
- Department of Pharmaco-Biology, Centro Sanitario, University of Calabria, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Battista N, Bari M, Rapino C, Trasatti F, D'Agostino A, Maccarrone M. Regulation of female fertility by the endocannabinoid system. HUM FERTIL 2009; 10:207-16. [DOI: 10.1080/14647270701429879] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Grimaldi P, Rossi G, Catanzaro G, Maccarrone M. Chapter 10 Modulation of the Endocannabinoid‐Degrading Enzyme Fatty Acid Amide Hydrolase by Follicle‐Stimulating Hormone. VITAMINS AND HORMONES 2009; 81:231-61. [DOI: 10.1016/s0083-6729(09)81010-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Fride E, Gobshtis N, Dahan H, Weller A, Giuffrida A, Ben-Shabat S. The endocannabinoid system during development: emphasis on perinatal events and delayed effects. VITAMINS AND HORMONES 2009; 81:139-58. [PMID: 19647111 DOI: 10.1016/s0083-6729(09)81006-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The endocannabinoid system (ECS) including its receptors, endogenous ligands ("endocannabinoids"), synthesizing and degradating enzymes, and transporter molecules has been detected from the earliest embryonal stages and throughout pre- and postnatal development; endocannabinoids, notably 2-arachidonoylglycerol, are also present in maternal milk. During three developmental stages, (1) early embryonal, (2) prenatal brain development, and (3) postnatal suckling, the ECS plays an essential role for development and survival. During early gestation, successful embryonal passage through the oviduct and implantation into the uterus require critical enzymatic control of the endocannabinoids. During fetal life, endocannabinoids and the cannabinoid CB(1) receptor are important for brain development, regulating neural progenitor differentiation and guiding axonal migration and synaptogenesis. Postnatally, CB(1) receptor activation by 2-arachidonoylglycerol appears to play a critical role in the initiation of milk suckling in mouse pups, possibly by enabling innervation and/or activation of the tongue muscles. Perinatal manipulation of the ECS, by administering cannabinoids or by maternal marijuana consumption, alters neurotransmitter and behavioral functions in the offspring. Interestingly, the sequelae of prenatal cannabinoids are similar to many effects of prenatal stress, which may suggest that prenatal stress impacts on the ECS and that vice versa prenatal cannabinoid exposure may interfere with the ability of the fetus to cope with the stress. Future studies should further clarify the mechanisms involved in the developmental roles of the ECS and understand better the adverse effects of prenatal exposure, to design strategies for the treatment of conditions including infertility, addiction, and failure-to-thrive.
Collapse
Affiliation(s)
- Ester Fride
- Department of Behavioral Sciences and Molecular Biology, Ariel University Center of Samaria, Ariel, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Wang X, Sarris K, Kage K, Zhang D, Brown SP, Kolasa T, Surowy C, El Kouhen OF, Muchmore SW, Brioni JD, Stewart AO. Synthesis and Evaluation of Benzothiazole-Based Analogues as Novel, Potent, and Selective Fatty Acid Amide Hydrolase Inhibitors. J Med Chem 2008; 52:170-80. [DOI: 10.1021/jm801042a] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xueqing Wang
- Neuroscience Research, Global Pharmaceutical Research and Development, AP10/303, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Katerina Sarris
- Neuroscience Research, Global Pharmaceutical Research and Development, AP10/303, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Karen Kage
- Neuroscience Research, Global Pharmaceutical Research and Development, AP10/303, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Di Zhang
- Neuroscience Research, Global Pharmaceutical Research and Development, AP10/303, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Scott P. Brown
- Neuroscience Research, Global Pharmaceutical Research and Development, AP10/303, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Teodozyi Kolasa
- Neuroscience Research, Global Pharmaceutical Research and Development, AP10/303, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Carol Surowy
- Neuroscience Research, Global Pharmaceutical Research and Development, AP10/303, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Odile F. El Kouhen
- Neuroscience Research, Global Pharmaceutical Research and Development, AP10/303, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Steven W. Muchmore
- Neuroscience Research, Global Pharmaceutical Research and Development, AP10/303, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Jorge D. Brioni
- Neuroscience Research, Global Pharmaceutical Research and Development, AP10/303, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Andrew O. Stewart
- Neuroscience Research, Global Pharmaceutical Research and Development, AP10/303, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| |
Collapse
|
23
|
Turco MY, Matsukawa K, Czernik M, Gasperi V, Battista N, Della Salda L, Scapolo PA, Loi P, Maccarrone M, Ptak G. High levels of anandamide, an endogenous cannabinoid, block the growth of sheep preimplantation embryos by inducing apoptosis and reversible arrest of cell proliferation. Hum Reprod 2008; 23:2331-8. [PMID: 18614613 DOI: 10.1093/humrep/den258] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The process of implantation is mediated by various molecules, one of which is anandamide (AEA), a lipid signalling ligand belonging to the family of endocannabinoids. AEA exerts its effects on implantation by binding to the Type 1 Cannabinoid Receptor (CB1-R), expressed in both blastocysts and uterus. We wanted to know whether the endocannabinoid signalling system was present also in the sheep reproductive tract and which kind of effect(s) AEA had on the development of sheep blastocysts in vitro. METHODS We analysed the expression and activity of the endocannabinoid system in sheep reproductive tracts and blastocysts. Hatched sheep blastocysts were then exposed to AEA and its effect(s) were determined by TUNEL assay and by measuring the rate of necrosis and 5-bromo-deoxyuridine incorporation. RESULTS We show that the AEA signalling system is present in sheep and that high concentrations of AEA induce apoptosis and inhibit cell proliferation via a CB1-R-dependent mechanism. Indeed, AEA effects were blocked when sheep blastocysts were cultured in the presence of the CB1-R antagonist SR161417A. Moreover, AEA inhibition of cell proliferation was reversible, as arrested embryos resumed a normal growth rate upon AEA removal from the medium. CONCLUSIONS Our results suggest that disturbed regulation of AEA signalling via CB1-R may be associated with pregnancy failure. AEA could lower the quality of blastocysts by inducing apoptosis and inhibiting cell proliferation, thus making them incompetent for implantation.
Collapse
Affiliation(s)
- M Y Turco
- Department of Comparative Biomedical Sciences, University of Teramo 64100, Teramo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fride E. Multiple roles for the endocannabinoid system during the earliest stages of life: pre- and postnatal development. J Neuroendocrinol 2008; 20 Suppl 1:75-81. [PMID: 18426504 DOI: 10.1111/j.1365-2826.2008.01670.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The endocannabinoid system, including its receptors (CB(1) and CB(2)), endogenous ligands ('endocannabinoids'), synthesising and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. In addition, the endocannabinoids, notably 2-arachidonyl glycerol, are also present in maternal milk. During three distinct developmental stages (i.e. embryonic implantation, prenatal brain development and postnatal suckling), the endocannabinoid system appears to play an essential role for development and survival. Thus, during early pregnancy, successful embryonic passage through the oviduct and implantation into the uterus both require critical enzymatic control of optimal anandamide levels at the appropriate times and sites. During foetal life, the cannabinoid CB(1) receptor plays a major role in brain development, regulating neural progenitor differentiation into neurones and glia and guiding axonal migration and synaptogenesis. Postnatally, CB(1) receptor blockade interferes with the initiation of milk suckling in mouse pups, by inducing oral motor weakness, which exposes a critical role for CB(1) receptors in the initiation of milk suckling by neonates, possibly by interfering with innervation of the tongue muscles. Manipulating the endocannabinoid system by pre- and/or postnatal administration of cannabinoids or maternal marijuana consumption, has significant, yet subtle effects on the offspring. Thus, alterations in the dopamine, GABA and endocannabinoid systems have been reported while enhanced drug seeking behaviour and impaired executive (prefrontal cortical) function have also been observed. The relatively mild nature of the disruptive effects of prenatal cannabinoids may be understood in the framework of the intricate timing requirements and frequently biphasic effects of the (endo)cannabinoids. In conclusion, the endocannabinoid system plays several key roles in pre- and postnatal development. Future studies should further clarify the mechanisms involved and provide a better understanding of the adverse effects of prenatal exposure, in order to design strategies for the treatment of conditions such as infertility, mental retardation and failure-to-thrive.
Collapse
Affiliation(s)
- E Fride
- Department of Behavioural Sciences, Ariel University Center of Samaria, Ariel, Israel.
| |
Collapse
|
25
|
Fezza F, De Simone C, Amadio D, Maccarrone M. Fatty acid amide hydrolase: a gate-keeper of the endocannabinoid system. Subcell Biochem 2008; 49:101-132. [PMID: 18751909 DOI: 10.1007/978-1-4020-8831-5_4] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The family of endocannabinoids contains several polyunsaturated fatty acid amides such as anandamide (AEA), but also esters such as 2-arachidonoylglycerol (2-AG). These compounds are the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of Delta9-tetrahydrocannabinol (Delta9-THC), the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA at its receptors is limited by cellular uptake, through a putative membrane transporter, followed by intracellular degradation by fatty acid amide hydrolase (FAAH). Growing evidence demonstrates that FAAH is the critical regulator of the endogenous levels of AEA, suggesting that it may serve as an attractive therapeutic target for the treatment of human disorders. In particular, FAAH inhibitors may be next generation therapeutics of potential value for the treatment of pathologies of the central nervous system, and of peripheral tissues. Investigations into the structure and function of FAAH, its biological and therapeutic implications, as well as a description of different families of FAAH inhibitors, are the topic of this chapter.
Collapse
Affiliation(s)
- Filomena Fezza
- Department of Experimental Medicine and Biochemical Sciences, University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
26
|
Maccarrone M. CB2 receptors in reproduction. Br J Pharmacol 2008; 153:189-98. [PMID: 17828289 PMCID: PMC2219526 DOI: 10.1038/sj.bjp.0707444] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/10/2007] [Accepted: 08/07/2007] [Indexed: 11/09/2022] Open
Abstract
Cannabinoids have been always identified as harmful drugs because of their negative effects on male and female reproduction. The discovery of the 'endocannabinoid system (ECS)', composed of bioactive lipids (endocannabinoids), their receptors and their metabolic enzymes, and the generation of mouse models missing cannabinoid receptors or other elements of the ECS, has enabled a wealth of information on the significance of endocannabinoid signalling in multiple reproductive events: Sertoli cell survival, spermatogenesis, placentation, fertilization, preimplantation embryo development, implantation and postimplantation embryonic growth. These studies have also opened new perspectives in clinical applications, pointing to the ECS as a new target for correcting infertility and for improving reproductive health in humans. This review will focus on the involvement of type-2 cannabinoid (CB2) receptors in reproductive biology, covering both the male and female sides. It will also discuss the potential relevance of the immunological activity of CB2 at the maternal/foetal interface, as well as the distinctiveness of CB2 versus type-1 cannabinoid (CB1) receptors that might be exploited for a receptor subtype-specific regulation of fertility. In this context, the different signalling pathways triggered by CB1 and CB2 (especially those controlling the intracellular tone of nitric oxide), the different activation of CB1 and CB2 by endogenous agonists (like anandamide and 2-arachidonoylglycerol) and the different localization of CB1 and CB2 within membrane subdomains, termed 'lipid rafts', will be discussed. It is hoped that CB2-dependent endocannabinoid signalling might become a useful target for correcting infertility, in both men and women.
Collapse
Affiliation(s)
- M Maccarrone
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy.
| |
Collapse
|
27
|
Labar G, Michaux C. Fatty acid amide hydrolase: from characterization to therapeutics. Chem Biodivers 2007; 4:1882-902. [PMID: 17712824 DOI: 10.1002/cbdv.200790157] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme within the amidase-signature family that terminates the action of several endogenous lipid messengers, including oleamide and the endocannabinoid anandamide. The hydrolysis of such messengers leads to molecules devoid of biological activity, and, therefore, modulates a number of neurobehavioral processes in mammals, including pain, sleep, feeding, and locomotor activity. Investigations into the structure and function of FAAH, its biological and therapeutic implications, as well as a description of different families of FAAH inhibitors are the topic of this review.
Collapse
Affiliation(s)
- Geoffray Labar
- Unité de Chimie pharmaceutique et de Radiopharmacie, Ecole de Pharmacie, Faculté de Médecine, Université catholique de Louvain, Avenue E. Mounier 73.40, B-1200 Bruxelles
| | | |
Collapse
|
28
|
Taylor AH, Ang C, Bell SC, Konje JC. The role of the endocannabinoid system in gametogenesis, implantation and early pregnancy. Hum Reprod Update 2007; 13:501-13. [PMID: 17584820 DOI: 10.1093/humupd/dmm018] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Maternal use of marijuana, in which the exocannabinoid Delta(9)-tetrahydrocannabinol is the most active psychoactive ingredient, is known to have adverse effects on various aspects of reproduction including ovulation, spermatogenesis, implantation and pregnancy duration. Endogenous cannabinoids of which Anandamide is the prototype are widely distributed in the body especially in the reproductive tract and pregnancy tissues and act through the same receptors as the receptor as Delta(9)-tetrahydrocannabinol. Anandamide, has been reported to have pleiotropic effects on human reproduction and in experimental animal models. It appears to be the important neuro-cytokine mediator synchronizing the embryo-endometrial development for timed implantation, the development of the embryo into the blastocyst and transport of the embryo across the fallopian tubes. The mechanisms by which it exerts these effects are unclear but could be via direct actions on the various sites within the reproductive system or its differential actions on vascular tone dependent. In this review article we bring together the current knowledge on the role of endoccanabinoids in reproduction and postulate on the potential mechanisms on how these affect reproduction. In addition, we examine its role on the endothelium and vascular smooth muscle as a potential mechanism for adverse pregnancy outcome.
Collapse
Affiliation(s)
- A H Taylor
- Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, PO Box 65, Leicester, Leicestershire LE2 7LX, UK
| | | | | | | |
Collapse
|
29
|
Bifulco M, Grimaldi C, Gazzerro P, Pisanti S, Santoro A. Rimonabant: just an antiobesity drug? Current evidence on its pleiotropic effects. Mol Pharmacol 2007; 71:1445-56. [PMID: 17327463 DOI: 10.1124/mol.106.033118] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The advent of the highly selective cannabinoid receptor (CB1) antagonist, rimonabant (SR141716; Acomplia) can revolutionize the ability of the clinicians to manage obesity. Large-scale clinical trials have demonstrated that rimonabant therapy can reduce obesity. Although, the precise mechanisms of action of rimonabant have to be further dissected, it is emerging, from both preclinical and clinical research, that not only is rimonabant an antiobesity drug, but also its pleiotropic functions affect a broad range of diseases, from obesity-related comorbidities to drug dependence and cancer. Here we review recent data from the literature and discuss the full pharmacological potential of this drug.
Collapse
Affiliation(s)
- Maurizio Bifulco
- Department of Pharmaceutical Sciences, University of Salerno, Fisciano, Salerno, Italy.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Anandamide (N-arachidonoylethanolamide) is a lipid signal molecule that was the first endogenous agonist for cannabinoid receptors to be discovered. Cannabinoid receptor type 1 (CB1) is widely distributed in neurons and nonneuronal cells in brain and peripheral organs including sperm, eggs, and preimplantation embryos. A study by Wang and colleagues in this issue of the JCI demonstrates that a critical balance between anandamide synthesis by N-acylphosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and its degradation by fatty acid amide hydrolase (FAAH) in mouse embryos and oviducts creates locally an appropriate "anandamide tone" required for normal embryo development, oviductal transport, implantation, and pregnancy (see the related article beginning on page 2122). Adverse effects of elevated levels of anandamide on these processes resulting from FAAH inactivation are mimicked by administration of (-)-Delta9-tetrahydrocannabinol (THC; the major psychoactive constituent of marijuana), due to enhanced signaling via CB1. These findings show that exogenous THC can swamp endogenous anandamide signaling systems, thereby affecting multiple physiological processes.
Collapse
Affiliation(s)
- Herbert Schuel
- Division of Anatomy and Cell Biology, Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA.
| |
Collapse
|
31
|
Abstract
Mammalian reproduction is a complicated process designed to diversify and strengthen the genetic complement of the offspring and to safeguard regulatory systems at various steps for propagating procreation. An emerging concept in mammalian reproduction is the role of endocannabinoids, a group of endogenously produced lipid mediators, that bind to and activate cannabinoid receptors. Although adverse effects of cannabinoids on fertility have been implicated for years, the mechanisms by which they exert these effects were not clearly understood. With the identification of cannabinoid receptors, endocannabinoid ligands, their key synthetic and hydrolytic pathways, and the generation of mouse models missing cannabinoid receptors, a wealth of information on the significance of cannabinoid/endocannabinoid signaling in spermatogenesis, fertilization, preimplantation embryo development, implantation, and postimplantation embryonic growth has been generated. This review focuses on various aspects of the endocannabinoid system in male and female fertility. It is hoped that a deeper insight would lead to potential clinical applications of the endocannabinoid signaling as a target for correcting infertility and improving reproductive health in humans.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
32
|
Pasquali R, Gambineri A, Pagotto U. Review article: The impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG 2006; 113:1148-59. [PMID: 16827825 DOI: 10.1111/j.1471-0528.2006.00990.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The polycystic ovary syndrome (PCOS) is one of the most common causes of infertility due to anovulation in women. The clinical features of PCOS are heterogeneous and may change throughout the lifespan, starting from adolescence to postmenopausal age. This is largely dependent on the influence of obesity and metabolic alterations, including an insulin-resistant state and the metabolic syndrome, which consistently affect most women with PCOS. Obesity does in fact have profound effects on both the pathophysiology and the clinical manifestation of PCOS, by different mechanisms leading to androgen excess and increased free androgen availability and to alterations of granulosa cell function and follicle development. Notably, simple obesity per se represents a functional hyperandrogenic state. These mechanisms involve early hormonal and metabolic factors during intrauterine life, leptin, insulin and the insulin growth factor system and, potentially, the endocannabinoid system. Compared with normal weight women with PCOS, those with obesity are characterised by a worsened hyperandrogenic and metabolic state, poorer menses and ovulatory performance and, ultimately, poorer pregnancy rates. The importance of obesity in the pathogenesis of PCOS is emphasised by the efficacy of lifestyle intervention and weight loss, not only on metabolic alterations but also on hyperandrogenism, ovulation and fertility. The increasing prevalence of obesity among adolescent and young women with PCOS may partly depend on the increasing worldwide epidemic of obesity, although this hypothesis should be supported by long-term prospective epidemiological trials. This may have great relevance in preventive medicine and offer the opportunity to expand our still limited knowledge of the genetic and environmental background favouring the development of the PCOS.
Collapse
Affiliation(s)
- R Pasquali
- Division of Endocrinology, Department of Internal Medicine, University Alma Mater Studiorum and Centre for Advanced Biology Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Bologna, Italy.
| | | | | |
Collapse
|
33
|
Klinger FG, Battista N, De Felici M, Maccarrone M. Stage-variations of anandamide hydrolase activity in the mouse uterus during the natural oestrus cycle. JOURNAL OF EXPERIMENTAL & CLINICAL ASSISTED REPRODUCTION 2006; 3:3. [PMID: 16573810 PMCID: PMC1440866 DOI: 10.1186/1743-1050-3-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 03/30/2006] [Indexed: 01/01/2023]
Abstract
Recent studies have demonstrated that the endogenous cannabinoids are important modulators of fertility in mammals. In particular, a role of the endocannabinoid system in early stages of embryo development, oviductal transport of embryos, pregnancy maintenance and labour has been demonstrated in rodents and/or in humans. In the present paper, we report the analysis of FAAH activity and protein content in the mouse uterus as a function of the natural oestrus cycle stages. Variations of FAAH activity are discussed in relationship to changes in sex steroid levels and to the possible action of AEA on remodelling of uterine tissues.
Collapse
Affiliation(s)
- Francesca G Klinger
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Natalia Battista
- Department of Biomedical Sciences, University of Teramo, 64100 Teramo, Italy
| | - Massimo De Felici
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Mauro Maccarrone
- Department of Biomedical Sciences, University of Teramo, 64100 Teramo, Italy
- IRCCS C. Mondino, Mondino-Tor Vergata Center for Experimental Neurobiology, 00133 Rome, Italy
| |
Collapse
|
34
|
Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 2006; 27:73-100. [PMID: 16306385 DOI: 10.1210/er.2005-0009] [Citation(s) in RCA: 607] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During the last few years, the endocannabinoid system has emerged as a highly relevant topic in the scientific community. Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors, named CB1 receptor and CB2 receptor, first discovered as the molecular targets of the psychotropic component of the plant Cannabis sativa, participate in the physiological modulation of many central and peripheral functions. CB2 receptor is mainly expressed in immune cells, whereas CB1 receptor is the most abundant G protein-coupled receptor expressed in the brain. CB1 receptor is expressed in the hypothalamus and the pituitary gland, and its activation is known to modulate all the endocrine hypothalamic-peripheral endocrine axes. An increasing amount of data highlights the role of the system in the stress response by influencing the hypothalamic-pituitary-adrenal axis and in the control of reproduction by modifying gonadotropin release, fertility, and sexual behavior. The ability of the endocannabinoid system to control appetite, food intake, and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptor and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system was recently shown to control metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the gastrointestinal tract, and, possibly, skeletal muscle. The relevance of the system is further strenghtened by the notion that drugs interfering with the activity of the endocannabinoid system are considered as promising candidates for the treatment of various diseases, including obesity.
Collapse
Affiliation(s)
- Uberto Pagotto
- Endocrinology Unit, Department of Internal Medicine and Gastroenterology, Sant' Orsola-Malpighi Hospital, Bologna, Italy, and Department of Physiological Chemistry, Johannes Gutenberg-University Mainz, Germany.
| | | | | | | | | |
Collapse
|
35
|
Duncan M, Davison JS, Sharkey KA. Review article: endocannabinoids and their receptors in the enteric nervous system. Aliment Pharmacol Ther 2005; 22:667-83. [PMID: 16197488 DOI: 10.1111/j.1365-2036.2005.02648.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The therapeutic actions of cannabinoids have been known for centuries. In the last 25 years this area of research has grown exponentially with the discovery of specific cannabinoid receptors and endogenous ligands. In the enteric nervous system of gastrointestinal tract, cannabinoid receptors are located on enteric nerve terminals where they exert inhibitory actions on neurotransmission to reduce motility and secretion. Endogenous cannabinoids are present in the enteric nervous system, as are the degradative enzymes necessary to inhibit their action. The cellular mechanism of action of endocannabinoids has not been established in the enteric nervous system. Endocannabinoids not only act at cannabinoid receptors, but potentially also at vanilloid and 5-HT3 receptors, both of which are expressed in the gastrointestinal tract. The interactions between endocannabinoids and these other important receptor systems have not been extensively investigated. A greater understanding of the endocannabinoid system in the enteric nervous system could lead to advances with important therapeutic potential in the treatment of gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, secretory diarrhoea and gastro-oesophageal reflux disease.
Collapse
Affiliation(s)
- M Duncan
- Institute for Infection, Immunity and Inflammation and Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
36
|
Maccarrone M, Fride E, Bisogno T, Bari M, Cascio MG, Battista N, Finazzi Agrò A, Suris R, Mechoulam R, Di Marzo V. Up-regulation of the endocannabinoid system in the uterus of leptin knockout (ob/ob) mice and implications for fertility. ACTA ACUST UNITED AC 2005; 11:21-8. [PMID: 15563449 DOI: 10.1093/molehr/gah130] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) are under the negative control of leptin in the rodent hypothalamus. As leptin and endocannabinoids play opposite roles in the control of reproduction, we have investigated whether the impaired fertility typical of leptin-defective ob/ob mice is due, in part, to enhanced uterine endocannabinoid levels. We found that levels of both anandamide and 2-AG in the uterus of ob/ob mice are significantly elevated with respect to wild-type littermates, due to reduced hydrolase activity in the case of anandamide, and to reduced monoacylglycerol lipase and enhanced diacylglycerol lipase activity in the case of 2-AG. Furthermore, the process mediating endocannabinoid cellular uptake was also impaired in ob/ob mice, whereas the levels of cannabinoid and anandamide receptors were not modified. Although ineffective in wild-type mice, treatment of ob/ob mice with leptin re-established endocannabinoid levels and enzyme activities back to the values observed in wild-type littermates. Finally, treatment of ob/ob females with the CB1 receptor antagonist SR141716A did not improve their fertility, and inhibition of endocannabinoid inactivation with the endocannabinoid uptake inhibitor OMDM-1 in wild-type females did not result in impaired fertility.
Collapse
Affiliation(s)
- M Maccarrone
- Department of Biomedical Sciences, University of Teramo, Piazza A. Moro 45, 64100 Teramo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|