1
|
Computational Analysis of the Crystal and Cryo-EM Structures of P-Loop Channels with Drugs. Int J Mol Sci 2021; 22:ijms22158143. [PMID: 34360907 PMCID: PMC8348670 DOI: 10.3390/ijms22158143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/01/2022] Open
Abstract
The superfamily of P-loop channels includes various potassium channels, voltage-gated sodium and calcium channels, transient receptor potential channels, and ionotropic glutamate receptors. Despite huge structural and functional diversity of the channels, their pore-forming domain has a conserved folding. In the past two decades, scores of atomic-scale structures of P-loop channels with medically important drugs in the inner pore have been published. High structural diversity of these complexes complicates the comparative analysis of these structures. Here we 3D-aligned structures of drug-bound P-loop channels, compared their geometric characteristics, and analyzed the energetics of ligand-channel interactions. In the superimposed structures drugs occupy most of the sterically available space in the inner pore and subunit/repeat interfaces. Cationic groups of some drugs occupy vacant binding sites of permeant ions in the inner pore and selectivity-filter region. Various electroneutral drugs, lipids, and detergent molecules are seen in the interfaces between subunits/repeats. In many structures the drugs strongly interact with lipid and detergent molecules, but physiological relevance of such interactions is unclear. Some eukaryotic sodium and calcium channels have state-dependent or drug-induced π-bulges in the inner helices, which would be difficult to predict. The drug-induced π-bulges may represent a novel mechanism of gating modulation.
Collapse
|
2
|
Alghamdi AH, Munday JC, Campagnaro GD, Gurvic D, Svensson F, Okpara CE, Kumar A, Quintana J, Martin Abril ME, Milić P, Watson L, Paape D, Settimo L, Dimitriou A, Wielinska J, Smart G, Anderson LF, Woodley CM, Kelly SPY, Ibrahim HM, Hulpia F, Al-Salabi MI, Eze AA, Sprenger T, Teka IA, Gudin S, Weyand S, Field M, Dardonville C, Tidwell RR, Carrington M, O'Neill P, Boykin DW, Zachariae U, De Koning HP. Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei. eLife 2020; 9:56416. [PMID: 32762841 PMCID: PMC7473772 DOI: 10.7554/elife.56416] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
Mutations in the Trypanosoma brucei aquaporin AQP2 are associated with resistance to pentamidine and melarsoprol. We show that TbAQP2 but not TbAQP3 was positively selected for increased pore size from a common ancestor aquaporin. We demonstrate that TbAQP2’s unique architecture permits pentamidine permeation through its central pore and show how specific mutations in highly conserved motifs affect drug permeation. Introduction of key TbAQP2 amino acids into TbAQP3 renders the latter permeable to pentamidine. Molecular dynamics demonstrates that permeation by dicationic pentamidine is energetically favourable in TbAQP2, driven by the membrane potential, although aquaporins are normally strictly impermeable for ionic species. We also identify the structural determinants that make pentamidine a permeant although most other diamidine drugs are excluded. Our results have wide-ranging implications for optimising antitrypanosomal drugs and averting cross-resistance. Moreover, these new insights in aquaporin permeation may allow the pharmacological exploitation of other members of this ubiquitous gene family. African sleeping sickness is a potentially deadly illness caused by the parasite Trypanosoma brucei. The disease is treatable, but many of the current treatments are old and are becoming increasingly ineffective. For instance, resistance is growing against pentamidine, a drug used in the early stages in the disease, as well as against melarsoprol, which is deployed when the infection has progressed to the brain. Usually, cases resistant to pentamidine are also resistant to melarsoprol, but it is still unclear why, as the drugs are chemically unrelated. Studies have shown that changes in a water channel called aquaglyceroporin 2 (TbAQP2) contribute to drug resistance in African sleeping sickness; this suggests that it plays a role in allowing drugs to kill the parasite. This molecular ‘drain pipe’ extends through the surface of T. brucei, and should allow only water and a molecule called glycerol in and out of the cell. In particular, the channel should be too narrow to allow pentamidine or melarsoprol to pass through. One possibility is that, in T. brucei, the TbAQP2 channel is abnormally wide compared to other members of its family. Alternatively, pentamidine and melarsoprol may only bind to TbAQP2, and then ‘hitch a ride’ when the protein is taken into the parasite as part of the natural cycle of surface protein replacement. Alghamdi et al. aimed to tease out these hypotheses. Computer models of the structure of the protein were paired with engineered changes in the key areas of the channel to show that, in T. brucei, TbAQP2 provides a much broader gateway into the cell than observed for similar proteins. In addition, genetic analysis showed that this version of TbAQP2 has been actively selected for during the evolution process of T. brucei. This suggests that the parasite somehow benefits from this wider aquaglyceroporin variant. This is a new resistance mechanism, and it is possible that aquaglyceroporins are also larger than expected in other infectious microbes. The work by Alghamdi et al. therefore provides insight into how other germs may become resistant to drugs.
Collapse
Affiliation(s)
- Ali H Alghamdi
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Jane C Munday
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - Dominik Gurvic
- Computational Biology Centre for Translational and Interdisciplinary Research, University of Dundee, Dundee, United Kingdom
| | - Fredrik Svensson
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
| | - Chinyere E Okpara
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Arvind Kumar
- Chemistry Department, Georgia State University, Atlanta, United States
| | - Juan Quintana
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Patrik Milić
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Laura Watson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Paape
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Luca Settimo
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anna Dimitriou
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Joanna Wielinska
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Graeme Smart
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Laura F Anderson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | - Siu Pui Ying Kelly
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Hasan Ms Ibrahim
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, University of Ghent, Ghent, Belgium
| | - Mohammed I Al-Salabi
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anthonius A Eze
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Teresa Sprenger
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ibrahim A Teka
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Simon Gudin
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Simone Weyand
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | - Richard R Tidwell
- Department of Pathology and Lab Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Paul O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - David W Boykin
- Chemistry Department, Georgia State University, Atlanta, United States
| | - Ulrich Zachariae
- Computational Biology Centre for Translational and Interdisciplinary Research, University of Dundee, Dundee, United Kingdom
| | - Harry P De Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Orenha RP, Nagurniak GR, Colaço MC, Caramori GF, Piotrowski MJ, de Araújo Batista KE, Muñoz-Castro A, de Almeida Silva B, Esteves BJ, Parreira RLT. The simultaneous recognition mechanism of cations and anions using macrocyclic–iodine structures: insights from dispersion-corrected DFT calculations. Phys Chem Chem Phys 2020; 22:23795-23803. [DOI: 10.1039/d0cp04291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of structures to recognize ions is growing in recent years. Here, the simultaneous recognition of cations and anions by a macrocycle comprising a simple crown ether and an iodine-triazole unit has been investigated using DFT calculations.
Collapse
Affiliation(s)
- Renato Pereira Orenha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | - Glaucio Régis Nagurniak
- Universidade Federal de Santa Catarina
- Departamento de Ciências Exatas e da Educação
- Blumenau
- Brazil
| | - Matheus Cachoeira Colaço
- Departamento de Química
- Universidade Federal de Santa Catarina, Campus Universitário Trindade
- Florianópolis
- Brazil
| | - Giovanni Finoto Caramori
- Departamento de Química
- Universidade Federal de Santa Catarina, Campus Universitário Trindade
- Florianópolis
- Brazil
| | | | | | - Alvaro Muñoz-Castro
- Laboratorio de Química Inorgánica y Materiales Moleculares
- Facultad de Ingenieria
- Universidad Autonoma de Chile
- Llano Subercaceaux
- San Miguel
| | | | - Benjamim José Esteves
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | | |
Collapse
|
4
|
Vilariño-Güell C, Zimprich A, Martinelli-Boneschi F, Herculano B, Wang Z, Matesanz F, Urcelay E, Vandenbroeck K, Leyva L, Gris D, Massaad C, Quandt JA, Traboulsee AL, Encarnacion M, Bernales CQ, Follett J, Yee IM, Criscuoli MG, Deutschländer A, Reinthaler EM, Zrzavy T, Mascia E, Zauli A, Esposito F, Alcina A, Izquierdo G, Espino-Paisán L, Mena J, Antigüedad A, Urbaneja-Romero P, Ortega-Pinazo J, Song W, Sadovnick AD. Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genet 2019; 15:e1008180. [PMID: 31170158 PMCID: PMC6553700 DOI: 10.1371/journal.pgen.1008180] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and neuronal dysfunction. Although the majority of patients do not present familial aggregation, Mendelian forms have been described. We performed whole-exome sequencing analysis in 132 patients from 34 multi-incident families, which nominated likely pathogenic variants for MS in 12 genes of the innate immune system that regulate the transcription and activation of inflammatory mediators. Rare missense or nonsense variants were identified in genes of the fibrinolysis and complement pathways (PLAU, MASP1, C2), inflammasome assembly (NLRP12), Wnt signaling (UBR2, CTNNA3, NFATC2, RNF213), nuclear receptor complexes (NCOA3), and cation channels and exchangers (KCNG4, SLC24A6, SLC8B1). These genes suggest a disruption of interconnected immunological and pro-inflammatory pathways as the initial event in the pathophysiology of familial MS, and provide the molecular and biological rationale for the chronic inflammation, demyelination and neurodegeneration observed in MS patients.
Collapse
Affiliation(s)
| | | | - Filippo Martinelli-Boneschi
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- MS Unit and Department of Neurology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Bruno Herculano
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of the Capital Medical University, Beijing, China
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Elena Urcelay
- Immunology Dept, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
| | - Koen Vandenbroeck
- Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Laura Leyva
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Denis Gris
- Division of Immunology, Department of Pediatrics, CR-CHUS, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Charbel Massaad
- Toxicology, Pharmacology and Cell Signalisation—UMR-S 1124 Université Paris Descartes, Paris, France
| | - Jacqueline A. Quandt
- Department of Pathology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Anthony L. Traboulsee
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Mary Encarnacion
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Cecily Q. Bernales
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jordan Follett
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Irene M. Yee
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Maria G. Criscuoli
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Angela Deutschländer
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States of America
- Department of Clinical Genomics, Mayo Clinic Florida, Jacksonville, FL, United States of America
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States of America
| | - Eva M. Reinthaler
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Zauli
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | | | - Laura Espino-Paisán
- Immunology Dept, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
| | - Jorge Mena
- Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Alfredo Antigüedad
- Neurology Department, Hospital Universitario de Cruces, S/N, Baracaldo, Spain
| | - Patricia Urbaneja-Romero
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jesús Ortega-Pinazo
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - A. Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Chen R, Chung SH. Inhibition of Voltage-Gated K + Channel Kv1.5 by Antiarrhythmic Drugs. Biochemistry 2018; 57:2704-2710. [PMID: 29652491 DOI: 10.1021/acs.biochem.8b00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations are employed to determine the inhibitory mechanisms of three drugs, 5-(4-phenoxybutoxy)psoralen (PAP-1), vernakalant, and flecainide, on the voltage-gated K+ channel Kv1.5, a target for the treatment of cardiac arrhythmia. At neutral pH, PAP-1 is neutral, whereas the other two molecules carry one positive charge. We show that PAP-1 forms stable dimers in water, primarily through hydrophobic interactions between aromatic rings. All three molecules bind to the cavity between the Ile508 and Val512 residues from the four subunits of the channel. Once bound, the drug molecules are flexible, with the average root-mean-square fluctuation being between 2 and 3 Å, which is larger than the radius of gyration of a bulky amino acid. The presence of a monomeric PAP-1 causes the permeating K+ ion to dehydrate, thereby creating a significant energy barrier. In contrast, vernakalant blocks the ion permeation primarily via an electrostatic mechanism and, therefore, must be in the protonated and charged form to be effective.
Collapse
Affiliation(s)
- Rong Chen
- Research School of Biology , Australian National University , Acton , ACT 2601 , Australia
| | - Shin-Ho Chung
- Research School of Biology , Australian National University , Acton , ACT 2601 , Australia
| |
Collapse
|
6
|
Logan MM, Toma T, Thomas-Tran R, Du Bois J. Asymmetric synthesis of batrachotoxin: Enantiomeric toxins show functional divergence against NaV. Science 2017; 354:865-869. [PMID: 27856903 DOI: 10.1126/science.aag2981] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/14/2016] [Indexed: 01/22/2023]
Abstract
The steroidal neurotoxin (-)-batrachotoxin functions as a potent agonist of voltage-gated sodium ion channels (NaVs). Here we report concise asymmetric syntheses of the natural (-) and non-natural (+) antipodes of batrachotoxin, as well both enantiomers of a C-20 benzoate-modified derivative. Electrophysiological characterization of these molecules against NaV subtypes establishes the non-natural toxin enantiomer as a reversible antagonist of channel function, markedly different in activity from (-)-batrachotoxin. Protein mutagenesis experiments implicate a shared binding side for the enantiomers in the inner pore cavity of NaV These findings motivate and enable subsequent studies aimed at revealing how small molecules that target the channel inner pore modulate NaV dynamics.
Collapse
Affiliation(s)
- Matthew M Logan
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | - Tatsuya Toma
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.
| |
Collapse
|
7
|
Tikhonov DB, Zhorov BS. Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants. J Gen Physiol 2017; 149:465-481. [PMID: 28258204 PMCID: PMC5379917 DOI: 10.1085/jgp.201611668] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/08/2016] [Accepted: 02/03/2017] [Indexed: 11/20/2022] Open
Abstract
Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds.
Collapse
Affiliation(s)
- Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| |
Collapse
|
8
|
Hoeker GS, Skarsfeldt MA, Jespersen T, Poelzing S. Electrophysiologic effects of the IK1 inhibitor PA-6 are modulated by extracellular potassium in isolated guinea pig hearts. Physiol Rep 2017; 5:e13120. [PMID: 28087819 PMCID: PMC5256165 DOI: 10.14814/phy2.13120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 12/02/2022] Open
Abstract
The pentamidine analog PA-6 was developed as a specific inward rectifier potassium current (IK1) antagonist, because established inhibitors either lack specificity or have side effects that prohibit their use in vivo. We previously demonstrated that BaCl2, an established IK1 inhibitor, could prolong action potential duration (APD) and increase cardiac conduction velocity (CV). However, few studies have addressed whether targeted IK1 inhibition similarly affects ventricular electrophysiology. The aim of this study was to determine the effects of PA-6 on cardiac repolarization and conduction in Langendorff-perfused guinea pig hearts. PA-6 (200 nm) or vehicle was perfused into ex-vivo guinea pig hearts for 60 min. Hearts were optically mapped with di-4-ANEPPS to quantify CV and APD at 90% repolarization (APD90). Ventricular APD90 was significantly prolonged in hearts treated with PA-6 (115 ± 2% of baseline; P < 0.05), but not vehicle (105 ± 2% of baseline). PA-6 slightly, but significantly, increased transverse CV by 7%. PA-6 significantly prolonged APD90 during hypokalemia (2 mmol/L [K+]o), although to a lesser degree than observed at 4.56 mmol/L [K+]o In contrast, the effect of PA-6 on CV was more pronounced during hypokalemia, where transverse CV with PA-6 (24 ± 2 cm/sec) was significantly faster than with vehicle (13 ± 3 cm/sec, P < 0.05). These results show that under normokalemic conditions, PA-6 significantly prolonged APD90, whereas its effect on CV was modest. During hypokalemia, PA-6 prolonged APD90 to a lesser degree, but profoundly increased CV Thus, in intact guinea pig hearts, the electrophysiologic effects of the IK1 inhibitor, PA-6, are [K+]o-dependent.
Collapse
Affiliation(s)
- Gregory S Hoeker
- Biomedical Engineering and Mechanics, Center for Heart and Regenerative Medicine, Virginia Tech Virginia Tech Carilion Research Institute, Roanoke, Virginia
| | - Mark A Skarsfeldt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steven Poelzing
- Biomedical Engineering and Mechanics, Center for Heart and Regenerative Medicine, Virginia Tech Virginia Tech Carilion Research Institute, Roanoke, Virginia
| |
Collapse
|
9
|
Zhang Y, Du Y, Jiang D, Behnke C, Nomura Y, Zhorov BS, Dong K. The Receptor Site and Mechanism of Action of Sodium Channel Blocker Insecticides. J Biol Chem 2016; 291:20113-24. [PMID: 27489108 DOI: 10.1074/jbc.m116.742056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 01/03/2023] Open
Abstract
Sodium channels are excellent targets of both natural and synthetic insecticides with high insect selectivity. Indoxacarb, its active metabolite DCJW, and metaflumizone (MFZ) belong to a relatively new class of sodium channel blocker insecticides (SCBIs) with a mode of action distinct from all other sodium channel-targeting insecticides, including pyrethroids. Electroneutral SCBIs preferably bind to and trap sodium channels in the inactivated state, a mechanism similar to that of cationic local anesthetics. Previous studies identified several SCBI-sensing residues that face the inner pore of sodium channels. However, the receptor site of SCBIs, their atomic mechanisms, and the cause of selective toxicity of MFZ remain elusive. Here, we have built a homology model of the open-state cockroach sodium channel BgNav1-1a. Our computations predicted that SCBIs bind in the inner pore, interact with a sodium ion at the focus of P1 helices, and extend their aromatic moiety into the III/IV domain interface (fenestration). Using model-driven mutagenesis and electrophysiology, we identified five new SCBI-sensing residues, including insect-specific residues. Our study proposes the first three-dimensional models of channel-bound SCBIs, sheds light on the molecular basis of MFZ selective toxicity, and suggests that a sodium ion located in the inner pore contributes to the receptor site for electroneutral SCBIs.
Collapse
Affiliation(s)
- Yongqiang Zhang
- From the College of Plant Protection, Southwest University, Chongqing 400716, China, the Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan 48824
| | - Yuzhe Du
- the Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan 48824
| | - Dingxin Jiang
- the Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan 48824
| | - Caitlyn Behnke
- the Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan 48824
| | - Yoshiko Nomura
- the Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan 48824
| | - Boris S Zhorov
- the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada, and the Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Ke Dong
- the Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan 48824,
| |
Collapse
|
10
|
Modeling interactions between blocking and permeant cations in the NavMs channel. Eur J Pharmacol 2016; 780:188-93. [PMID: 27020546 DOI: 10.1016/j.ejphar.2016.03.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 02/01/2023]
Abstract
Mechanisms of sodium channel block by local anesthetics (LAs) are still a matter of intensive studies. In the absence of high-resolution structures of eukaryotic channels, atomic details of LA-channel interactions are analyzed using homology modeling. LAs are predicted to access the closed channel through a sidewalk (fenestration) between the channel repeats, bind in a horizontal orientation, and leave its aromatic moiety in the interface. Recent X-ray structure of a bacterial sodium channel NavMs with a cationic molecule Pl1, which is structurally similar to LAs, has confirmed this theoretical prediction and demonstrated a reduced selectivity filter occupancy by the permeant ions in the Pl1-bound channel. However, the nature of the antagonism between LAs and permeant ions is still unclear. Here we used the NavMs structure and Monte Carlo energy minimizations to model Pl1 binding. Our computations predict that Pl1 can displace permeant ion(s) from the selectivity filter by both steric and electrostatic mechanisms. We hypothesize that the electrostatic mechanism is more general, because it is applicable to many LAs and related drugs, which lack a moiety capable to enter the selectivity filter and sterically displace the permeant ion. The electrostatic mechanism is also consistent with the data that various cationic blockers of potassium channels bind in the inner pore without entering the selectivity filter.
Collapse
|
11
|
Byun IJ, Lee M, Han YK. Synthesis of new Azo-based liquid crystalline polymers and their selective sensing behaviors to alkali metal ions. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- In-Joon Byun
- Department of Chemistry; Hanyang University; 222 Wangsimni-Ro, Seongdong-Gu Seoul 04763 Korea
| | - Minjae Lee
- Department of Chemistry; Kunsan National University; 558 Daehak-Ro Gunsan-Si 54150 Korea
| | - Yang-Kyoo Han
- Department of Chemistry; Hanyang University; 222 Wangsimni-Ro, Seongdong-Gu Seoul 04763 Korea
| |
Collapse
|
12
|
Hanifin CT, Gilly WF. Evolutionary history of a complex adaptation: tetrodotoxin resistance in salamanders. Evolution 2014; 69:232-44. [PMID: 25346116 DOI: 10.1111/evo.12552] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 10/01/2014] [Indexed: 12/27/2022]
Abstract
Understanding the processes that generate novel adaptive phenotypes is central to evolutionary biology. We used comparative analyses to reveal the history of tetrodotoxin (TTX) resistance in TTX-bearing salamanders. Resistance to TTX is a critical component of the ability to use TTX defensively but the origin of the TTX-bearing phenotype is unclear. Skeletal muscle of TTX-bearing salamanders (modern newts, family: Salamandridae) is unaffected by TTX at doses far in excess of those that block action potentials in muscle and nerve of other vertebrates. Skeletal muscle of non-TTX-bearing salamandrids is also resistant to TTX but at lower levels. Skeletal muscle TTX resistance in the Salamandridae results from the expression of TTX-resistant variants of the voltage-gated sodium channel NaV 1.4 (SCN4a). We identified four substitutions in the coding region of salSCN4a that are likely responsible for the TTX resistance measured in TTX-bearing salamanders and variation at one of these sites likely explains variation in TTX resistance among other lineages. Our results suggest that exaptation has played a role in the evolution of the TTX-bearing phenotype and provide empirical evidence that complex physiological adaptations can arise through the accumulation of beneficial mutations in the coding region of conserved proteins.
Collapse
|
13
|
Dudev T, Lim C. Ion selectivity strategies of sodium channel selectivity filters. Acc Chem Res 2014; 47:3580-7. [PMID: 25343535 DOI: 10.1021/ar5002878] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONSPECTUS: Sodium ion channels selectively transport Na(+) cations across the cell membrane. These integral parts of the cell machinery are implicated in regulating the cardiac, skeletal and smooth muscle contraction, nerve impulses, salt and water homeostasis, as well as pain and taste perception. Their malfunction often results in various channelopathies of the heart, brain, skeletal muscles, and lung; thus, sodium channels are key drug targets for various disorders including cardiac arrhythmias, heart attack, stroke, migraine, epilepsy, pain, cancer, and autoimmune disorders. The ability of sodium channels to discriminate the native Na(+) among other competing ions in the surrounding fluids is crucial for proper cellular functions. The selectivity filter (SF), the narrowest part of the channel's open pore, lined with amino acid residues that specifically interact with the permeating ion, plays a major role in determining Na(+) selectivity. Different sodium channels have different SFs, which vary in the symmetry, number, charge, arrangement, and chemical type of the metal-ligating groups and pore size: epithelial/degenerin/acid-sensing ion channels have generally trimeric SFs lined with three conserved neutral serines and/or backbone carbonyls; eukaryotic sodium channels have EKEE, EEKE, DKEA, and DEKA SFs with an invariant positively charged lysine from the second or third domain; and bacterial voltage-gated sodium (Nav) channels exhibit symmetrical EEEE SFs, reminiscent of eukaryotic voltage-gated calcium channels. How do these different sodium channel SFs achieve high selectivity for Na(+) over its key rivals, K(+) and Ca(2+)? What factors govern the metal competition in these SFs and which of these factors are exploited to achieve Na(+) selectivity in the different sodium channel SFs? The free energies for replacing K(+) or Ca(2+) bound inside different model SFs with Na(+), evaluated by a combination of density functional theory and continuum dielectric calculations, have shed light on these questions. The SFs of epithelial and eukaryotic Nav channels select Na(+) by providing an optimal number and ligating strength of metal ligands as well as a rigid pore whose size fits the cognate Na(+) ideally. On the other hand, the SFs of bacterial Nav channels select Na(+), as the protein matrix attenuates ion-protein interactions relative to ion-solvent interactions by enlarging the pore and allowing water to enter, so the ion interacts indirectly with the conserved glutamates via bridging water molecules. This shows how these various SFs have adapted to the specific physicochemical properties of the native ion, using different strategies to select Na(+) among its contenders.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
14
|
Chen R, Gryn’ova G, Wu Y, Coote ML, Chung SH. Mechanisms and Energetics of Potassium Channel Block by Local Anesthetics and Antifungal Agents. Biochemistry 2014; 53:6786-92. [DOI: 10.1021/bi5009408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan, China
| | | | | |
Collapse
|
15
|
Senatore A, Guan W, Spafford JD. Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity. Pflugers Arch 2014; 466:645-60. [PMID: 24515291 DOI: 10.1007/s00424-014-1449-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 12/13/2022]
Abstract
Cav3 T-type channels are low-voltage-gated channels with rapid kinetics that are classified among the calcium-selective Cav1 and Cav2 type channels. Here, we outline the fundamental and unique regulators of T-type channels. An ubiquitous and proximally located "gating brake" works in concert with the voltage-sensor domain and S6 alpha-helical segment from domain II to set the canonical low-threshold and transient gating features of T-type channels. Gene splicing of optional exon 25c (and/or exon 26) in the short III-IV linker provides a developmental switch between modes of activity, such as activating in response to membrane depolarization, to channels requiring hyperpolarization input before being available to activate. Downstream of the gating brake in the I-II linker is a key region for regulating channel expression where alternative splicing patterns correlate with functional diversity of spike patterns, pacemaking rate (especially in the heart), stage of development, and animal size. A small but persistent window conductance depolarizes cells and boosts excitability at rest. T-type channels possess an ion selectivity that can resemble not only the calcium ion exclusive Cav1 and Cav2 channels but also the sodium ion selectivity of Nav1 sodium channels too. Alternative splicing in the extracellular turret of domain II generates highly sodium-permeable channels, which contribute to low-threshold sodium spikes. Cav3 channels are more ubiquitous among multicellular animals and more widespread in tissues than the more brain centric Nav1 sodium channels in invertebrates. Highly sodium-permeant Cav3 channels can functionally replace Nav1 channels in species where they are lacking, such as in Caenorhabditis elegans.
Collapse
Affiliation(s)
- A Senatore
- Department of Biology, University of Waterloo, B1-173, Waterloo, ON, N2L 3G1, Canada
| | | | | |
Collapse
|
16
|
Tikhonov DB, Zhorov BS. Homology modeling of Kv1.5 channel block by cationic and electroneutral ligands. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:978-87. [PMID: 24316168 DOI: 10.1016/j.bbamem.2013.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/12/2013] [Accepted: 11/26/2013] [Indexed: 01/05/2023]
Abstract
The inner pore of potassium channels is targeted by many ligands of intriguingly different chemical structures. Previous studies revealed common and diverse characteristics of action of ligands including cooperativity of ligand binding, voltage- and use-dependencies, and patterns of ligand-sensing residues. Not all these data are rationalized in published models of ligand-channel complexes. Here we have used energy calculations with experimentally defined constraints to dock flecainide, ICAGEN-4, benzocaine, vernakalant, and AVE0118 into the inner pore of Kv1.5 channel. We arrived at ligand-binding models that suggest possible explanations for different values of the Hill coefficient, different voltage dependencies of ligands action, and effects of mutations of residues in subunit interfaces. Two concepts were crucial to build the models. First, the inner-pore block of a potassium channel requires a cationic "blocking particle". A ligand, which lacks a positively charged group, blocks the channel in a complex with a permeant ion. Second, hydrophobic moieties of a flexible ligand have a tendency to bind in hydrophobic subunit interfaces.
Collapse
Affiliation(s)
- Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|