1
|
Hölsken S, Krefting F, Mühlhaus S, Bese D, Schedlowski M, Sondermann W. Shaping Treatment Expectation to Optimize Efficacy of Interleukin 17A Antagonist Secukinumab in Psoriasis Patients. PSORIASIS (AUCKLAND, N.Z.) 2025; 15:9-22. [PMID: 39810930 PMCID: PMC11731016 DOI: 10.2147/ptt.s486338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
Purpose Patients' treatment expectations significantly influence the effectiveness of medical and pharmacological treatments. This clinical proof-of-concept study aimed to enhance treatment outcomes by targeting positive treatment expectations of psoriasis patients beginning systemic anti-psoriatic therapy with secukinumab, an interleukin (IL)-17A antagonist. Patients and Methods We randomly assigned patients to three groups: a treatment as usual (TAU) group receiving the standard 300mg dose of secukinumab, a dose-control (DC) group with 75% dose reduction and an experimental (EXP) group receiving the same reduced dose along with a "cover story" designed to positively influence treatment expectations. We evaluated skin symptoms using the Psoriasis Area and Severity Index (PASI), the Dermatology Life Quality Index (DLQI), perceived itch, mood and plasma IL-17A levels at baseline and at 1, 2, 3, 4, 8, 12, and 16 weeks post intervention. Results The study included N = 120 patients (average age = 45.78 years, 34% female). A high baseline expectation level (8.1 of 10 points) was observed across all groups which could not be further increased by the EXP-group's "cover story". The EXP and DC groups did not differ with regard to reaching 75% improvement in PASI scores (PASI75), a DLQI score of 0 or 1 or at least 4 points improvement in itch. Over time, the EXP-group showed a faster decline in PASI scores and anxiety symptoms compared to the DC-group, but less improvement in quality of life. IL-17A levels significantly increased throughout the treatment, with no significant differences between groups despite the 75% dose reduction. Conclusion This study demonstrates an attempt to modify patients' treatment expectations to enhance the effectiveness of pharmacological therapy with secukinumab in psoriasis patients. However, verbal suggestion alone did not significantly improve clinical outcomes, suggesting that future studies should explore alternative approaches to leverage placebo effects to the benefit of patients with psoriasis.
Collapse
Affiliation(s)
- Stefanie Hölsken
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frederik Krefting
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Senta Mühlhaus
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Bese
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Wiebke Sondermann
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Schwarting RKW, Wöhr M, Engler H, Sungur AÖ, Schedlowski M. Behaviorally conditioned effects of psychoactive drugs in experimental animals: What we have learned from nearly a century of research and what remains to be learned. Neurosci Biobehav Rev 2024; 162:105721. [PMID: 38754716 DOI: 10.1016/j.neubiorev.2024.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Continuous treatment with drugs is a crucial requirement for managing various clinical conditions, including chronic pain and neuropsychiatric disorders such as depression or schizophrenia. Associative learning processes, i.e. Pavlovian conditioning, can play an important role for the effects of drugs and could open new avenues for optimizing patient treatment. In this narrative literature review, we summarize available data in experimental animals regarding the behaviorally conditioned effects of psychostimulants such as d-amphetamine and cocaine, the dopamine receptor agonist apomorphine, the dopamine receptor antagonist haloperidol, morphine and antidepressant drugs. In each section, the drug under discussion is briefly introduced, followed by a detailed examination of conditioning features, including doses and dosing regimens, characteristics of the conditioning process such as test environments or specific conditioned stimuli, testing and conditioned response characteristics, possible extinction or reconditioning or reversal training, neural mechanisms, and finally, the potential clinical relevance of the research area related to the drug. We focus on key outcomes, delve into methodical issues, identify gaps in current knowledge, and suggest future research directions.
Collapse
Affiliation(s)
- Rainer K W Schwarting
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Marburg D-35032, Germany; Center for Mind, Brain and Behavior, Marburg D-35032, Germany
| | - Markus Wöhr
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Marburg D-35032, Germany; Center for Mind, Brain and Behavior, Marburg D-35032, Germany; KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Leuven B-3000, Belgium; KU Leuven, Leuven Brain Institute, Leuven B-3000, Belgium
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro-, and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen D-45147, Germany
| | - A Özge Sungur
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Marburg D-35032, Germany; Center for Mind, Brain and Behavior, Marburg D-35032, Germany; KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Leuven B-3000, Belgium; KU Leuven, Leuven Brain Institute, Leuven B-3000, Belgium
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro-, and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen D-45147, Germany; Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
3
|
Jakobs M, Hörbelt-Grünheidt T, Hadamitzky M, Bihorac J, Salem Y, Leisengang S, Christians U, Schniedewind B, Schedlowski M, Lückemann L. The Effects of Fingolimod (FTY720) on Leukocyte Subset Circulation cannot be Behaviourally Conditioned in Rats. J Neuroimmune Pharmacol 2024; 19:18. [PMID: 38733535 PMCID: PMC11088542 DOI: 10.1007/s11481-024-10122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Suppression of immune functions can be elicited by behavioural conditioning using drugs such as cyclosporin A or rapamycin. Nevertheless, little is known about the underlying mechanisms and generalisability of this phenomenon. Against this background, the present study investigated whether the pharmacological properties of fingolimod (FTY720), an immunosuppressive drug widely applied to treat multiple sclerosis, can be conditioned in rats by means of taste-immune associative learning. For this purpose, a conditioned taste avoidance paradigm was used, pairing the presentation of a novel sweet drinking solution (saccharin or sucrose) as conditioned stimulus (CS) with therapeutically effective doses of FTY720 as unconditioned stimulus (US). Subsequent re-exposure to the CS at a later time point revealed that conditioning with FTY720 induced a mild conditioned taste avoidance only when saccharin was employed as CS. However, on an immunological level, neither re-exposure with saccharin nor sucrose altered blood immune cell subsets or splenic cytokine production. Despite the fact that intraperitonally administered FTY720 could be detected in brain regions known to mediate neuro-immune interactions, the present findings show that the physiological action of FTY720 is not inducible by mere taste-immune associative learning. Whether conditioning generalises across all small-molecule drugs with immunosuppressive properties still needs to be investigated with modified paradigms probably using distinct sensory CS. Moreover, these findings emphasize the need to further investigate the underlying mechanisms of conditioned immunomodulation to assess the generalisability and usability of associative learning protocols as supportive therapies in clinical contexts.
Collapse
Affiliation(s)
- Marie Jakobs
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- & Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.
| | - Tina Hörbelt-Grünheidt
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- & Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- & Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Julia Bihorac
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- & Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Yasmin Salem
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- & Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Stephan Leisengang
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- & Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Björn Schniedewind
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- & Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
- Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- & Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
4
|
Jakobs M, Hadamitzky M, Schedlowski M, Heiß-Lückemann L. [Conditioning of the immune system-Already clinically usable?]. Z Rheumatol 2023:10.1007/s00393-023-01384-9. [PMID: 37402018 DOI: 10.1007/s00393-023-01384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 07/05/2023]
Abstract
The brain and the immune system permanently exchange information via various neuronal and humoral signaling pathways. This communication network forms the basis for controlling peripheral immune functions via associative learning or conditioning processes. Establishing a learned immune reaction, an immunomodulatory drug that represents the unconditioned stimulus (US) is paired with a new odor or taste stimulus. Re-presentating this previously neutral odor or taste stimulus, its now functions as a conditioned stimulus (CS) and triggers reactions in the immune system similar to those formerly induced by the drug used as US. Using different learning protocols, it was possible to condition immunopharmacological effects in animal disease models, such as lupus erythematosus, contact allergy or rheumatoid arthritis, thereby reducing disease symptoms. Preliminary experimental studies in healthy volunteers and patients confirmed a possible clinical use of learned immune responses with the aim of using associative learning protocols as complementary measures to pharmacological interventions in clinical practice in order to reduce drug doses and thus undesirable drug side effects while maintaining therapeutic efficacy. However, there is still a great need for further research to understand the mechanisms of learned immune responses in preclinical studies and to optimize the associative learning processes for using them in the clinical routine in studies with healthy volunteers and patients.
Collapse
Affiliation(s)
- M Jakobs
- Institut für Medizinische Psychologie und Verhaltensimmunbiologie, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Deutschland
| | - M Hadamitzky
- Institut für Medizinische Psychologie und Verhaltensimmunbiologie, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Deutschland
| | - M Schedlowski
- Institut für Medizinische Psychologie und Verhaltensimmunbiologie, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Deutschland
- Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, 171 77, Stockholm, Schweden
| | - L Heiß-Lückemann
- Institut für Medizinische Psychologie und Verhaltensimmunbiologie, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Deutschland.
| |
Collapse
|
5
|
Kleine-Borgmann J, Dietz TN, Schmidt K, Bingel U. No long-term effects after a 3-week open-label placebo treatment for chronic low back pain: a 3-year follow-up of a randomized controlled trial. Pain 2023; 164:645-652. [PMID: 35947884 PMCID: PMC9916047 DOI: 10.1097/j.pain.0000000000002752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic low back pain is prevalent, highly disabling, and a relevant socioeconomic health concern. Although allocated to placebo groups, patients in randomized controlled trials show significant pain relief, pointing to the relevance of placebo effects. Overcoming ethical and legal concerns related to deceptive placebos, recent studies have demonstrated the efficacy of short-term treatments for chronic low back pain with open-label (ie, nondeceptive) placebos. However, data on long-term efficacy of open-label placebos are sparse. Here, we report a 3-year follow-up of our previously published randomized controlled trial demonstrating pain reduction, improvement in disability, and depressive symptoms after a 3-week treatment with open-label placebos. Including records from 89 previously enrolled patients, we investigated changes between the groups with and without previous open-label placebo treatment in pain intensity (primary outcome), disability and mood (secondary outcomes), biopsychosocial factors and lifestyle (exploratory outcomes) from parent baseline to follow-up. Over the 3-year period, there were no differences in any outcome between groups with and without open-label placebo treatment. Therefore, our follow-up data do not support the previously suggested assumption that a 3-week open-label placebo treatment has long-term effects. This study was preregistered on April 14, 2020, in the German Clinical Trials Register (registration number DRKS00021405).
Collapse
Affiliation(s)
- Julian Kleine-Borgmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Tim-Niklas Dietz
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Katharina Schmidt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Ulrike Bingel
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| |
Collapse
|
6
|
Vichaya EG, Darpolor JK, Gross PS, Molkentine JM, Vermeer DW, Vermeer PD, Lee JH, Taniguchi CM, Dantzer R. Associative learning contributes to the persistence of fatigue-like behavior in male mice in a model of cancer survivorship. Brain Behav Immun 2023; 107:296-304. [PMID: 36323360 PMCID: PMC10208403 DOI: 10.1016/j.bbi.2022.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Persistent fatigue is a debilitating side effect that impacts a significant proportion of cancer survivors for which there is not yet an FDA-approved treatment. While certainly a multi-factorial problem, persistent fatigue could be due, in part, to associations learned during treatment. Therefore, we sought to investigate the role of associative learning in the persistence of fatigue using a preclinical model of cancer survivorship. For this purpose, we used a murine model of human papilloma virus-related head and neck cancer paired with a curative regimen of cisplatin-based chemoradiation in male C57BL/6J mice. Fatigue-like behavior was assessed by measuring variations in voluntary wheel running using a longitudinal design. Treatment robustly decreased voluntary wheel running, and this effect persisted for more than a month posttreatment. However, when wheels were removed during treatment, to minimize treatment-related fatigue, mice showed a more rapid return to baseline running levels. We confirmed that the delayed recovery observed in mice with continual wheel access was not due to increased treatment-related toxicity, in fact running attenuated cisplatin-induced kidney toxicity. Finally, we demonstrated that re-exposure to a treatment-related olfactory cue acutely re-instated fatigue. These data provide the first demonstration that associative processes can modulate the persistence of cancer-related fatigue-like behavior.
Collapse
Affiliation(s)
- Elisabeth G Vichaya
- Department of Psychology & Neuroscience, Baylor University, Waco, TX 76798, USA.
| | - Josephine K Darpolor
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Phillip S Gross
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jessica M Molkentine
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel W Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Paola D Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - John H Lee
- Avera Cancer Institute, 1000 E 23(rd) St., Sioux Falls, SD 57105, USA
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Hetze S, Barthel L, Lückemann L, Günther HS, Wülfing C, Salem Y, Jakobs M, Hörbelt-Grünheidt T, Petschulat J, Bendix I, Weber-Stadlbauer U, Sure U, Schedlowski M, Hadamitzky M. Taste-immune associative learning amplifies immunopharmacological effects and attenuates disease progression in a rat glioblastoma model. Brain Behav Immun 2022; 106:270-279. [PMID: 36115545 DOI: 10.1016/j.bbi.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR)-signaling is one key driver of glioblastoma (GBM), facilitating tumor growth by promoting the shift to an anti-inflammatory, pro-cancerogenic microenvironment. Even though mTOR inhibitors such as rapamycin (RAPA) have been shown to interfere with GBM disease progression, frequently chaperoned toxic drug side effects urge the need for developing alternative or supportive treatment strategies. Importantly, previous work document that taste-immune associative learning with RAPA may be utilized to induce learned pharmacological placebo responses in the immune system. Against this background, the current study aimed at investigating the potential efficacy of a taste-immune associative learning protocol with RAPA in a syngeneic GBM rat model. Following repeated pairings of a novel gustatory stimulus with injections of RAPA, learned immune-pharmacological effects could be retrieved in GBM-bearing animals when re-exposed to the gustatory stimulus together with administering 10 % amount of the initial drug dose (0.5 mg/kg). These inhibitory effects on tumor growth were accompanied by an up-regulation of central and peripheral pro-inflammatory markers, suggesting that taste-immune associative learning with RAPA promoted the development of a pro-inflammatory anti-tumor microenvironment that attenuated GBM tumor growth to an almost identical outcome as obtained after 100 % (5 mg/kg) RAPA treatment. Together, our results confirm the applicability of taste-immune associative learning with RAPA in animal disease models where mTOR overactivation is one key driver. This proof-of-concept study may also be taken as a role model for implementing learning protocols as alternative or supportive treatment strategy in clinical settings, allowing the reduction of required drug doses and side effects without losing treatment efficacy.
Collapse
Affiliation(s)
- Susann Hetze
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Germany; Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany.
| | - Lennart Barthel
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Germany; Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Hauke S Günther
- Group for Interdisciplinary Neurobiology and Immunology (INI)-RESEARCH, University of Hamburg, Germany
| | - Clemens Wülfing
- Group for Interdisciplinary Neurobiology and Immunology (INI)-RESEARCH, University of Hamburg, Germany
| | - Yasmin Salem
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Marie Jakobs
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Tina Hörbelt-Grünheidt
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Jasmin Petschulat
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I/ Experimental Perinatal Neurosciences, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany; Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany.
| |
Collapse
|
8
|
Leisengang S, Schedlowski M, Hadamitzky M, Lückemann L. Taste-Associative Learning in Rats: Conditioned Immunosuppression with Cyclosporine A to Study the Neuro-Immune Network. Curr Protoc 2022; 2:e573. [PMID: 36219717 PMCID: PMC11648820 DOI: 10.1002/cpz1.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The pharmacological effects of an immunosuppressive drug, such as cyclosporine A (CsA), can be learned and retrieved by humans and animals when applying associative learning paradigms. This principle is based on Pavlovian conditioning, in which repeated presentation of an "unconditioned stimulus" (US; here, the drug CsA) is paired with exposure to a "conditioned stimulus" (CS; here, the novel taste of saccharin). Re-exposure to the CS at a later time leads to an avoidance behavior. Concomitantly, using this paradigm, animals exposed to the CS (saccharin) display immunosuppression, reflected by reduced splenic T-cell proliferation and diminished interleukin-2 and interferon-γ expression and release in ex vivo cultured splenocytes, mimicking the pharmacological effects of the US (CsA). Notably, this paradigm of taste-immune associative learning demonstrates the impressive abilities of the brain to detect and store information about an organism's immunological status and to retrieve this information, thereby modulating immunological functions via endogenous pathways. Moreover, conditioned pharmacological effects, obtained by means of associative learning, have been successfully implemented as controlled drug-dose reduction strategies as a supportive treatment option to optimize pharmacological treatment effects for patients' benefit. However, our knowledge about the underlying neurobiological and immunological mechanisms mediating such learned immunomodulatory effects is still limited. A reliable animal model of taste-immune associative learning can provide novel insights into peripheral and central nervous processes. In this article, we describe protocols that focus on the basic taste-immune associative learning paradigm with CsA and saccharin in rats, where conditioned peripheral immunosuppression is determined in ex vivo cultured splenocytes. The behavioral protocol is reliable and adaptable and may pave the road for future studies using taste-immune associative learning paradigms to gain deeper insight into brain-to-immune-system communication. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Taste-immune associative learning with cyclosporine A Basic Protocol 2: Splenocyte isolation and cultivation to study stimulation-induced cytokine production.
Collapse
Affiliation(s)
- Stephan Leisengang
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
- Department of Clinical Neuroscience, Osher Center for Integrative MedicineKarolinska InstitutetStockholmSweden
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro‐ and Behavioral Sciences (C‐TNBS), University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| |
Collapse
|