1
|
Park S, Kim JE, Lee J, Kim W, Choi W, Lee MC, Lim JW, Jang KJ, Seonwoo H, Kim J, Chung JH. Bioimplant-on-a-Chip for Facile Investigation of Periodontal Ligament Formation on Biogenic Hydroxyapatite/Ti 6Al 4 V Implants. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40359253 DOI: 10.1021/acsami.5c04687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Highly osseointegrative dental implants surrounded by reconstructed periodontal tissues represent a promising strategy for functional tooth replacement, as they mimic the structural and physiological characteristics of natural teeth. However, there is currently a lack of in vitro platforms that can effectively evaluate the integration of engineered periodontal ligament (PDL) tissues with bioimplants. In this study, we developed a bioimplant-on-a-chip (BoC) platform designed to recapitulate the native PDL-cementum interface and assess the early stage biological performance of bioimplants in vitro. The BoC consists of a dental implant, a calcium phosphate cement (CPC) insert, a nanopatterned polydimethylsiloxane (PDMS) substrate, and PDL-like tissue derived from human dental pulp stem cells (DPSCs). To establish viable culture conditions within the platform, surface coatings and cell seeding densities were optimized to support the formation of PDL-like tissue. Nanogrooved substrates were incorporated to guide cellular alignment, which was assessed through orientation analysis. Collagen fiber organization and matrix deposition were further examined as indicators of ligamentous tissue maturation. Cementogenic activity was evaluated by immunofluorescent staining of cementum protein-1 (CEMP-1) in response to varying biogenic hydroxyapatite (bHA) contents in the bioimplants. The results demonstrated successful reproduction of a PDL-like tissue interface and material-dependent differences in CEMP-1 expression. This platform provides a modular and reproducible tool for the comparative evaluation of bioimplants in a physiologically relevant setting and may be useful in advancing regenerative strategies in dental implantology.
Collapse
Affiliation(s)
- Sangbae Park
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Eun Kim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Juo Lee
- Department of Convergent Biosystems Engineering, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woobin Choi
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Myung Chul Lee
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jae Woon Lim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hoon Seonwoo
- Department of Convergent Biosystems Engineering, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju 61008, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
- ELBIO Inc, Seoul 08812, Republic of Korea
| |
Collapse
|
2
|
Mendes M, Morais AS, Carlos A, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-chip: Quo vademus? Applications and regulatory status. Colloids Surf B Biointerfaces 2025; 249:114507. [PMID: 39826309 DOI: 10.1016/j.colsurfb.2025.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process. Moreover, these systems can be tailored to mimic specific disease states, facilitating the investigation of disease progression, drug responses, and potential therapeutic interventions. In particular, they can demonstrate, in early-phase pre-clinical studies, the safety and toxicity profiles of potential therapeutic compounds. Furthermore, they play a pivotal role in the in vitro evaluation of drug efficacy and the modeling of human diseases. One of the most promising prospects of organ-on-a-chip technology is to simulate the pathophysiology of specific subpopulations and even individual patients, thereby being used in personalized medicine. By mimicking the physiological responses of diverse patient groups, these systems hold the promise of revolutionizing therapeutic strategies, guiding them towards tailored intervention to the unique needs of each patient. This review presents the development status and evolution of microfluidic platforms that have facilitated the transition from cells to organs recreated on chips and some of the opportunities and applications offered by organ-on-a-chip technology. Additionally, the current potential and future perspectives of these microphysiological systems and the challenges this technology still faces are discussed.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Carlos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal.
| |
Collapse
|
3
|
Barros NR, Kang R, Kim J, Ermis M, Kim HJ, Dokmeci MR, Lee J. A human skin-on-a-chip platform for microneedling-driven skin cancer treatment. Mater Today Bio 2025; 30:101399. [PMID: 39802827 PMCID: PMC11721494 DOI: 10.1016/j.mtbio.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Skin-on-a-chip models provide physiologically relevant platforms for studying diseases and drug evaluation, replicating the native skin structures and functions more accurately than traditional 2D or simple 3D cultures. However, challenges remain in creating models suitable for microneedling applications and monitoring, as well as developing skin cancer models for analysis and targeted therapy. Here, we developed a human skin/skin cancer-on-a-chip platform within a microfluidic device using bioprinting/bioengineering techniques. The fabricated skin models include vascular, dermal, and epidermal layers, demonstrating increased functionalities and maturation of dermal (Collagen I & Fibronectin for 7 days) as well as epidermal (Filaggrin & Keratin 10, 14, and 19 at the air-liquid interface (ALI) for 21 days) layers. Histological analysis confirmed the formation of a differentiated epidermis and ridges at the dermal-epidermal junction in our model, closely resembling native skin tissue. Melanoma cells were embedded approximately 400 μm beneath the epidermis to simulate tumor invasion into the dermis. The platform was further used to test doxorubicin (DOX)-loaded gelatin methacryloyl (GelMA) microneedles (MNs) for localized transdermal drug delivery targeting melanoma. The DOX-loaded MNs penetrated uniformly to a depth of approximately 600 μm, effectively reaching the melanoma cells. Drug delivery via MNs demonstrated significantly higher efficiency than diffusion through media flow, confirming the practicality and robustness of the proposed model for future therapeutic applications.
Collapse
Affiliation(s)
- Natan R. Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, 13083-100, Brazil
| | - Raehui Kang
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Mehmet R. Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon, 21983, Republic of Korea
| |
Collapse
|
4
|
Man Y, Liu Y, Chen Q, Zhang Z, Li M, Xu L, Tan Y, Liu Z. Organoids-On-a-Chip for Personalized Precision Medicine. Adv Healthc Mater 2024:e2401843. [PMID: 39397335 DOI: 10.1002/adhm.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/25/2024] [Indexed: 10/15/2024]
Abstract
The development of personalized precision medicine has become a pivotal focus in modern healthcare. Organoids-on-a-Chip (OoCs), a groundbreaking fusion of organoid culture and microfluidic chip technology, has emerged as a promising approach to advancing patient-specific treatment strategies. In this review, the diverse applications of OoCs are explored, particularly their pivotal role in personalized precision medicine, and their potential as a cutting-edge technology is highlighted. By utilizing patient-derived organoids, OoCs offer a pathway to optimize treatments, create precise disease models, investigate disease mechanisms, conduct drug screenings, and individualize therapeutic strategies. The emphasis is on the significance of this technological fusion in revolutionizing healthcare and improving patient outcomes. Furthermore, the transformative potential of personalized precision medicine, future prospects, and ongoing advancements in the field, with a focus on genomic medicine, multi-omics integration, and ethical frameworks are discussed. The convergence of these innovations can empower patients, redefine treatment approaches, and shape the future of healthcare.
Collapse
Affiliation(s)
- Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
5
|
Cho SW, Malick H, Kim SJ, Grattoni A. Advances in Skin-on-a-Chip Technologies for Dermatological Disease Modeling. J Invest Dermatol 2024; 144:1707-1715. [PMID: 38493383 DOI: 10.1016/j.jid.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/18/2024]
Abstract
Skin-on-a-chip (SoC) technologies are emerging as a paradigm shift in dermatology research by replicating human physiology in a dynamic manner not achievable by current animal models. Although animal models have contributed to successful clinical trials, their ability to predict human outcomes remains questionable, owing to inherent differences in skin anatomy and immune response. Covering areas including infectious diseases, autoimmune skin conditions, wound healing, drug toxicity, aging, and antiaging, SoC aims to circumvent the inherent disparities created by traditional models. In this paper, we review current SoC technologies, highlighting their potential as an alternative to animal models for a deeper understanding of complex skin conditions.
Collapse
Affiliation(s)
- Seo Won Cho
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA; Texas A&M University School of Medicine, College Station, Texas, USA
| | - Hamza Malick
- Texas A&M University School of Medicine, College Station, Texas, USA
| | - Soo Jung Kim
- Department of Dermatology, Baylor College of Medicine, Houston, Texas, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA; Department of Surgery, Houston Methodist Hospital, Houston, Texas, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas, USA.
| |
Collapse
|