1
|
Hu J, Wang Z, Xu H, Wang Z, Li N, Feng R, Yin J, Liu F, Wang B. Transcriptomic analysis of wild Cannabis sativa: insights into tissue- and stage-specific expression and secondary metabolic regulation. BMC Genomics 2025; 26:528. [PMID: 40419957 PMCID: PMC12105235 DOI: 10.1186/s12864-025-11697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Cannabis sativa is a medicinally and economically significant plant known for its production of cannabinoids, terpenoids, and other secondary metabolites. This study presents a transcriptomic analysis to elucidate tissue-specific expression and regulatory mechanisms across leaves, stems, and roots. A total of 2,530 differentially expressed genes (DEGs) were identified, with key genes such as terpene synthase (TPS) and phenylalanine ammonia-lyase (PAL) exhibiting elevated expression in leaf tissues, emphasizing their roles in terpenoid and phenylpropanoid biosynthesis. Alternative splicing (AS) analysis revealed 8,729 distinct events, dominated by exon skipping, contributing to transcriptomic diversity. Long non-coding RNA (lncRNA) prediction identified 3,245 candidates, many of which displayed tissue-specific expression patterns and co-expression with metabolic genes, suggesting regulatory roles in secondary metabolism. Additionally, 12,314 SNPs and 2,786 INDELs were detected, with notable enrichment in genes associated with secondary metabolite biosynthesis, particularly in leaf tissues. These findings advance the understanding of molecular mechanisms governing secondary metabolism and genetic diversity in C. sativa, providing valuable insights for future metabolic engineering and breeding strategies to enhance cannabinoid production.
Collapse
Affiliation(s)
- Jinyuan Hu
- School of Basic Medicine, Shenyang Key Laboratory for Phenomics, Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness (LPKL-PHESCI), Shenyang Medical College, Shenyang, 110034, China
| | - Zishi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - He Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ning Li
- School of Basic Medicine, Shenyang Key Laboratory for Phenomics, Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness (LPKL-PHESCI), Shenyang Medical College, Shenyang, 110034, China
| | - Rui Feng
- School of Basic Medicine, Shenyang Key Laboratory for Phenomics, Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness (LPKL-PHESCI), Shenyang Medical College, Shenyang, 110034, China
| | - Jianyu Yin
- School of Basic Medicine, Shenyang Key Laboratory for Phenomics, Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness (LPKL-PHESCI), Shenyang Medical College, Shenyang, 110034, China
| | - Fangru Liu
- School of Basic Medicine, Shenyang Key Laboratory for Phenomics, Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness (LPKL-PHESCI), Shenyang Medical College, Shenyang, 110034, China
| | - Baishi Wang
- School of Basic Medicine, Shenyang Key Laboratory for Phenomics, Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness (LPKL-PHESCI), Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
2
|
Kell DB, Pretorius E, Zhao H. A Direct Relationship Between 'Blood Stasis' and Fibrinaloid Microclots in Chronic, Inflammatory, and Vascular Diseases, and Some Traditional Natural Products Approaches to Treatment. Pharmaceuticals (Basel) 2025; 18:712. [PMID: 40430532 PMCID: PMC12114700 DOI: 10.3390/ph18050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
'Blood stasis' (syndrome) (BSS) is a fundamental concept in Traditional Chinese Medicine (TCM), where it is known as Xue Yu (). Similar concepts exist in Traditional Korean Medicine ('Eohyul') and in Japanese Kampo medicine (Oketsu). Blood stasis is considered to underpin a large variety of inflammatory diseases, though an exact equivalent in Western systems medicine is yet to be described. Some time ago we discovered that blood can clot into an anomalous amyloid form, creating what we have referred to as fibrinaloid microclots. These microclots occur in a great many chronic, inflammatory diseases are comparatively resistant to fibrinolysis, and thus have the ability to block microcapillaries and hence lower oxygen transfer to tissues, with multiple pathological consequences. We here develop the idea that it is precisely the fibrinaloid microclots that relate to, and are largely mechanistically responsible for, the traditional concept of blood stasis (a term also used by Virchow). First, the diseases known to be associated with microclots are all associated with blood stasis. Secondly, by blocking red blood cell transport, fibrinaloid microclots provide a simple mechanistic explanation for the physical slowing down ('stasis') of blood flow. Thirdly, Chinese herbal medicine formulae proposed to treat these diseases, especially Xue Fu Zhu Yu and its derivatives, are known mechanistically to be anticoagulatory and anti-inflammatory, consistent with the idea that they are actually helping to lower the levels of fibrinaloid microclots, plausibly in part by blocking catalysis of the polymerization of fibrinogen into an amyloid form. We rehearse some of the known actions of the constituent herbs of Xue Fu Zhu Yu and specific bioactive molecules that they contain. Consequently, such herbal formulations (and some of their components), which are comparatively little known to Western science and medicine, would seem to offer the opportunity to provide novel, safe, and useful treatments for chronic inflammatory diseases that display fibrinaloid microclots, including Myalgic Encephalopathy/Chronic Fatigue Syndrome, long COVID, and even ischemic stroke.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 200, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 200, 2800 Kongens Lyngby, Denmark
| | - Huihui Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100026, China;
- Institute of Ethnic Medicine and Pharmacy, Beijing University of Chinese Medicine, Beijing 100026, China
| |
Collapse
|
3
|
Wu F, Ma Q, Tian G, Chen K, Yang R, Shen J. Formulation and Evaluation of Solid Self-Nanoemulsifying Drug Delivery System of Cannabidiol for Enhanced Solubility and Bioavailability. Pharmaceutics 2025; 17:340. [PMID: 40143004 PMCID: PMC11944824 DOI: 10.3390/pharmaceutics17030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: This study aims to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) to enhance the solubility and oral bioavailability of cannabidiol (CBD). Methods: According to the solubility of CBD and pseudo-ternary phase diagrams of the different ingredients, an oil (medium-chain triglyceride, MCT), mixed surfactants (Labrasol, Tween 80), and a co-surfactant (Transcutol) were selected for the SNEDDS. CBD-loaded SNEDDS formulations were prepared and characterized. The optimal SNEDDS was converted into solid SNEDDS powders via solid carrier adsorption and spray drying techniques. Various evaluations including flowability, drug release, self-emulsifying capacity, X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), morphology, and pharmacokinetic characteristics were conducted. Subsequently, the solid powders with fillers, disintegrants, and lubricants were added to the capsules for accelerated stability testing. Results: The investigations showed that the two S-SNEDDS formulations improved the CBD's solubility and in vitro drug release, with good storage stability. The pharmacokinetic data of Sprague Dawley rats indicated that a single oral dose of L-SNEDDS and spray drying SNEDDS led to a quicker absorption and a higher Cmax of CBD compared to the two oil-based controls (CBD-sesame oil (similar to Epidiolex®) and CBD-MCT), which is favorable for the application of CBD products. Conclusions: SNEDDS is a prospective strategy for enhancing the solubility and oral bioavailability of CBD, and solid SNEDDS offers flexibility for developing more CBD-loaded solid formulations. Moreover, SNEDDS provides new concepts and methods for other poorly water-soluble drugs.
Collapse
Affiliation(s)
- Fengying Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (F.W.); (K.C.)
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Vigonvita Life Sciences Co., Ltd., Suzhou 215125, China; (Q.M.); (G.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Ma
- Vigonvita Life Sciences Co., Ltd., Suzhou 215125, China; (Q.M.); (G.T.)
| | - Guanghui Tian
- Vigonvita Life Sciences Co., Ltd., Suzhou 215125, China; (Q.M.); (G.T.)
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (F.W.); (K.C.)
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rulei Yang
- Vigonvita Life Sciences Co., Ltd., Suzhou 215125, China; (Q.M.); (G.T.)
| | - Jingshan Shen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (F.W.); (K.C.)
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|