1
|
Zheng Y, Huo J, Yang M, Zhang G, Wan S, Chen X, Zhang B, Liu H. ERK1/2 Signalling Pathway Regulates Tubulin-Binding Cofactor B Expression and Affects Astrocyte Process Formation after Acute Foetal Alcohol Exposure. Brain Sci 2022; 12:brainsci12070813. [PMID: 35884621 PMCID: PMC9312805 DOI: 10.3390/brainsci12070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Foetal alcohol spectrum disorders (FASDs) are a spectrum of neurological disorders whose neurological symptoms, besides the neuronal damage caused by alcohol, may also be associated with neuroglial damage. Tubulin-binding cofactor B (TBCB) may be involved in the pathogenesis of FASD. To understand the mechanism and provide new insights into the pathogenesis of FASD, acute foetal alcohol exposure model on astrocytes was established and the interference experiments were carried out. First, after alcohol exposure, the nascent astrocyte processes were reduced or lost, accompanied by the absence of TBCB expression and the disruption of microtubules (MTs) in processes. Subsequently, TBCB was silenced with siRNA. It was severely reduced or lost in nascent astrocyte processes, with a dramatic reduction in astrocyte processes, indicating that TBCB plays a vital role in astrocyte process formation. Finally, the regulating mechanism was studied and it was found that the extracellular signal-regulated protease 1/2 (ERK1/2) signalling pathway was one of the main pathways regulating TBCB expression in astrocytes after alcohol injury. In summary, after acute foetal alcohol exposure, the decreased TBCB in nascent astrocyte processes, regulated by the ERK1/2 signalling pathway, was the main factor leading to the disorder of astrocyte process formation, which could contribute to the neurological symptoms of FASD.
Collapse
Affiliation(s)
- Yin Zheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
- Correspondence: (Y.Z.); (J.H.)
| | - Jiechao Huo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
- Correspondence: (Y.Z.); (J.H.)
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Gaoli Zhang
- Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400063, China;
| | - Shanshan Wan
- Department of Blood Transfusion, Sichuan Cancer Hospital & Institute, Chengdu 610044, China;
| | - Xiaoqiao Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Bingqiu Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| |
Collapse
|
2
|
Abstract
Actin is a highly conserved protein in mammals. The actin dynamics is regulated by actin-binding proteins and actin-related proteins. Nuclear actin and these regulatory proteins participate in multiple nuclear processes, including chromosome architecture organization, chromatin remodeling, transcription machinery regulation, and DNA repair. It is well known that the dysfunctions of these processes contribute to the development of cancer. Moreover, emerging evidence has shown that the deregulated actin dynamics is also related to cancer. This chapter discusses how the deregulation of nuclear actin dynamics contributes to tumorigenesis via such various nuclear events.
Collapse
Affiliation(s)
- Yuanjian Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and Health Science Center, Houston, TX, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Kar N, Gupta D, Bellare J. Ethanol affects fibroblast behavior differentially at low and high doses: A comprehensive, dose-response evaluation. Toxicol Rep 2021; 8:1054-1066. [PMID: 34307054 PMCID: PMC8296147 DOI: 10.1016/j.toxrep.2021.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Ethanol exhibits hormetic response in terms of cellular activity. 1 % (v/v) ethanol concentration demarcates non-toxic and toxic range. Different types of mitochondrial impairment identified at high dose. Cellular toxicity is accompanied by an increase in cellular stiffness. Dose-dependent cellular stress response to toxicity is observed.
This study aims to develop a comprehensive understanding of effects of low and high doses of ethanol on cellular biochemistry and morphology. Here, fibroblast cells are exposed to ethanol of varied concentrations [0.005−10 % (v/v)] to investigate cellular activity, cytoskeletal organization, cellular stiffness, mitochondrial structure, and real-time behavior. Our results indicate a sharp difference in cellular behavior above and below 1 % ethanol concentration. A two-fold increase in MTT activity at low doses is observed, whereas at high doses it decreases. This increased activity at low doses does not involve cell proliferation changes or mitochondrial impairment, as seen at higher doses. Moreover, the study identifies different types of mitochondrial structure impairment at high doses. Morphologically, cells demonstrate a gradual change in cytoskeletal organization and an increase in cell stiffness with increase in doses. Cells exhibit adaptation to sub-toxic doses of ethanol, wherein recovery from ethanol-induced stress is a dose-dependent phenomenon. Cell survival at low doses and toxicity at higher doses are attributed to mild and strong oxidative stress, respectively. Overall, the study provides a comprehensive understanding of dose-dependent effects of ethanol, manifesting its biphasic or hormetic response, biochemically, at low doses and illustrating its toxicological effects at higher doses.
Collapse
Affiliation(s)
- Neelakshi Kar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Deepak Gupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.,Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
4
|
Anti-intoxication and protective effects of a recombinant serine protease inhibitor from Lentinula edodes against acute alcohol-induced liver injury in mice. Appl Microbiol Biotechnol 2020; 104:4985-4993. [PMID: 32306051 DOI: 10.1007/s00253-020-10617-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
Serine protease inhibitors (serpins) are involved in inflammation, coagulation, fibrinolysis, tumor suppression, molecular chaperone, chromatin densification, and hormone transport. However, their anti-intoxication activity has not been determined. Here, we heterologously expressed the serpin gene from Lentinula edodes in Escherichia coli and purified the recombinant serpin protein from L. edodes (rLeSPI). Then, we administered alcohol and active protein or Haiwangjinzun as a positive control to mice via gavage to evaluate the anti-intoxication activities of rLeSPI in vivo. We also investigated the protective effects of rLeSPI on acute alcohol-induced liver injury in mice by physiological and biochemical assays. The assay results for the anti-intoxication activity revealed that pretreating mice with 5 mg/kg rLeSPI for 0.5 h before gavage with Erguotou liquor (56%V EtOH, 0.15 ml/10 g) significantly prolonged the tolerance time and shortened the intoxication time relative to the results of the control group, thereby proving its anti-intoxication activities. The biochemical analysis showed that rLeSPI improved glutathione peroxidase activity, which was evidently reduced by ethanol. Additionally, rLeSPI significantly improved the activity of aldehyde dehydrogenase, which is important in alcohol metabolism, and reduced the intracellular malondialdehyde content, aspartate amino transferase, and alanine amino transferase activity. We concluded that LeSPI displayed anti-intoxication activity and exerted protective effects against acute alcohol-induced liver injury, providing new insight into the prevention of alcoholism and alcohol-related diseases.Key Points• Anti-intoxication activity of a recombinant serpin protein rLeSPI was assessed.• LeSPI displayed anti-intoxication activity in mice.• LeSPI exerted protective effects against acute alcohol-induced liver injury in mice.
Collapse
|
5
|
Steadman Tyler CR, Sanders CK, Erickson RS, Dale T, Twary SN, Marrone BL. Functional and phenotypic flow cytometry characterization of Picochlorum soloecismus. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Marrero HG, Treistman SN, Lemos JR. Ethanol Effect on BK Channels is Modulated by Magnesium. Alcohol Clin Exp Res 2016; 39:1671-9. [PMID: 26331878 DOI: 10.1111/acer.12821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/17/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcoholics have been reported to have reduced levels of magnesium in both their extracellular and intracellular compartments. Calcium-dependent potassium channels (BK) are known to be one of ethanol (EtOH)'s better known molecular targets. METHODS Using outside-out patches from hippocampal neuronal cultures, we examined the consequences of altered intracellular Mg(2+) on the effects that EtOH has on BK channels. RESULTS We find that the effect of EtOH is bimodally influenced by the Mg(2+) concentration on the cytoplasmic side. More specifically, when internal Mg(2+) concentrations are ≤200 μM, EtOH decreases BK activity, whereas it increases activity when Mg(2+) is at 1 mM. Similar results are obtained when using patches from HEK cells expressing only the α-subunit of BK. When patches are made with the actin destabilizer cytochalasin D present on the cytoplasmic side, the potentiation caused by EtOH becomes independent of the Mg(2+) concentration. Furthermore, in the presence of the actin stabilizer phalloidin, EtOH causes inhibition even at Mg(2+) concentrations of 1 mM. CONCLUSIONS Internal Mg(2+) can modulate the EtOH effects on BK channels only when there is an intact, internal actin interaction with the channel, as is found at synapses. We propose that the EtOH-induced decrease in cytoplasmic Mg(2+) observed in frequent/chronic drinkers would decrease EtOH's actions on synaptic (e.g., actin-bound) BK channels, producing a form of molecular tolerance.
Collapse
Affiliation(s)
| | | | - José R Lemos
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
7
|
Johnson JR, Rajamanoharan D, McCue HV, Rankin K, Barclay JW. Small Heat Shock Proteins Are Novel Common Determinants of Alcohol and Nicotine Sensitivity in Caenorhabditis elegans. Genetics 2016; 202:1013-27. [PMID: 26773049 PMCID: PMC4788107 DOI: 10.1534/genetics.115.185025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/11/2016] [Indexed: 12/26/2022] Open
Abstract
Addiction to drugs is strongly determined by multiple genetic factors. Alcohol and nicotine produce distinct pharmacological effects within the nervous system through discrete molecular targets; yet, data from family and twin analyses support the existence of common genetic factors for addiction in general. The mechanisms underlying addiction, however, are poorly described and common genetic factors for alcohol and nicotine remain unidentified. We investigated the role that the heat shock transcription factor, HSF-1, and its downstream effectors played as common genetic modulators of sensitivity to addictive substances. Using Caenorhabditis elegans, an exemplary model organism with substance dose-dependent responses similar to mammals, we demonstrate that HSF-1 altered sensitivity to both alcohol and nicotine. Using a combination of a targeted RNAi screen of downstream factors and transgenic approaches we identified that these effects were contingent upon the constitutive neuronal expression of HSP-16.48, a small heat shock protein (HSP) homolog of human α-crystallin. Furthermore we demonstrated that the function of HSP-16.48 in drug sensitivity surprisingly was independent of chaperone activity during the heat shock stress response. Instead we identified a distinct domain within the N-terminal region of the HSP-16.48 protein that specified its function in comparison to related small HSPs. Our findings establish and characterize a novel genetic determinant underlying sensitivity to diverse addictive substances.
Collapse
Affiliation(s)
- James R Johnson
- The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Dayani Rajamanoharan
- The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Hannah V McCue
- The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Kim Rankin
- The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Jeff W Barclay
- The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
8
|
Reis KP, Heimfarth L, Pierozan P, Ferreira F, Loureiro SO, Fernandes CG, Carvalho RV, Pessoa-Pureur R. High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation. Alcohol 2015; 49:665-74. [PMID: 26314629 DOI: 10.1016/j.alcohol.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
Abstract
Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity.
Collapse
Affiliation(s)
- Karina Pires Reis
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Luana Heimfarth
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Rônan Vivian Carvalho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Jilek JL, Sant KE, Cho KH, Reed MS, Pohl J, Hansen JM, Harris C. Ethanol Attenuates Histiotrophic Nutrition Pathways and Alters the Intracellular Redox Environment and Thiol Proteome during Rat Organogenesis. Toxicol Sci 2015; 147:475-89. [PMID: 26185205 DOI: 10.1093/toxsci/kfv145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ethanol (EtOH) is a reactive oxygen-generating teratogen involved in the etiology of structural and functional developmental defects. Embryonic nutrition, redox environment, and changes in the thiol proteome following EtOH exposures (1.56.0 mg/ml) were studied in rat whole embryo culture. Glutathione (GSH) and cysteine (Cys) concentrations with their respective intracellular redox potentials (Eh) were determined using high-performance liquid chromatography. EtOH reduced GSH and Cys concentrations in embryo (EMB) and visceral yolk sac (VYS) tissues, and also in yolk sac and amniotic fluids. These changes produced greater oxidation as indicated by increasingly positive Eh values. EtOH reduced histiotrophic nutrition pathway activities as measured by the clearance of fluorescin isothiocyanate (FITC)-albumin from culture media. A significant decrease in total FITC clearance was observed at all concentrations, reaching approximately 50% at the highest dose. EtOH-induced changes to the thiol proteome were measured in EMBs and VYSs using isotope-coded affinity tags. Decreased concentrations for specific proteins from cytoskeletal dynamics and endocytosis pathways (α-actinin, α-tubulin, cubilin, and actin-related protein 2); nuclear translocation (Ran and RanBP1); and maintenance of receptor-mediated endocytosis (cubilin) were observed. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis also identified a decrease in ribosomal proteins in both EMB and VYS. Results show that EtOH interferes with nutrient uptake to reduce availability of amino acids and micronutrients required by the conceptus. Intracellular antioxidants such as GSH and Cys are depleted following EtOH and Eh values increase. Thiol proteome analysis in the EMB and VYS show selectively altered actin/cytoskeleton, endocytosis, ribosome biogenesis and function, nuclear transport, and stress-related responses.
Collapse
Affiliation(s)
- Joseph L Jilek
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Karilyn E Sant
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine H Cho
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Matthew S Reed
- Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, Georgia 30333; and
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control, Atlanta, Georgia 30333; and
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah 84602
| | - Craig Harris
- *Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
10
|
Wang J, Zhang L, Zhang Y, Luo M, Wu Q, Yu L, Chu H. Transcriptional upregulation centra of HO-1 by EGB via the MAPKs/Nrf2 pathway in mouse C2C12 myoblasts. Toxicol In Vitro 2014; 29:380-8. [PMID: 25449124 DOI: 10.1016/j.tiv.2014.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/30/2014] [Accepted: 10/17/2014] [Indexed: 12/14/2022]
Abstract
Long-term abuse of alcohol results in chronic alcoholic myopathy which is associated with increased oxidative stress. Ginkgo biloba extract (EGB) is widely used as a therapeutic agent to treat certain cardiovascular and neurological disorders. Although EGB is known to possess antioxidant functions and potent cytoprotective effects, its protective mechanism on alcohol-induced oxidative damage in C2C12 myoblasts remains unclear. In this study, we investigated the cytoprotective mechanisms of EGB against alcohol-derived oxidative stress in mouse C2C12 myoblasts. Challenge with alcohol (100mM) caused an increase in intracellular reactive oxygen species in mouse C2C12 myoblasts, which was not alleviated by treatment with EGB. These results indicate that EGB does not seem to act as an ROS scavenger in this experimental model. Additionally, EGB produced activation of ERK and JNK [two major mitogen-activated protein kinases (MAPKs)], an increase in the nuclear level of nuclear factor erythroid-2-related factor 2 (Nrf2) and upregulation of heme oxygenase-1 (HO-1, a stress-responsive protein with antioxidant function). Pretreatment with inhibitors of MAPKs PD98059 (a specific inhibitor of ERK), SP600125 (a specific inhibitor of JNK) abolished both EGB-induced Nrf2 nuclear translocation and HO-1 up-regulation. We conclude that EGB confers cytoprotective effects from oxidative stress induced by alcohol in mouse C2C12 myoblasts depend on transcriptional upregulation of HO-1 by EGB via the MAPKs/Nrf2 pathway.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Neurology, Affiliated Dalian Central Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Li Zhang
- Central Laboratory, Affiliated Dalian Central Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Ying Zhang
- Department of Neurology, Affiliated Dalian Central Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Meiling Luo
- Department of Neurology, Affiliated Dalian Central Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Qiong Wu
- Department of Neurology, Affiliated Dalian Central Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Lijun Yu
- Department of Histology and Embryology, Colleges of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Haiying Chu
- Department of Histology and Embryology, Colleges of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| |
Collapse
|
11
|
Chen X, Cai F, Guo S, Ding F, He Y, Wu J, Liu C. Protective Effect of Flos Puerariae Extract Following Acute Alcohol Intoxication in Mice. Alcohol Clin Exp Res 2014; 38:1839-46. [DOI: 10.1111/acer.12437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/26/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Xiao Chen
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders; Hubei University of Science and Technology; Xianning China
| | - Fei Cai
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders; Hubei University of Science and Technology; Xianning China
| | - Shuang Guo
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders; Hubei University of Science and Technology; Xianning China
| | - Fang Ding
- Xianning Central Hospital; Xianning China
| | - Yi He
- Xianning Central Hospital; Xianning China
| | - Jiliang Wu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders; Hubei University of Science and Technology; Xianning China
| | - Chao Liu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders; Hubei University of Science and Technology; Xianning China
| |
Collapse
|
12
|
Tóth ME, Vígh L, Sántha M. Alcohol stress, membranes, and chaperones. Cell Stress Chaperones 2014; 19:299-309. [PMID: 24122554 PMCID: PMC3982023 DOI: 10.1007/s12192-013-0472-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Ethanol, which affects all body organs, exerts a number of cytotoxic effects, most of them independent of cell type. Ethanol treatment leads to increased membrane fluidity and to changes in membrane protein composition. It can also interact directly with membrane proteins, causing conformational changes and thereby influencing their function. The cytotoxic action may include an increased level of oxidative stress. Heat shock protein molecular chaperones are ubiquitously expressed evolutionarily conserved proteins which serve as critical regulators of cellular homeostasis. Heat shock proteins can be induced by various forms of stresses such as elevated temperature, alcohol treatment, or ischemia, and they are also upregulated in certain pathological conditions. As heat shock and ethanol stress provoke similar responses, it is likely that heat shock protein activation also has a role in the protection of membranes and other cellular components during alcohol stress.
Collapse
Affiliation(s)
- Melinda E. Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| |
Collapse
|
13
|
Pan TL, Wang PW, Hung YC, Huang CH, Rau KM. Proteomic analysis reveals tanshinone IIA enhances apoptosis of advanced cervix carcinoma CaSki cells through mitochondria intrinsic and endoplasmic reticulum stress pathways. Proteomics 2013; 13:3411-23. [PMID: 24167031 DOI: 10.1002/pmic.201300274] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 12/17/2022]
Abstract
Cervix cancer is the second most common cancer among women worldwide, whereas paclitaxel, the first line chemotherapeutic drug used to treat cervical cancer, shows low chemosensitivity on the advanced cervical cancer cell line. Tanshinone IIA (Tan IIA) exhibited strong growth inhibitory effect on CaSki cells (IC50 = 5.51 μM) through promoting caspase cascades with concomitant upregulating the phosphorylation of p38 and JNK signaling. Comprehensive proteomics revealed the global protein changes and the network analysis implied that Tan IIA treatment would activate ER stress pathways that finally lead to apoptotic cell death. Moreover, ER stress inhibitor could alleviate Tan IIA caused cell growth inhibition and ameliorate C/EBP-homologous protein as well as apoptosis signal-regulating kinase 1 mediated cell death. The therapeutic interventions targeting the mitochondrial-related apoptosis and ER stress responses might be promising strategies to conquer paclitaxel resistance.
Collapse
Affiliation(s)
- Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
14
|
Romero AM, Renau-Piqueras J, Pilar Marin M, Timoneda J, Berciano MT, Lafarga M, Esteban-Pretel G. Chronic alcohol alters dendritic spine development in neurons in primary culture. Neurotox Res 2013; 24:532-48. [PMID: 23820986 DOI: 10.1007/s12640-013-9409-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/07/2013] [Accepted: 06/21/2013] [Indexed: 12/24/2022]
Abstract
Dendritic spines are specialised membrane protrusions of neuronal dendrites that receive the majority of excitatory synaptic inputs. Abnormal changes in their density, size and morphology have been associated with various neurological and psychiatric disorders, including those deriving from drug addiction. Dendritic spine formation, morphology and synaptic functions are governed by the actin cytoskeleton. Previous in vivo studies have shown that ethanol alters the number and morphology of spines, although the mechanisms underlying these alterations remain unknown. It has also been described how chronic ethanol exposure affects the levels, assembly and cellular organisation of the actin cytoskeleton in hippocampal neurons in primary culture. Therefore, we hypothesised that the ethanol-induced alterations in the number and shape of dendritic spines are due to alterations in the mechanisms regulating actin cytoskeleton integrity. The results presented herein show that chronic exposure to moderate levels of alcohol (30 mM) during the first 2 weeks of culture reduces dendritic spine density and alters the proportion of the different morphologies of these structures in hippocampal neurons, which affects the formation of mature spines. Apparently, these effects are associated with an increase in the G-actin/F-actin ratio due to a reduction of the F-actin fraction, leading to changes in the levels of the different factors regulating the organisation of this cytoskeletal component. The data presented herein indicate that these effects occur between weeks 1 and 2 of culture, an important period in dendritic spines development. These changes may be related to the dysfunction in the memory and learning processes present in children prenatally exposed to ethanol.
Collapse
Affiliation(s)
- Ana M Romero
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario ''La Fe'', Avenida Campanar 21, 46009, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Loureiro SO, Heimfarth L, Scherer EB, da Cunha MJ, de Lima BO, Biasibetti H, Pessoa-Pureur R, Wyse AT. Cytoskeleton of cortical astrocytes as a target to proline through oxidative stress mechanisms. Exp Cell Res 2013; 319:89-104. [DOI: 10.1016/j.yexcr.2012.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/09/2012] [Accepted: 11/01/2012] [Indexed: 11/28/2022]
|
16
|
Sebag SC, Bastarache JA, Ware LB. Mechanical stretch inhibits lipopolysaccharide-induced keratinocyte-derived chemokine and tissue factor expression while increasing procoagulant activity in murine lung epithelial cells. J Biol Chem 2013; 288:7875-7884. [PMID: 23362270 DOI: 10.1074/jbc.m112.403220] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previous studies have shown that the innate immune stimulant LPS augments mechanical ventilation-induced pulmonary coagulation and inflammation. Whether these effects are mediated by alveolar epithelial cells is unclear. The alveolar epithelium is a key regulator of the innate immune reaction to pathogens and can modulate both intra-alveolar inflammation and coagulation through up-regulation of proinflammatory cytokines and tissue factor (TF), the principal initiator of the extrinsic coagulation pathway. We hypothesized that cyclic mechanical stretch (MS) potentiates LPS-mediated alveolar epithelial cell (MLE-12) expression of the chemokine keratinocyte-derived cytokine (KC) and TF. Contrary to our hypothesis, MS significantly decreased LPS-induced KC and TF mRNA and protein expression. Investigation into potential mechanisms showed that stretch significantly reduced LPS-induced surface expression of TLR4 that was not a result of increased degradation. Decreased cell surface TLR4 expression was concomitant with reduced LPS-mediated NF-κB activation. Immunofluorescence staining showed that cyclic MS markedly altered LPS-induced organization of actin filaments. In contrast to expression, MS significantly increased LPS-induced cell surface TF activity independent of calcium signaling. These findings suggest that cyclic MS of lung epithelial cells down-regulates LPS-mediated inflammatory and procoagulant expression by modulating actin organization and reducing cell surface TLR4 expression and signaling. However, because LPS-induced surface TF activity was enhanced by stretch, these data demonstrate differential pathways regulating TF expression and activity. Ultimately, loss of LPS responsiveness in the epithelium induced by MS could result in increased susceptibility of the lung to bacterial infections in the setting of mechanical ventilation.
Collapse
Affiliation(s)
- Sara C Sebag
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650.
| |
Collapse
|
17
|
Esteban-Pretel G, Marín MP, Romero AM, Timoneda J, Ponsoda X, Ballestín R, Renau-Piqueras J. Polyphosphoinositide metabolism and Golgi complex morphology in hippocampal neurons in primary culture is altered by chronic ethanol exposure. Alcohol Alcohol 2012; 48:15-27. [PMID: 23118092 DOI: 10.1093/alcalc/ags117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS Ethanol affects not only the cytoskeletal organization and activity, but also intracellular trafficking in neurons in the primary culture. Polyphosphoinositide (PPIn) are essential regulators of many important cell functions, including those mentioned, cytoskeleton integrity and intracellular vesicle trafficking. Since information about the effect of chronic ethanol exposure on PPIn metabolism in neurons is scarce, this study analysed the effect of this treatment on three of these phospholipids. METHODS Phosphatidylinositol (PtdIns) levels as well as the activity and/or levels of enzymes involved in their metabolism were analysed in neurons chronically exposed to ethanol. The levels of phospholipases C and D, and phosphatidylethanol formation were also assessed. The consequence of the possible alterations in the levels of PtdIns on the Golgi complex (GC) was also analysed. RESULTS We show that phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate levels, both involved in the control of intracellular trafficking and cytoskeleton organization, decrease in ethanol-exposed hippocampal neurons. In contrast, several kinases that participate in the metabolism of these phospholipids, and the level and/or activity of phospholipases C and D, increase in cells after ethanol exposure. Ethanol also promotes phosphatidylethanol formation in neurons, which can result in the suppression of phosphatidic acid synthesis and, therefore, in PPIn biosynthesis. This treatment also lowers the phosphatidylinositol 4-phosphate levels, the main PPIn in the GC, with alterations in their morphology and in the levels of some of the proteins involved in structure maintenance. CONCLUSIONS The deregulation of the metabolism of PtdIns may underlie the ethanol-induced alterations on different neuronal processes, including intracellular trafficking and cytoskeletal integrity.
Collapse
Affiliation(s)
- Guillermo Esteban-Pretel
- Corresponding author: Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario La Fe, Avda. Campanar 21, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
18
|
Heimfarth L, Reis KP, Loureiro SO, de Lima BO, da Rocha JBT, Pessoa-Pureur R. Exposure of young rats to diphenyl ditelluride during lactation affects the homeostasis of the cytoskeleton in neural cells from striatum and cerebellum. Neurotoxicology 2012; 33:1106-16. [DOI: 10.1016/j.neuro.2012.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
19
|
Loureiro SO, Heimfarth L, de Lima BO, Leite MC, Guerra MC, Gonçalves CA, Pessoa-Pureur R. Dual action of chronic ethanol treatment on LPS-induced response in C6 glioma cells. J Neuroimmunol 2012; 249:8-15. [DOI: 10.1016/j.jneuroim.2012.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 01/06/2023]
|
20
|
Guedes RCA, Abadie-Guedes R, Bezerra RDS. The use of cortical spreading depression for studying the brain actions of antioxidants. Nutr Neurosci 2012; 15:111-9. [PMID: 22583913 DOI: 10.1179/1476830511y.0000000024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We review the main adverse effects of reactive oxygen species (ROS) in the mammalian organism, introducing the reader on the worldwide problem of the ROS neurophysiological impact on the developing and the adult brain, and discussing the neuroprotective action of antioxidant molecules. METHODS We briefly present the electrophysiological phenomenon designated as 'cortical spreading depression' (CSD), as a parameter of normal brain functioning. We highlight recent electrophysiological advances obtained in experimental studies from our laboratory and from others, showing how to investigate the ROS effects on the brain by using the CSD phenomenon. RESULTS Under conditions such as aging, ROS production by photo-activation of dye molecules and ethanol consumption, we describe the effects, on CSD, of treating animals with (1) antioxidants and (2) with antioxidant-deficient diets. DISCUSSION The current understanding of how ROS affect brain electrophysiological activity and the possible interaction between these ROS effects and those effects of altered nutritional status of the organism are discussed.
Collapse
Affiliation(s)
- R C A Guedes
- Universidade Federal de Pernambuco, 50670901 Recife, PE, Brazil.
| | | | | |
Collapse
|
21
|
Kuo DY, Chen PN, Yang SF, Chu SC, Chen CH, Kuo MH, Yu CH, Hsieh YS. Role of reactive oxygen species-related enzymes in neuropeptide y and proopiomelanocortin-mediated appetite control: a study using atypical protein kinase C knockdown. Antioxid Redox Signal 2011; 15:2147-59. [PMID: 21453188 DOI: 10.1089/ars.2010.3738] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIMS Studies have reported that redox signaling in the hypothalamus participates in nutrient sensing. The current study aimed to determine if the activation of reactive oxygen species-related enzymes (ROS-RE) in the hypothalamus participates in regulating neuropeptide Y (NPY)-mediated eating. Moreover, possible roles of proopiomelanocortin (POMC) and atypical protein kinase C (aPKC) were also investigated. Rats were treated daily with phenylpropanolamine (PPA) for 4 days. Changes in the expression levels of ROS-RE, POMC, NPY, and aPKC were assessed and compared. RESULTS Results showed that ROS-RE, POMC, and aPKC increased, with a maximal response on Day 2 (anorectic effect) and with a restoration to the normal level on Day 4 (tolerant effect). By contrast, NPY expression decreased, and the expression pattern of NPY proved opposite those of ROS-RE and POMC. Central inhibition of ROS production by ICV infusion of ROS scavenger attenuated PPA anorexia, revealing a crucial role of ROS in regulating eating. Cerebral aPKC knockdown by ICV infusion of antisense aPKC modulated the expression of ROS-RE, POMC, and NPY. CONCLUSION Results suggest that ROS-RE/POMC- and NPY-containing neurons function reciprocally in regulating both the anorectic and tolerant effects of PPA, while aPKC is upstream of these regulators. INNOVATION These results may further the understanding of ROS-RE and aPKC in the control of PPA anorexia.
Collapse
Affiliation(s)
- Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|