1
|
Quincozes-Santos A, Bobermin LD, Tramontina AC, Wartchow KM, Da Silva VF, Gayger-Dias V, Thomaz NK, de Moraes ADM, Schauren D, Nardin P, Gottfried C, Souza DO, Gonçalves CA. Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway. Neurotox Res 2025; 43:7. [PMID: 39869271 DOI: 10.1007/s12640-025-00730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/21/2024] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases. Astrocytes are the glial cells that maintain brain homeostasis and can attenuate excitotoxicity by actively participating in glutamate neurotransmission. This study aimed to investigate the glioprotective effects of resveratrol against glutamate-induced cellular dysfunction in hippocampal slices and primary astrocyte cultures, with a focus on the role of heme-oxygenase 1 (HO-1). Glutamate impaired glutamate uptake activity through a glutamate receptor-dependent mechanism, in addition to altering other important astroglial parameters, including glutamine synthetase activity, glutathione levels and cystine uptake, which were normalized by resveratrol. Resveratrol also prevented glutamate-induced disruption in antioxidant defenses, as well as in trophic and inflammatory functions, including the nuclear factor κB (NFκB) transcriptional activity. Most of the effects of resveratrol, mainly in astrocytes, were dependent on the HO-1 signaling pathway, as they were abrogated when HO-1 was pharmacologically inhibited. Resveratrol also increased HO-1 mRNA expression and its transcriptional regulator, nuclear factor erythroid-derived 2-like 2 (Nrf2). Finally, resveratrol prevented glutamate-induced p21 senescence marker, indicating an anti-aging effect. Therefore, we demonstrated that the activation of the Nrf2/HO-1 system in astrocytes by resveratrol represents an astrocyte-targeted neuroprotective mechanism in neurodegeneration, with glutamate excitotoxicity, oxidative stress, and neuroinflammation as common neurochemical alterations.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| | - Ana Carolina Tramontina
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, São Francisco de Paula, RS, Brazil
| | - Krista Minéia Wartchow
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York City, NY, USA
| | - Vanessa-Fernanda Da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vitor Gayger-Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Daniel Moreira de Moraes
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniele Schauren
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Nardin
- Escola de Saúde, Universidade do Vale do Rio dos Sinos (Unisinos), São Leopoldo, RS, Brazil
| | - Carmem Gottfried
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Diogo Onofre Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
2
|
Franco FN, Peixoto BE, de Araújo GR, Chaves MM. Silencing of the Nrf2 pathway in aging promotes a decrease in the anti-inflammatory effect of resveratrol. Arch Gerontol Geriatr 2024; 129:105694. [PMID: 39541750 DOI: 10.1016/j.archger.2024.105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/21/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
During aging, in addition to increased oxidative stress, inflammation also occurs. A chronic and low-grade inflammation - called "inflammaging" - develops, which contributes to the etiology of diseases related to aging. Resveratrol (Resv.) is a polyphenol well known for its biologically active properties, such as antioxidant and anti-inflammatory properties. This balance can be regulated by Nrf2 - a transcription factor that regulates cellular defense against oxidative agents through the expression or inhibition of certain genes. The objective was to evaluate the effect of Nrf2 on the production of cytokines in leukocytes of different ages treated with resveratrol (5µm). The subjects were divided into three groups: 20-39, 40-59 and 60-80 years old. After separation of the leukocytes, a 24-hour treatment was carried out with and without ML385 inhibitor with the treatments: Control, Resv, Peroxide and Peroxide+Resv. 150 µM peroxide was set to develop an oxidative environment. Cytokines were measured by ELISA (*p < 0.05). In general, there was an increase in TNF and IL-6 in cells stimulated with peroxide compared to controls. A decrease in these two cytokines was also observed in cells treated with resveratrol, both at basal levels and in an oxidizing environment (with peroxide). The polyphenol was able to increase IL-10 only in the youngest age groups. The same profile was observed comparing the same groups when the Nrf2 pathway was inhibited with ML385. It is concluded that resveratrol may have a better effect on preventing oxidation and inflammation present in aging, especially through the antioxidant and anti-inflammatory Nrf2 pathway.
Collapse
Affiliation(s)
- Filipe Nogueira Franco
- Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 30161-970, Belo Horizonte MG Brazil
| | - Brenda Evangelista Peixoto
- Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 30161-970, Belo Horizonte MG Brazil
| | - Glaucy Rodrigues de Araújo
- Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 30161-970, Belo Horizonte MG Brazil
| | - Miriam Martins Chaves
- Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 30161-970, Belo Horizonte MG Brazil.
| |
Collapse
|
3
|
Liu Y, Fang M, Tu X, Mo X, Zhang L, Yang B, Wang F, Kim YB, Huang C, Chen L, Fan S. Dietary Polyphenols as Anti-Aging Agents: Targeting the Hallmarks of Aging. Nutrients 2024; 16:3305. [PMID: 39408272 PMCID: PMC11478989 DOI: 10.3390/nu16193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Aging is a natural biological process influenced by multiple factors and is a significant contributor to various chronic diseases. Slowing down the aging process and extending health span have been pursuits of the scientific field. Methods: Examination of the effects of dietary polyphenols on hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Results: Polyphenols, abundant in nature, exhibit numerous biological activities, including antioxidant effects, free radical scavenging, neuroprotection, and anti-aging properties. These compounds are generally safe and effective in potentially slowing aging and preventing age-related disorders. Conclusions: The review encourages the development of novel therapeutic strategies using dietary polyphenols to create holistic anti-aging therapies and nutritional supplements.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xiaohui Tu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xueying Mo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Lu Zhang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Binrui Yang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Feijie Wang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| |
Collapse
|
4
|
Gălbău CȘ, Badea M, Gaman LE. Do Young Consumers Care about Antioxidant Benefits and Resveratrol and Caffeic Acid Consumption? Nutrients 2024; 16:1439. [PMID: 38794677 PMCID: PMC11123920 DOI: 10.3390/nu16101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Resveratrol and caffeic acid are some of the most consumed antioxidants during the day, so their importance as sources and their benefits need to be evaluated and updated. This survey aimed not only to analyze whether young Romanian consumers are informed about the benefits of antioxidants in general, and resveratrol and caffeic acid in particular, but also to observe the degree of nutritional education of these participants. Young consumers know the concept of antioxidants relatively well; they managed to give examples of antioxidants and indicate their effects. The majority of those chosen drink wine and coffee, but many are unaware of their health advantages and antioxidant properties. Students are less familiar with the antioxidant chemicals resveratrol and caffeic acid. It is advised to have a thorough understanding of these significant antioxidants and their nutritional content as they are present in our regular diets, and further studies on different kinds of antioxidants are required to increase the awareness of people concerning their importance in daily life.
Collapse
Affiliation(s)
- Cristina Ștefania Gălbău
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Laura Elena Gaman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
5
|
Yadegar S, Mohammadi F, Yadegar A, Mohammadi Naeini A, Ayati A, Milan N, Tayebi A, Seyedi SA, Nabipoorashrafi SA, Rabizadeh S, Esteghamati A, Nakhjavani M. Effects and safety of resveratrol supplementation in older adults: A comprehensive systematic review. Phytother Res 2024; 38:2448-2461. [PMID: 38433010 DOI: 10.1002/ptr.8171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/28/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024]
Abstract
Resveratrol (RSV) has garnered significant attention in recent years due to its potential benefits against chronic diseases. However, its effects and safety in older adults have not been comprehensively studied. This study aimed to determine the effects and safety of RSV supplementation in older adults. MEDLINE/PubMed, Scopus, and Web of Science databases were comprehensively searched for eligible studies. Studies were enrolled if they were randomized clinical trials and had incorporated RSV supplementation for older adults. Two independent authors conducted the literature search, and eligibility was determined according to the PICOS framework. Study details, intervention specifics, and relevant outcomes were collected during the data collection. The Cochrane RoB-2 tool was used to evaluate the risk of bias. This review included 10 studies. The combination of RSV and exercise improved exercise adaptation and muscle function in healthy older adults and physical performance and mobility measures in individuals with functional limitations. RSV showed potential neuroprotective effects in patients with Alzheimer's disease. In overweight individuals, RSV demonstrated a positive impact on cognitive function, but it increased some biomarkers of cardiovascular disease risk at high doses. In older adults with diabetes and those with peripheral artery disease (PAD), RSV was not more effective than placebo. No study reported significant adverse events following RSV treatment. RSV can improve various health parameters in age-related health conditions. However, the optimal dosage, long-term effects, and potential interactions with medications still need to be investigated through well-designed RCTs.
Collapse
Affiliation(s)
- Sepideh Yadegar
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Yadegar
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi Naeini
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Ayati
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nesa Milan
- Center for Orthopedic Trans-disciplinary Applied Research (COTAR), Shariaty Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Tayebi
- Cardiovascular Research Center, Alborz University of Medical Sciences, Alborz, Iran
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Liu H, Xie R, Huang W, Yang Y, Zhou M, Lu B, Li B, Tan B, Dong X. Effects of Dietary Aflatoxin B1 on Hybrid Grouper ( Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) Growth, Intestinal Health, and Muscle Quality. AQUACULTURE NUTRITION 2024; 2024:3920254. [PMID: 38415272 PMCID: PMC10898949 DOI: 10.1155/2024/3920254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
This study investigated the effects of varying doses of dietary aflatoxin B1 (AFB1) on the growth, intestinal health, and muscle quality of hybrid grouper. Four diets with varying AFB1 concentrations (0, 30, 445, and 2,230 μg kg-1) were used. Elevating AFB1 concentrations led to a decline in growth indexes, specifically the weight gain rate and the specific growth rate, although the survival rate remained unchanged. Morphological indicators showed a dose-dependent decline with AFB1 exposure. Intestinal MDA content and hindgut reactive oxygen species (ROS) levels increased, while antioxidant indexes and digestive enzymes decreased with higher AFB1 levels. AFB1 negatively influenced hindgut tight junction protein and antioxidant-related gene expression while promoting inflammation-related gene expression. The presence of AFB1 in the experiment led to a decrease in beneficial intestinal bacteria, such as Prevotella, and an increase in harmful intestinal bacteria, such as Prevotellaceae_NK3B31_group. Muscle lipid and unsaturated fatty acid content significantly decreased, while muscle protein and liver AFB1 content increased dramatically with higher AFB1 concentrations. AFB1 caused myofibrillar cleavage and myofilament damage, leading to increased spaces between muscle fibers. In conclusion, diets with AFB1 levels exceeding 30 μg kg-1 inhibited hybrid grouper growth, while levels surpassing 445 μg kg-1 resulted in hindgut ROS accumulation, inflammation, elevated intestinal permeability, reduced digestive enzyme activity, and compromised muscle quality.
Collapse
Affiliation(s)
- Hao Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
| | - Ruitao Xie
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524000, China
- Guangdong Evergreen Feed Industry Co., Ltd., Zhanjiang 524000, China
| | - Weibin Huang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
| | - Menglong Zhou
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
| | - Baiquan Lu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
| | - Biao Li
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524000, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524000, China
| |
Collapse
|
7
|
Nassar K, El-Mekawey D, Elmasry AE, Refaey MS, El-Sayed Ghoneim M, Elshaier YAMM. The significance of caloric restriction mimetics as anti-aging drugs. Biochem Biophys Res Commun 2024; 692:149354. [PMID: 38091837 DOI: 10.1016/j.bbrc.2023.149354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024]
Abstract
Aging is an intricate process characterized by the gradual deterioration of the physiological integrity of a living organism. This unfortunate phenomenon inevitably leads to a decline in functionality and a heightened susceptibility to the ultimate fate of mortality. Therefore, it is of utmost importance to implement interventions that possess the capability to reverse or preempt age-related pathology. Caloric restriction mimetics (CRMs) refer to a class of molecules that have been observed to elicit advantageous outcomes on both health and longevity in various model organisms and human subjects. Notably, these compounds offer a promising alternative to the arduous task of adhering to a caloric restriction diet and mitigate the progression of the aging process and extend the duration of life in laboratory animals and human population. A plethora of molecular signals have been linked to the practice of caloric restriction, encompassing Insulin-like Growth Factor 1 (IGF1), Mammalian Target of Rapamycin (mTOR), the Adenosine Monophosphate-Activated Protein Kinase (AMPK) pathway, and Sirtuins, with particular emphasis on SIRT1. Therefore, this review will center its focus on several compounds that act as CRMs, highlighting their molecular targets, chemical structures, and mechanisms of action. Moreover, this review serves to underscore the significant relationship between post COVID-19 syndrome, antiaging, and importance of utilizing CRMs. This particular endeavor will serve as a comprehensive guide for medicinal chemists and other esteemed researchers, enabling them to meticulously conceive and cultivate novel molecular entities with the potential to function as efficacious antiaging pharmaceutical agents.
Collapse
Affiliation(s)
- Khloud Nassar
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Doaa El-Mekawey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Ahmed E Elmasry
- Department Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mai El-Sayed Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt.
| | - Yaseen A M M Elshaier
- Department Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| |
Collapse
|
8
|
Sovrani V, Bobermin LD, Sesterheim P, Rezena E, Cioccari MS, Netto CA, Gonçalves CA, Leipnitz G, Quincozes-Santos A. Glioprotective effects of resveratrol in hypothalamic astrocyte cultures obtained from interferon receptor knockout (IFNα/βR -/-) mice. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00777-z. [PMID: 37353697 DOI: 10.1007/s11626-023-00777-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/12/2023] [Indexed: 06/25/2023]
Abstract
Astrocytes play essential roles in the central nervous system (CNS), such as the regulation of glutamate metabolism, antioxidant defenses, and inflammatory/immune responses. Moreover, hypothalamic astrocytes seem to be crucial in the modulation of inflammatory processes, including those related to type I interferon signaling. In this regard, the polyphenol resveratrol has emerged as an important glioprotective molecule to regulate astrocyte functions. Therefore, this study aimed to investigate the immunomodulatory and protective effects of resveratrol in hypothalamic astrocyte cultures obtained from mouse depleted of type I interferon receptors (INF-α/β-/-), a condition that can impair immune and inflammatory functions. Resveratrol upregulated glutamate transporter and glutamine synthetase gene expression, as well as modulated the release of wide range of cytokines and genes involved in the control of inflammatory response, besides the expression of adenosine receptors, which display immunomodulatory functions. Resveratrol also increased genes associated with redox balance, mitochondrial processes, and trophic factors signaling. The putative genes associated with glioprotective effects of resveratrol, including nuclear factor erythroid derived 2 like 2 (Nrf2), heme oxygenase 1 (HO-1), sirtuin 1 (SIRT1), and phosphoinositide 3-kinase (PI3K)/Akt, were further upregulated by resveratrol. Thus, our data show that resveratrol was able to modulate key genes associated with glial functionality and inflammatory response in astrocyte cultures derived from IFNα/βR-/- mice. These data are in agreement with previous results, reinforcing its glioprotective effects even in hypothalamic astrocytes with altered inflammatory and immune signaling. Finally, this polyphenol can prepare astrocytes to better respond to injuries, including those associated with neuroimmunology defects.
Collapse
Affiliation(s)
- Vanessa Sovrani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil
| | - Ester Rezena
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus Sinhorelli Cioccari
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
9
|
Leite Santos C, K Vizuete AF, Becker Weber F, Thomaz NK, Bobermin LD, Gonçalves CA, Quincozes-Santos A. Age-dependent effects of resveratrol in hypothalamic astrocyte cultures. Neuroreport 2023; 34:419-425. [PMID: 37096764 DOI: 10.1097/wnr.0000000000001906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
OBJECTIVES The hypothalamus plays critical roles in maintaining brain homeostasis and increasing evidence has highlighted astrocytes orchestrating several of hypothalamic functions. However, it remains unclear how hypothalamic astrocytes participate in neurochemical mechanisms associated with aging process, as well as whether these cells can be a target for antiaging strategies. In this sense, the aim of this study is to evaluate the age-dependent effects of resveratrol, a well-characterized neuroprotective compound, in primary astrocyte cultures derived from the hypothalamus of newborn, adult, and aged rats. METHODS Male Wistar rats (2, 90, 180, and 365 days old) were used in this study. Cultured astrocytes from different ages were treated with 10 and 100 μM resveratrol and cellular viability, metabolic activity, astrocyte morphology, release of glial cell line-derived neurotrophic factor (GDNF), transforming growth factor β (TGF-β), tumor necrosis factor α (TNF-α), interleukins (IL-1β, IL-6, and IL-10), as well as the protein levels of Nrf2 and HO-1 were evaluated. RESULTS In vitro astrocytes derived from neonatal, adults, and aged animals changed metabolic activity and the release of trophic factors (GDNF and TGF-β), as well as the inflammatory mediators (TNF-α, IL-1β, IL-6, and IL-10). Resveratrol prevented these alterations. In addition, resveratrol changed the immunocontent of Nrf2 and HO-1. The results indicated that the effects of resveratrol seem to have a dose- and age-associated glioprotective role. CONCLUSION These findings demonstrate for the first time that resveratrol prevents the age-dependent underlying functional reprogramming of in vitro hypothalamic astrocytes, reinforcing its antiaging activity, and consequently, its glioprotective role.
Collapse
Affiliation(s)
- Camila Leite Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul
| | - Adriana Fernanda K Vizuete
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul
| | - Fernanda Becker Weber
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul
| | - Natalie K Thomaz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Santos MA, Franco FN, Caldeira CA, de Araújo GR, Vieira A, Chaves MM. Resveratrol has its antioxidant and anti-inflammatory protective mechanisms decreased in aging. Arch Gerontol Geriatr 2023; 107:104895. [PMID: 36525827 DOI: 10.1016/j.archger.2022.104895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
In the elderly, there is an increase in oxidative and inflammatory activity. Resveratrol (RSV) is a polyphenol that has several proven biological activities, such as antioxidant and anti-inflammatory. Thus, the aim of our study was to verify the possible antioxidant and anti-inflammatory effects of RSV on human mononuclear cells (PBMCs) from donors aged between 40 and 59 and 60-80 years old. For this, 6-8 patients were selected by age group. Cells were isolated and divided into 4 groups: Control (C), RSV only, H2O2 (to induce an oxidizing environment - C+) and H2O2+RSV. The quantification of reactive nitrogen species (NO and ONOO-), as well as pro and anti-inflammatory cytokines (TNFα, IL-6 and IL-10) was performed. Pearson's correlation and comparison between groups were performed (p<0.05). Our results showed a greater role of RSV in the middle-aged compared to the elderly group, in relation to the balance of NO/ONOO- and the levels of cytokines IL-6 and TNFα. It was also possible to observe an improvement in the anti-inflammatory profile in both age groups, but more effective in the cells in the middle-aged group. Thus, we could observe that RSV has better activity in the reduction of important biomarkers of oxidation and inflammation.
Collapse
Affiliation(s)
- Milena Almeida Santos
- Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG Brazil
| | - Filipe Nogueira Franco
- Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG Brazil
| | - Camila Amaro Caldeira
- Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG Brazil
| | - Glaucy Rodrigues de Araújo
- Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG Brazil
| | - Alessandra Vieira
- Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG Brazil
| | - Miriam Martins Chaves
- Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG Brazil.
| |
Collapse
|
11
|
Ding MH, Xu PG, Wang Y, Ren BD, Zhang JL. Resveratrol Attenuates Ankylosing Spondylitis in Mice by Inhibiting the TLR4/NF-κB/NLRP3 Pathway and Regulating Gut Microbiota. Immunol Invest 2023; 52:194-209. [PMID: 36548483 DOI: 10.1080/08820139.2022.2154162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ankylosing spondylitis (AS) is an autoimmune disease associated with disturbed gut microbiota. Currently, the treatments and outcomes of AS are not satisfactory. It is reported that resveratrol (RES) is a major phytoalexin with anti-inflammatory, antibacterial and some other pharmacological effects. However, there are no studies on the role of RES in AS. Therefore, this study aimed to explore the effect and mechanism of RES on AS. Proteoglycan and complete freund's adjuvant were used to conduct an AS mouse model, and then the AS mice were gavaged with RES (20 mg/kg and 50 mg/kg) daily for 4 weeks. Subsequently, the effect of RES on AS mice was assessed by detecting disease severity, inflammatory cytokines, NLRP3 inflammasome, TLR4/NF-κB pathway, intestinal mucosal barrier function, intestinal microbial barrier function. The assessment results indicated that RES could significantly relieve progression and severity of AS, inhibit the expression of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6, interleukin-17A, interferon-γ), and promote the expression of anti-inflammatory cytokines (interleukin-4). RES intervention caused the inhibition of NLRP3 inflammasome and TLR4/NF-κB pathway. In terms of intestinal barrier function, experimental results found RES increased zonula occludens-1 and occludin expression, and additionally, changed the composition of the gut microbiota by increasing levels of Lactobacillus and Bifidobacterium and reducing levels of Enterococcus faecalis and Escherichia coli. Collectively, RES protects PG-induced AS mice by inhibiting inflammatory responses and TLR4/NF-κB/NLRP3 pathway, restoring intestinal mucosal barrier function, and regulating the composition of the gut microbiota. In other words, RES is a potential candidate for the treatment of AS.
Collapse
Affiliation(s)
- Ming-Hui Ding
- The Seventh Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| | - Peng-Gang Xu
- The Seventh Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| | - Ying Wang
- The Eighth Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| | - Bao-di Ren
- The Seventh Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| | - Jun-Li Zhang
- The Seventh Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| |
Collapse
|
12
|
Ganguly S, Kumar J. Role of Antioxidant Vitamins and Minerals from Herbal Source in the Management of Lifestyle Diseases. ROLE OF HERBAL MEDICINES 2023:443-460. [DOI: 10.1007/978-981-99-7703-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Liu TH, Wang J, Zhang CY, Zhao L, Sheng YY, Tao GS, Xue YZ. Gut microbial characteristical comparison reveals potential anti-aging function of Dubosiella newyorkensis in mice. Front Endocrinol (Lausanne) 2023; 14:1133167. [PMID: 36798665 PMCID: PMC9928160 DOI: 10.3389/fendo.2023.1133167] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Previous study has indicated Dubosiella newyorkensis may act as a potential probiotic in age-related diseases. However, its detailed role in aging has not yet been promulgated. This study aimed to explore the potential anti-aging role of Dubosiella newyorkensis by comparing the anti-aging effect of resveratrol in young and old mice. METHOD Measurement of intestinal aging-related factors in colon and serum, and vascular endothelial function-related factors in serum were performed by enzyme-linked immunosorbent assay (ELISA). Gut microbial analysis of intestinal contents were identified by 16S rRNA gene sequencing. RESULTS The effect of Dubosiella newyorkensis on reducing malondialdehyde (MDA) and increasing superoxide dismutase (SOD) in aged mice were greater than that of resveratrol. While the effect of Dubosiella newyorkensis on nitric oxide (NO) level was less than that of resveratrol, the reduction of vascular endothelial growth factor (VEGF) and pentosidine (PTD) was better than that of resveratrol in young mice. In young mice, Dubosiella newyorkensis promoted an increase in the beneficial genus Lactobacillus, Bifidobacterium and Ileibacterium less effectively as compared with resveratrol treatment. In aged mice, Dubosiella newyorkensis promoted the increase of Bifidobacterium, Ileibacterium less effectively than resveratrol, and promoted the increase of Akkermansia, Staphylococcus, Verrucomicrobiota expression better as compared with resveratrol treatment. Both young and old mice showed the same results for the remaining markers, including changes in gut microbial composition and predictions of function. CONCLUSION Dubosiella newyorkensis has similar anti-aging functions with resveratrol. Dubosiella newyorkensis may even be more effective than resveratrol in reducing oxidative stress, improving vascular endothelial function, and redistributing gut microbiota. The research provides an innovative strategy of Dubosiella newyorkensis to improve aging.
Collapse
Affiliation(s)
- Tian-hao Liu
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Medical College of Jiangnan University, Wuxi, Jiangsu, China
| | - Juan Wang
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Medical College of Jiangnan University, Wuxi, Jiangsu, China
| | - Chen-yang Zhang
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Medical College of Jiangnan University, Wuxi, Jiangsu, China
| | - Lin Zhao
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Medical College of Jiangnan University, Wuxi, Jiangsu, China
| | - Ying-yue Sheng
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Medical College of Jiangnan University, Wuxi, Jiangsu, China
| | - Guo-shui Tao
- Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, China
- *Correspondence: Guo-shui Tao, ; Yu-zheng Xue,
| | - Yu-zheng Xue
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Medical College of Jiangnan University, Wuxi, Jiangsu, China
- *Correspondence: Guo-shui Tao, ; Yu-zheng Xue,
| |
Collapse
|
14
|
Inoue H, Shimizu Y, Yoshikawa H, Arakawa K, Tanaka M, Morimoto H, Sato A, Takino Y, Ishigami A, Takahashi N, Uehara M. Resveratrol Upregulates Senescence Marker Protein 30 by Activating AMPK/Sirt1-Foxo1 Signals and Attenuating H 2O 2-Induced Damage in FAO Rat Liver Cells. J Nutr Sci Vitaminol (Tokyo) 2023; 69:388-393. [PMID: 37940580 DOI: 10.3177/jnsv.69.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Resveratrol (RSV) is a polyphenol with numerous biological functions, including anti-inflammatory, antioxidant, and anti-aging activities. The novel senescence marker protein-30 (SMP30) indicates aging, and it suppresses hepatic oxidative stress. However, the effects of RSV on SMP30 expression regulation remain unclear. We observed that RSV positively regulates SMP30 expression in rat hepatoma-derived FAO cells. However, this was abolished by Compound C and EX-527 that specifically inhibit AMP-activated protein kinase (AMPK) and Silent Information Regulator T1 (Sirt1), respectively. We predicted binding sites for AMPK, forkhead box protein O1 (Foxo1), and Sirt1 downstream molecules as possible SMP30 promoters using the JASPAR and UniProtKB databases. We identified a Foxo1 binding site in the promoter region of SMP30. Inhibiting Foxo1 with AS1842527 also decreased the RSV-induced upregulation of SMP30 expression. Moreover, RSV suppressed the substantial downregulation of SMP30 expression caused by oxidative stress and hydrogen peroxide (H2O2) and released accumulated lactate dehydrogenase. These results demonstrate that, as a novel food factor, RSV-induced upregulation of SMP30 by activating AMPK/Sirt1-Foxo1 signaling and may attenuates H2O2-induced oxidative damage. The findings of this study offer new perspectives of the anti-ageing properties of RSV.
Collapse
Affiliation(s)
- Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Yusaku Shimizu
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Hiroto Yoshikawa
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Kohta Arakawa
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Miori Tanaka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Hiromu Morimoto
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Ayami Sato
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG)
| | - Yuka Takino
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG)
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG)
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| |
Collapse
|
15
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
16
|
The preventive use of resveratrol increases its antioxidant effect by SIRT1 and subclinical anti-inflammatory action in Neuro-2A cells. In Vitro Cell Dev Biol Anim 2022; 58:979-986. [PMID: 36481976 DOI: 10.1007/s11626-022-00719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
Currently, the important role of oxidative stress in the aging process and in neurodegenerative diseases has been highlighted, suggesting the beneficial effect of antioxidants as adjuvant therapy. Resveratrol (RSV) is a polyphenolic compound used in the clinic and has been shown as an antioxidant and anti-inflammatory. Therefore, the objective was to verify neuroprotective and modulating effects of RSV on N2-A cells, pre or post inserted into an oxidative stress environment. For this, two treatment conditions were established: pre-stimulus and post-stimulus. The analysis of AMPK and SIRT1 cell signaling pathways was performed through the chemiluminescence assay using the dorsomorphin and EX527 inhibitors, respectively. The inflammatory profile was also evaluated in these neural cells, through the levels of IL-6, TNF, and IL-10. We observed that RSV in N2-A cells has anti-inflammatory effect and antioxidant property and it mechanism is dependent on the SIRT1 signaling pathway. RSV effects occurs most markedly when cells have been pre-stimulated before inducing an oxidative stress environment. These results are important for conducting more adequate protocols in the medical and nutritional clinic.
Collapse
|
17
|
de Souza Almeida RR, Bobermin LD, Parmeggiani B, Wartchow KM, Souza DO, Gonçalves CA, Wajner M, Leipnitz G, Quincozes-Santos A. Methylmalonic acid induces inflammatory response and redox homeostasis disruption in C6 astroglial cells: potential glioprotective roles of melatonin and resveratrol. Amino Acids 2022; 54:1505-1517. [PMID: 35927507 DOI: 10.1007/s00726-022-03191-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
Abstract
Methylmalonic acidemia is a neurometabolic disorder biochemically characterized by the accumulation of methylmalonic acid (MMA) in different tissues, including the central nervous system (CNS). In this sense, it has been shown that high levels of this organic acid have a key role in the progressive neurological deterioration in patients. Astroglial cells actively participate in a wide range of CNS functions, such as antioxidant defenses and inflammatory response. Considering the role of these cells to maintain brain homeostasis, in the present study, we investigated the effects of MMA on glial parameters, focusing on redox homeostasis and inflammatory process, as well as putative mediators of these events in C6 astroglial cells. MMA decreased cell viability, glutathione levels, and antioxidant enzyme activities, increased inflammatory response, and changed the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NFκB), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and adenosine receptors, suggesting that these transcriptional factors and proteins may underlie the glial responses induced by MMA. Moreover, we also demonstrated the protective roles of melatonin and resveratrol against MMA-induced inflammation and decrease in glutathione levels. In summary, our findings support the hypothesis that astroglial changes are associated with pathogenesis of methylmalonic acidemia. In addition, we showed that these cells might be potential targets for preventive/therapeutic strategies by using molecules, such as melatonin and resveratrol, which mediated glioprotection in this inborn error of metabolism.
Collapse
Affiliation(s)
- Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Belisa Parmeggiani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Krista Minéia Wartchow
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
18
|
Li H, Zheng F, Zhang Y, Sun J, Gao F, Shi G. Resveratrol, novel application by preconditioning to attenuate myocardial ischemia/reperfusion injury in mice through regulate AMPK pathway and autophagy level. J Cell Mol Med 2022; 26:4216-4229. [PMID: 35791579 PMCID: PMC9345293 DOI: 10.1111/jcmm.17431] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/23/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Myocardial ischemia/reperfusion injury (MI/RI) is the main cause of deaths in the worldwide, leading to severe cardiac dysfunction. Resveratrol (RSV) is a polyphenol plant-derived compound. Our study aimed to elucidate the underlying molecular mechanism of preconditioning RSV in protecting against MI/RI. Mice were ligated and re-perfused by the left anterior descending branch with or without RSV (30 mg/kg·ip) for 7 days. Firstly, we found that RSV pretreatment significantly alleviated myocardial infarct size, improved cardiac function and decreased oxidative stress. Furthermore, RSV activated p-AMPK and SIRT1, ameliorated inflammation including the level of TNF-α and IL-1β, and promoting autophagy level. Moreover, neonatal rat ventricular myocytes (NRVMs) and H9c2 cells with knockdown the expression of AMPK, SIRT1 or FOXO1 were used to uncover the underlying molecular mechanism for the cardio-protection of RSV. In NRVMs, RSV increased cellular viability, decreased LDH release and reduced oxidative stress. Importantly, Compound C(CpC) and EX527 reversed the effect of RSV against MI/RI in vivo and in vitro and counteracted the autophagy level induced by RSV. Together, our study indicated that RSV could alleviate oxidative stress in cardiomyocytes through activating AMPK/SIRT1-FOXO1 signallingpathway and enhanced autophagy level, thus presenting high potential protection on MI/RI.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Fuchun Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanmei Zhang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Jiajia Sun
- Reproductive Center of the First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Fenfei Gao
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| |
Collapse
|
19
|
Bobermin LD, de Souza Almeida RR, Weber FB, Medeiros LS, Medeiros L, Wyse ATS, Gonçalves CA, Quincozes-Santos A. Lipopolysaccharide Induces Gliotoxicity in Hippocampal Astrocytes from Aged Rats: Insights About the Glioprotective Roles of Resveratrol. Mol Neurobiol 2022; 59:1419-1439. [PMID: 34993844 DOI: 10.1007/s12035-021-02664-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
Astrocytes may undergo a functional remodeling with aging, acquiring a pro-inflammatory state. In line with this, resveratrol represents an interesting strategy for a healthier brain aging since it can improve glial functions. In the present study, we investigated the glioprotective role of resveratrol against lipopolysaccharide (LPS)-induced gliotoxicity in hippocampal aged astrocytes. Astrocyte cultures were obtained from aged rats (365 days old) and challenged in vitro with LPS in the presence of resveratrol. Cultured astrocytes from newborn rats were used as an age comparative for evaluating LPS gliotoxicity. In addition, aged rats were submitted to an acute systemic inflammation with LPS. Hippocampal astrocyte cultures were also obtained from these LPS-stimulated aged animals to further investigate the glioprotective effects of resveratrol in vitro. Overall, our results show that LPS induced a higher inflammatory response in aged astrocytes, compared to newborn astrocytes. Several inflammatory and gene expression alterations promoted by LPS in aged astrocyte cultures were similar in hippocampal tissue from aged animals submitted to in vivo LPS injection, corroborating our in vitro findings. Resveratrol, in turn, presented anti-inflammatory effects in aged astrocyte cultures, which were associated with downregulation of p21 and pro-inflammatory cytokines, Toll-like receptors (TLRs), and nuclear factor κB (NFκB). Resveratrol also improved astroglial functions. Upregulation of sirtuin 1 (SIRT1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) represent potential molecular mechanisms associated with resveratrol-mediated glioprotection. In summary, our data show that resveratrol can prime aged astrocytes against gliotoxic stimuli, contributing to a healthier brain aging.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Becker Weber
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul- UFRGS, Rua Ramiro Barcelos, 2600 - Anexo Bairro Santa Cecília, Porto Alegre, RS, Brazil
| | - Lara Scopel Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul- UFRGS, Rua Ramiro Barcelos, 2600 - Anexo Bairro Santa Cecília, Porto Alegre, RS, Brazil
| | - Lívia Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul- UFRGS, Rua Ramiro Barcelos, 2600 - Anexo Bairro Santa Cecília, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul- UFRGS, Rua Ramiro Barcelos, 2600 - Anexo Bairro Santa Cecília, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul- UFRGS, Rua Ramiro Barcelos, 2600 - Anexo Bairro Santa Cecília, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul- UFRGS, Rua Ramiro Barcelos, 2600 - Anexo Bairro Santa Cecília, Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Quincozes-Santos A, Santos CL, de Souza Almeida RR, da Silva A, Thomaz NK, Costa NLF, Weber FB, Schmitz I, Medeiros LS, Medeiros L, Dotto BS, Dias FRP, Sovrani V, Bobermin LD. Gliotoxicity and Glioprotection: the Dual Role of Glial Cells. Mol Neurobiol 2021; 58:6577-6592. [PMID: 34581988 PMCID: PMC8477366 DOI: 10.1007/s12035-021-02574-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Glial cells (astrocytes, oligodendrocytes and microglia) are critical for the central nervous system (CNS) in both physiological and pathological conditions. With this in mind, several studies have indicated that glial cells play key roles in the development and progression of CNS diseases. In this sense, gliotoxicity can be referred as the cellular, molecular, and neurochemical changes that can mediate toxic effects or ultimately lead to impairment of the ability of glial cells to protect neurons and/or other glial cells. On the other hand, glioprotection is associated with specific responses of glial cells, by which they can protect themselves as well as neurons, resulting in an overall improvement of the CNS functioning. In addition, gliotoxic events, including metabolic stresses, inflammation, excitotoxicity, and oxidative stress, as well as their related mechanisms, are strongly associated with the pathogenesis of neurological, psychiatric and infectious diseases. However, glioprotective molecules can prevent or improve these glial dysfunctions, representing glial cells-targeting therapies. Therefore, this review will provide a brief summary of types and functions of glial cells and point out cellular and molecular mechanisms associated with gliotoxicity and glioprotection, potential glioprotective molecules and their mechanisms, as well as gliotherapy. In summary, we expect to address the relevance of gliotoxicity and glioprotection in the CNS homeostasis and diseases.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Camila Leite Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Naithan Ludian Fernandes Costa
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Becker Weber
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lara Scopel Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lívia Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Bethina Segabinazzi Dotto
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Filipe Renato Pereira Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Liu MJ, Guo HY, Zhu KC, Liu BS, Liu B, Guo L, Zhang N, Yang JW, Jiang SG, Zhang DC. Effects of acute ammonia exposure and recovery on the antioxidant response and expression of genes in the Nrf2-Keap1 signaling pathway in the juvenile golden pompano (Trachinotus ovatus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105969. [PMID: 34600396 DOI: 10.1016/j.aquatox.2021.105969] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/22/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Continuous exposure to high levels of ammonia can cause oxidative damage to fish tissues and organs. To date, the mechanism by which juvenile golden pompano (Trachinotus ovatus) are poisoned by ammonia exposure has not been thoroughly elucidated. although the mechanisms of ammonia toxicity are not well described for the pompano, many other studies presented these effects to other fish species. So an overview would be given. First, an acute ammonia nitrogen toxicity experiment on juvenile golden pompano obtained a 96-h half-lethal concentration (96 h LC50) of 26.9 mg/L. In the ammonia exposure experiment, fish were sampled at 0 h, 6 h, 12 h, 24 h, 48 h, 72 h and 96 h after exposure to ammonia water (26.93 mg/L). The results showed that with the prolonged ammonia nitrogen exposure, plasma cortisol (COR), total cholesterol (TC), glutamic-pyruvic transaminase (ALT), glutamic oxalacetic transaminase (AST) and malonaldehyde (MDA) levels continued to rise, while glucose (GLU) levels first increased and later gradually decreased after 12 h. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in the liver and the mRNA expression levels of antioxidant genes (SOD, CAT, and GPX) first increased and subsequently decreased with increasing exposure time. Through microscopic observation, it was found that the degree of liver damage increased with increasing stress time and was most serious at 96 h. In the post-poison recovery experiment, the fish exposed to ammonia were transferred to clean water, and samples were taken at 24 h, 48 h, 72 h and 96 h after recovery. The results showed that with the increasing recovery time, each index recovered to the initial level to varying degrees, but the recovery time of 96 h was not enough for the fish to return to the normal level. We also examined the regulation of the Nrf2-Keap1 signaling pathway by the molecular mechanism of the antioxidant defense system. The results of this analysis showed that there was a positive correlation between Nrf2 and liver antioxidant gene expression levels, while there was a negative correlation between Keap1 and liver antioxidant gene expression levels, which may be observed because Nrf2 plays a key role in inducing antioxidant genes, and Keap1 may hinder the response to Nrf2. These results may provide a deeper and more comprehensive understanding of the impact of ammonia exposure on fish and help to provide a foundation for managing the healthy reproduction of juvenile fish.
Collapse
Affiliation(s)
- Ming-Jian Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; College of Fisheries, Tianjin Agricultural University, 300384 Tianjin, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China
| | - Hua-Yang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China
| | - Ke-Cheng Zhu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China
| | - Bao-Suo Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China
| | - Bo Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China
| | - Liang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China
| | - Nan Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China
| | - Jing-Wen Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China
| | - Shi-Gui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Dian-Chang Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
22
|
Resveratrol promotes lysosomal function via ER calcium-dependent TFEB activation to ameliorate lipid accumulation. Biochem J 2021; 478:1159-1173. [PMID: 33605996 DOI: 10.1042/bcj20200676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Abnormal lipid accumulation is associated to the development of metabolic diseases such as hepatic steatosis and lipid storage diseases. Pharmacological agents that can attenuate lipid accumulation therefore have therapeutic potentials for these diseases. Resveratrol (RSV), a natural active substance found in fruits and nuts, has been reported to effectively reduce the intracellular lipid accumulation, but the underlying mechanisms of RSV remain elusive. Here, we show that RSV triggers an endoplasmic reticulum (ER)- Ca2+ signaling that activates transcriptional factor EB (TFEB), a master transcriptional regulator of autophagic and lysosomal biogenesis. Moreover, RSV activates protein phosphatase 2A (PP2A), which binds and dephosphorylates TFEB, promoting its nuclear translocation and the expression of TFEB target genes required for autophagosome and lysosomal biogenesis. Notably, genetic inhibition of TFEB significantly ameliorates RSV-mediated lipid clearance. Taken together, these data link RSV-induced ER calcium signaling, PP2A and TFEB activation to promote autophagy and lysosomal function, by which RSV may trigger a cellular self-defense mechanism that effectively mitigate lipid accumulation commonly associated with many metabolic diseases.
Collapse
|
23
|
Human astrocytes and astrocytoma respond differently to resveratrol. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102441. [PMID: 34302989 DOI: 10.1016/j.nano.2021.102441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
A fundamental problem in oncology is that anticancer chemotherapeutics kill both cancer and healthy cells in the surrounding tissues. Resveratrol is a natural antioxidant with intriguing and opposing biological properties: it reduces viability of some cancer cells but not of non-transformed ones (in equimolar concentrations). Therefore, we examined resveratrol in human non-transformed primary astrocytes and astrocytoma. Resveratrol reduced reactive oxygen species in astrocytes, but not in astrocytoma. Such cell-type dependent response is particularly evident with analyses at the single cell level showing clear population difference in high and low glutathione levels. Due to resveratrol's poor aqueous solubility that limits its use in clinics, we incorporated it into stimulus-responsive micelles assembled from miktoarm polymers. This could be an attractive chemotherapeutic delivery strategy in nano-oncology. As a proof of principle, we show that these formulations containing resveratrol markedly decrease astrocytoma viability, particularly in combination with temozolomide, a first line chemotherapeutic for astrocytoma.
Collapse
|
24
|
Zhou DD, Luo M, Huang SY, Saimaiti A, Shang A, Gan RY, Li HB. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9932218. [PMID: 34336123 PMCID: PMC8289612 DOI: 10.1155/2021/9932218] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
The aging of population has become an issue of great concern because of its rapid increase. Aging is an important risk factor of many chronic diseases. Resveratrol could be found in many foods, such as grapes, red wine, peanuts, and blueberries. Many studies reported that resveratrol possessed various bioactivities, such as antioxidant, anti-inflammatory, cardiovascular protection, anticancer, antidiabetes mellitus, antiobesity, neuroprotection, and antiaging effects. The antiaging mechanisms of resveratrol were mainly ameliorating oxidative stress, relieving inflammatory reaction, improving mitochondrial function, and regulating apoptosis. Resveratrol could be an effective and safe compound for the prevention and treatment of aging and age-related diseases. In this review, we summarize the effects of resveratrol on aging, life extension, and several age-related diseases, with special attention paid to the mechanisms of antiaging action.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
25
|
Chauhan A, Islam AU, Prakash H, Singh S. Phytochemicals targeting NF-κB signaling: Potential anti-cancer interventions. J Pharm Anal 2021; 12:394-405. [PMID: 35811622 PMCID: PMC9257438 DOI: 10.1016/j.jpha.2021.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor κB (NF-κB) is a ubiquitous regulator of the signalome and is indispensable for various biological cell functions. NF-κB consists of five transcription factors that execute both cytoplasmic and nuclear signaling processes in cells. NF-κB is the only signaling molecule that governs both pro- and anti-apoptotic, and pro- and anti-inflammatory responses. This is due to the canonical and non-canonical components of the NF-κB signaling pathway. Together, these pathways orchestrate cancer-related inflammation, hyperplasia, neoplasia, and metastasis. Non-canonical NF-κB pathways are particularly involved in the chemoresistance of cancer cells. In view of its pivotal role in cancer progression, NF-κB represents a potentially significant therapeutic target for modifying tumor cell behavior. Several phytochemicals are known to modulate NF-κB pathways through the stabilization of its inhibitor, IκB, by inhibiting phosphorylation and ubiquitination thereof. Several natural pharmacophores are known to inhibit the nuclear translocation of NF-κB and associated pro-inflammatory responses and cell survival pathways. In view of this and the high degree of specificity exhibited by various phytochemicals for the NF-κB component, we herein present an in-depth overview of these phytochemicals and discuss their mode of interaction with the NF-κB signaling pathways for controlling the fate of tumor cells for cancer-directed interventions. NF-κB plays a pivotal role in the maintenance of homeostasis and various inflammation-mediated pathologies. NF-κB is involved in cancer development and progression by modulating growth signaling and apoptosis pathways. Phytochemicals modulating NF-κB activity should be exploited to design anticancer drugs with minimal side effects. Use of these phytochemicals in adjunctive chemotherapy may enhance the chemosensitivity of existing chemotherapeutic drugs.
Collapse
Affiliation(s)
- Akansha Chauhan
- Amity Institute of Physiology & Allied Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Asim Ul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hridayesh Prakash
- Amity Institute of Virology & Immunology, Amity University, Noida, Uttar Pradesh, India
| | - Sandhya Singh
- Amity Institute of Physiology & Allied Sciences, Amity University, Noida, Uttar Pradesh, India
- Corresponding author.
| |
Collapse
|
26
|
Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, Corpas R, Roig-Soriano J, Chillón M, Andres-Lacueva C, Somogyvári M, Sőti C, Sanfeliu C, Pallàs M. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: From antioxidant to epigenetic therapy. Ageing Res Rev 2021; 67:101271. [PMID: 33571701 DOI: 10.1016/j.arr.2021.101271] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
While the elderly segment of the population continues growing in importance, neurodegenerative diseases increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer's disease and Parkinson's Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Vanessa Izquierdo
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Joan Roig-Soriano
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Miguel Chillón
- Department of Biochemistry and Molecular Biology, Universitat Autònoma Barcelona, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), Research Group on Gene Therapy at Nervous System, Passeig de la Vall d'Hebron, Barcelona, Spain; Unitat producció de Vectors (UPV), Universitat Autònoma Barcelona, Bellaterra, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Xarta, INSA, Faculty of Pharmacy and Food Sciences, Campus Torribera, University of Barcelona, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salut Carlos III, Barcelona, Spain
| | - Milán Somogyvári
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028, Barcelona, Spain
| |
Collapse
|
27
|
Carvalho C, Cardoso S. Diabetes-Alzheimer's Disease Link: Targeting Mitochondrial Dysfunction and Redox Imbalance. Antioxid Redox Signal 2021; 34:631-649. [PMID: 32098477 DOI: 10.1089/ars.2020.8056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: It is of common sense that the world population is aging and life expectancy is increasing. However, as the population ages, there is also an exponential risk to live into the ages where the brain-related frailties and neurodegenerative diseases develop. Hand in hand with those events, the world is witnessing a major upsurge in diabetes diagnostics. Remarkably, all of this seems to be narrowly related, and clinical and research communities highlight for the upcoming threat that it will represent for the present and future generations. Recent Advances: It is of utmost importance to clarify the influence of diabetes-related metabolic features on brain health and the mechanisms underlying the increased likelihood of developing neurodegenerative diseases, in particular Alzheimer's disease. Thereupon, a wealth of evidence suggests that mitochondria and associated oxidative stress are at the root of the link between diabetes and co-occurring disorders in the brain. Critical Issues: The scientific community has been challenged with constant failures of clinical trials raising major issues in the advance of the therapeutic field to fight chronic diseases epidemics. Thus, a change of paradigms is urgently needed. Future Directions: It has become urgent to identify new and solid candidates able to clinically reproduce the positive outcomes obtained in preclinical studies. On this basis, strategies settled to counteract diabetes-induced neurodegeneration encompassing mitochondrial dysfunction, redox status imbalance, and/or insulin dysregulation seem worth to follow. Hopefully, ongoing innovative research based on reliable experimental tools will soon bring the desired answers allowing pharmaceutical industry to apply such knowledge to human medicine.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Interdisciplinarie Institute of Investigation, University of Coimbra, Coimbra, Portugal
| | - Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Interdisciplinarie Institute of Investigation, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
28
|
Zhang Z, Yao Z, Wu K, Zhang T, Xing C, Xing XL. Resveratrol rescued the pain related hypersensitivity for Cntnap2-deficient mice. Eur J Pharmacol 2021; 891:173704. [PMID: 33137333 DOI: 10.1016/j.ejphar.2020.173704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/01/2022]
Abstract
Contactin-associated protein-like 2 (CNTNAP2 or CASPR2) is a neuronal transmembrane protein of the neurexin superfamily which is correlated with pain related hypersensitivity. Recent results indicated that the hyperactive phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway may be a promising therapeutic target for pain-related hypersensitivity in patients with dysfunction of CNTNAP2. Resveratrol is one of the most widely studied polyphenols with several beneficial properties. In the present study, we investigated the effects of resveratrol on the pain related hypersensitivity. And we found that the up-regulated phosphorylation of S6 could be suppressed by resveratrol. The nocifensive behavior duration time to heat and chemical algogens stimulation in Cntnap2-deficiency (Cntnap2-/-) mice could be attenuated by resveratrol. Our results indicated that resveratrol could rescue the pain related hypersensitivity for Cntnap2-/- mice may be via mTOR signaling pathway.
Collapse
Affiliation(s)
- Zaiqi Zhang
- Hunan Provincial Key Laboratory for Dong Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, PR China
| | - Zhiyong Yao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, PR China
| | - Kunyang Wu
- Zhejiang Center for Disease Control and Prevention, Hangzhou 310000, Zhejiang, PR China
| | - Ti Zhang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, PR China
| | - Chaoqun Xing
- The First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, Hunan, PR China.
| | - Xiao-Liang Xing
- Hunan Provincial Key Laboratory for Dong Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, PR China; Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, PR China.
| |
Collapse
|
29
|
Khusainov D, Tribrat N, Lukyantseva A, Chuyan E, Biryukova E, Dzheldubaeva E, Ablyakimova V, Verhoturov N. Psychoactive effects of “Enoant” and “Resveratrol” in Wistar rats of both sexes. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20214002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The effect of two supplements containing resveratrol (“Resveratrol” and “Enoant”) on the psycho-emotional state of animals with an initial index of anxiety and depression above 0.5 was studied. For this, the “Elevated plus maze” (EPM) and “Forced swim test” (FST) were used. “Resveratrol” significantly reduces the index of depressivity (ID) in males on the 7th and 14th days of application, in females – only on the 14th day. No significant influence on the anxiety index (AI) was found in both sexes. “Enoant” significantly reduces the ID in males on the 7th day, but not on the 14th day, while no significant differences were observed in females. However, unlike “Resveratrol”, “Enoant” significantly reduces the AI on the 14th day in rats of both sexes.
Collapse
|
30
|
Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T, Rauf A, Ahmad A, Hafeez A, Perveen A, Ashraf GM. Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease. Curr Pharm Des 2021; 27:402-414. [PMID: 33213314 DOI: 10.2174/1381612826666201118092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies have been found yet. Over the last few decades, research on AD has mainly highlighted pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs) made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus shows a promising candidate for inflammation- based AD therapy. Recent data reveal that phytochemicals, mainly polyphenol compounds, exhibit potential neuroprotective functions and these may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Simas JN, Mendes TB, Fischer LW, Vendramini V, Miraglia SM. Resveratrol improves sperm DNA quality and reproductive capacity in type 1 diabetes. Andrology 2021; 9:384-399. [PMID: 32808479 DOI: 10.1111/andr.12891] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND In the coming decades, diabetes mellitus might affect 628 million individuals. Its final impact on male fertility and reproductive outcomes should be considered since the number of adolescents and young adults presenting diabetes is rising. Resveratrol (RES), a polyphenol, is a biological modulator with multitarget and multi-action characteristics. OBJECTIVES to evaluate if RES is effective against the male reproductive damage caused by type 1 diabetes (DM1), focusing on sperm DNA integrity and reproductive outcome. MATERIALS AND METHODS At 30 dpp (days postpartum), male rats were divided into 7 groups: Sham control (SC); RES vehicle (RV); RES (R); STZ-diabetic (D; induced at 30dpp with 65 mg/kg of streptozotocin); STZ-diabetic + insulin (DI); STZ-diabetic + RES (DR); STZ-diabetic + insulin +RES (DIR). DR, DIR, and R groups received 150mg RES/kg b.w./day by gavage (from 33 to 110dpp). DI and DIR received insulin (from day 5 after DM1 induction until 110dpp). Blood glucose was monitored in different time points. Animals were mated with healthy females. Euthanasia occurred at 110 dpp. RESULTS DM1 increased lipid peroxidation (testis and epididymis) and sperm DNA fragmentation, alterations of chromatin structure, reduced mitochondrial mass and acrosome integrity, causing a decline in fertility and pregnancy rates. RES improved the parameters. DISCUSSION RES, as an adjuvant, activates specific reactions against hyperglycemia, the main trigger of most complications of diabetes, by controlling oxidative stress, probably as a result of SIRT1 activation. We present here more evidences showing its valuable role in diminishing diabetes seriousness to male reproduction, not only to spermatogenesis in the first instance, but also to sperm overall quality and fertility outcomes, regardless of insulin treatment. CONCLUSION RES attenuated lipid peroxidation and sperm DNA damage in DM1-induced animals, which positively reflected on male fertility. Our results show RES potential against DM1 complications in male reproduction.
Collapse
Affiliation(s)
- Joana N Simas
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Talita B Mendes
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Leonardo W Fischer
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Vanessa Vendramini
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Sandra M Miraglia
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil
| |
Collapse
|
32
|
Qin L, Lu T, Qin Y, He Y, Cui N, Du A, Sun J. In Vivo Effect of Resveratrol-Loaded Solid Lipid Nanoparticles to Relieve Physical Fatigue for Sports Nutrition Supplements. Molecules 2020; 25:E5302. [PMID: 33202918 PMCID: PMC7696174 DOI: 10.3390/molecules25225302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/13/2023] Open
Abstract
Resveratrol (RSV) is a natural flavonoid polyphenol compound extracted from the plants which shows various biological activities. However, the clinical application of RSV is limited by its poor aqueous solubility, rapid metabolism and poor bioavailability. In this study, resveratrol-loaded solid lipid nanoparticles (RSV- SLNs) was design as a nano-antioxidant against the physical fatigue. The resultant RSV-SLNs were characterized by photon correlation spectroscopy (PCS), transmission electron micrographs (TEM), zeta potential, differential scanning calorimetry (DSC) and Raman spectroscopy pattern. Furthermore, the in vivo anti-fatigue effect assays showed that RSV-SLNs prolonged the mice exhausted time and running distance. The biochemical parameters of blood related to fatigue suggested that RSV-SLNs have potential applications to improve the antioxidant defense of the mice after extensive exercise and confer anti-fatigue capability. Furthermore, the molecular mechanisms of antioxidant by RSV-SLNs supplementation was investigated through the analysis of silent information regulator 2 homolog 1 (SIRT1) protein expression, which demonstrated that it could downregulate the expression of SIRT1 and increase autophagy markers, microtubule-associated protein 1 light chain 3-II (LC3-II) and sequestosome-1 (SQSTM1/p62). These results reveal that the RSV-SLNs may have great potential used as a novel anti-fatigue sports nutritional supplement.
Collapse
Affiliation(s)
- Lili Qin
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Tianfeng Lu
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Yao Qin
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Yiwei He
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Ningxin Cui
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Ai Du
- School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Jingyu Sun
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| |
Collapse
|
33
|
Xie J, He X, Fang H, Liao S, Liu Y, Tian L, Niu J. Identification of heme oxygenase-1 from golden pompano (Trachinotus ovatus) and response of Nrf2/HO-1 signaling pathway to copper-induced oxidative stress. CHEMOSPHERE 2020; 253:126654. [PMID: 32464761 DOI: 10.1016/j.chemosphere.2020.126654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Heme oxygenase-1(HO-1) is a stress-inducible enzyme that mediates antioxidative and cytoprotective effects to maintain cellular redox homeostasis. In the present study, the full sequence of HO-1 was cloned from golden pompano(Trachinotus ovatus) by RT-PCR and RACE-PCR. The full cDNA sequence of HO-1 was 1349 bp in length which comprised of a 726 bp open reading frame (ORF) preceded by 262 bp 5'-untranslated region (UTR), and followed by a 360 bp 3'UTR, encoding 241 amino acid residues. Phylogenetic analysis revealed that HO-1 showed highest similarity to that of Takifugu rubripes. Tissue distribution analysis showed that the expression level of HO-1 was relatively high in heart, liver and spleen. A trial was conducted to investigate the response of Nrf2/HO-1 signaling pathway to oxidative stress induced by copper. The results showed that mRNA expression of NF-E2-related nuclear factor2 (Nrf2), Kelch-like-ECH-associated protein1 (keap1), superoxide dismutase (SOD), catalase (CAT), HO-1, NAD(P)H quinone oxidoreductase 1 (NQO1) and Glutathione peroxidase (GSH-PX) all significantly increased in copper treated group than that in the control group. This work provides new insight into the molecular mechanism underlying the Nrf2/HO-1 pathway in oxidative response in T. ovatus.
Collapse
Affiliation(s)
- Jiajun Xie
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xuanshu He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Haohang Fang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shiyu Liao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yongjian Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Lixia Tian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
34
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
35
|
Bobermin LD, Roppa RHA, Gonçalves CA, Quincozes-Santos A. Ammonia-Induced Glial-Inflammaging. Mol Neurobiol 2020; 57:3552-3567. [DOI: 10.1007/s12035-020-01985-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
36
|
Taherian M, Norenberg MD, Panickar KS, Shamaladevi N, Ahmad A, Rahman P, Jayakumar AR. Additive Effect of Resveratrol on Astrocyte Swelling Post-exposure to Ammonia, Ischemia and Trauma In Vitro. Neurochem Res 2020; 45:1156-1167. [PMID: 32166573 DOI: 10.1007/s11064-020-02997-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/12/2019] [Accepted: 02/22/2020] [Indexed: 12/16/2022]
Abstract
Swelling of astrocytes represents a major component of the brain edema associated with many neurological conditions, including acute hepatic encephalopathy (AHE), traumatic brain injury (TBI) and ischemia. It has previously been reported that exposure of cultured astrocytes to ammonia (a factor strongly implicated in the pathogenesis of AHE), oxygen/glucose deprivation, or to direct mechanical trauma results in an increase in cell swelling. Since dietary polyphenols have been shown to exert a protective effect against cell injury, we examined whether resveratrol (RSV, 3,5,4'-trihydroxy-trans-stilbene, a stilbenoid phenol), has a protective effect on astrocyte swelling following its exposure to ammonia, oxygen-glucose deprivation (OGD), or trauma in vitro. Ammonia increased astrocyte swelling, and pre- or post-treatment of astrocytes with 10 and 25 µM RSV displayed an additive effect, while 5 µM did not prevent the effect of ammonia. However, pre-treatment of astrocytes with 25 µM RSV slightly, but significantly, reduced the trauma-induced astrocyte swelling at earlier time points (3 h), while post-treatment had no significant effect on the trauma-induced cell swelling at the 3 h time point. Instead, pre- or post-treatment of astrocytes with 25 µM RSV had an additive effect on trauma-induced astrocyte swelling. Further, pre- or post-treatment of astrocytes with 5 or 10 µM RSV had no significant effect on trauma-induced astrocyte swelling. When 5 or 10 µM RSV were added prior to, or during the process of OGD, as well as post-OGD, it caused a slight, but not statistically significant decline in cell swelling. However, when 25 µM RSV was added during the process of OGD, as well as after the cells were returned to normal condition (90 min period), such treatment showed an additive effect on the OGD-induced astrocyte swelling. Noteworthy, a higher concentration of RSV (25 µM) exhibited an additive effect on levels of phosphorylated forms of ERK1/2, and p38MAPK, as well as an increased activity of the Na+-K+-Cl- co-transporter-1 (NKCC1), factors known to induce astrocytes swelling, when the cells were treated with ammonia or after trauma or ischemia. Further, inhibition of ERK1/2, and p38MAPK diminished the RSV-induced exacerbation of cell swelling post-ammonia, trauma and OGD treatment. These findings strongly suggest that treatment of cultured astrocytes with RSV enhanced the ammonia, ischemia and trauma-induced cell swelling, likely through the exacerbation of intercellular signaling kinases and ion transporters. Accordingly, caution should be exercised when using RSV for the treatment of these neurological conditions, especially when brain edema is also suspected.
Collapse
Affiliation(s)
- Mehran Taherian
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, FL, USA
- Department of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA
- Department of Neurology and Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Kiran S Panickar
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | | | - Anis Ahmad
- Department of Radiation Oncology, Sylvester Cancer Center, University of Miami School of Medicine, Miami, FL, USA
| | - Purbasha Rahman
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL, 33125, USA
- Department of Microbiology and Immunology, University of Miami, Coral Cables, Miami, FL, USA
| | - Arumugam R Jayakumar
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL, 33125, USA.
- South Florida VA Foundation for Research and Education Inc, Veterans Affairs Medical Center, Miami, FL, 33125, USA.
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, 1201 NW 16th St, Res-151, Room 314, Miami, FL, USA.
| |
Collapse
|
37
|
Yue Y, Huo F, Pei X, Wang Y, Yin C. Fluorescent Imaging of Resveratrol Induced Subcellular Cysteine Up-Regulation. Anal Chem 2020; 92:6598-6603. [DOI: 10.1021/acs.analchem.0c00363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Xueying Pei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yuting Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
38
|
Dumont U, Sanchez S, Olivier B, Chateil JF, Deffieux D, Quideau S, Pellerin L, Beauvieux MC, Bouzier-Sore AK, Roumes H. Maternal alcoholism and neonatal hypoxia-ischemia: Neuroprotection by stilbenoid polyphenols. Brain Res 2020; 1738:146798. [PMID: 32229200 DOI: 10.1016/j.brainres.2020.146798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 01/16/2023]
Abstract
The impact of maternal nutrition on neurodevelopment and neonatal neuroprotection is a research topic with increasing interest. Maternal diet can also have deleterious effects on fetal brain development. Fetal exposure to alcohol is responsible for poor neonatal global development, and may increase brain vulnerability to hypoxic-ischemic encephalopathy, one of the major causes of acute mortality and chronic neurological disability in newborns. Despite frequent prevention campaigns, about 10% of women in the general population drinks alcohol during pregnancy and breastfeeding. This study was inspired by this alarming fact. Its aim was to evaluate the beneficial effects of maternal supplementation with two polyphenols during pregnancy and breastfeeding, on hypoxic-ischemic neonate rat brain damages, sensorimotor and cognitive impairments, in a context of moderate maternal alcoholism. Both stilbenoid polyphenols, trans-resveratrol (RSV - 0.15 mg/kg/day), and its hydroxylated analog, trans-piceatannol (PIC - 0.15 mg/kg/day), were administered in the drinking water, containing or not alcohol (0.5 g/kg/day). In a 7-day post-natal rat model of hypoxia-ischemia (HI), our data showed that moderate maternal alcoholism does not increase brain lesion volumes measured by MRI but leads to higher motor impairments. RSV supplementation could not reverse the deleterious effects of HI coupled with maternal alcoholism. However, PIC supplementation led to a recovery of all sensorimotor and cognitive functions. This neuroprotection was obtained with a dose of PIC corresponding to the consumption of a single passion fruit per day for a pregnant woman.
Collapse
Affiliation(s)
- Ursule Dumont
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Stéphane Sanchez
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Benjamin Olivier
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Jean-François Chateil
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | - Luc Pellerin
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France; Department of Physiology, 7 Rue du Bugnon, CH1005 Lausanne, Switzerland.
| | | | - Anne-Karine Bouzier-Sore
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Hélène Roumes
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| |
Collapse
|
39
|
Martinelli C, Pucci C, Battaglini M, Marino A, Ciofani G. Antioxidants and Nanotechnology: Promises and Limits of Potentially Disruptive Approaches in the Treatment of Central Nervous System Diseases. Adv Healthc Mater 2020; 9:e1901589. [PMID: 31854132 DOI: 10.1002/adhm.201901589] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Many central nervous system (CNS) diseases are still incurable and only symptomatic treatments are available. Oxidative stress is suggested to be a common hallmark, being able to cause and exacerbate the neuronal cell dysfunctions at the basis of these pathologies, such as mitochondrial impairments, accumulation of misfolded proteins, cell membrane damages, and apoptosis induction. Several antioxidant compounds are tested as potential countermeasures for CNS disorders, but their efficacy is often hindered by the loss of antioxidant properties due to enzymatic degradation, low bioavailability, poor water solubility, and insufficient blood-brain barrier crossing efficiency. To overcome the limitations of antioxidant molecules, exploitation of nanostructures, either for their delivery or with inherent antioxidant properties, is proposed. In this review, after a brief discussion concerning the role of the blood-brain barrier in the CNS and the involvement of oxidative stress in some neurodegenerative diseases, the most interesting research concerning the use of nano-antioxidants is introduced and discussed, focusing on the synthesis procedures, functionalization strategies, in vitro and in vivo tests, and on recent clinical trials.
Collapse
Affiliation(s)
- Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
- Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| |
Collapse
|
40
|
Alavian F, Shams N. Oral and Intra-nasal Administration of Nanoparticles in the Cerebral Ischemia Treatment in Animal Experiments: Considering its Advantages and Disadvantages. CURRENT CLINICAL PHARMACOLOGY 2020; 15:20-29. [PMID: 31272358 PMCID: PMC7366001 DOI: 10.2174/1574884714666190704115345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/21/2019] [Accepted: 05/17/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Over the past few decades, nanotechnology has dramatically advanced; from the precise strategies of synthesizing modern nanostructures to methods of entry into the body. Using nanotechnology in diagnosis, drug delivery, determining signaling pathways, and tissue engineering is great hope for the treatment of stroke. The drug-carrying nanoparticles are a way to increase drug absorption through the mouth or nose in treating the stroke. OBJECTIVE In this article, in addition to explaining pros and cons of oral and intra-nasal administration of nanoparticles in the brain ischemia treatment of animal models, the researchers introduce some articles in this field and briefly mentioned their work outcomes. METHODS A number of relevant published articles 183 were initially collected from three popular databases including PubMed, Google Scholar, and Scopus. The articles not closely related to the main purpose of the present work were removed from the study process. The present data set finally included 125 published articles. RESULTS Direct delivery of the drug to the animal brain through the mouth and nose has more therapeutic effects than systemic delivery of drugs. The strategy of adding drugs to the nanoparticles complex can potentially improve the direct delivery of drugs to the CNS. CONCLUSION Despite the limitations of oral and intra-nasal routes, the therapeutic potential of oral and intra-nasal administration of nano-medicines is high in cerebral ischemia treatment.
Collapse
Affiliation(s)
- Firoozeh Alavian
- Address correspondence to this author at the Department of biology, Faculty of basic science, Farhangian University, Tehran, Iran;, Tel: +989133217068; E-mails: ;,
| | | |
Collapse
|
41
|
Resveratrol Downregulates STAT3 Expression and Astrocyte Activation in Primary Astrocyte Cultures of Rat. Neurochem Res 2019; 45:455-464. [PMID: 31853718 DOI: 10.1007/s11064-019-02936-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 12/23/2022]
Abstract
Astrocytes respond to all forms of central nervous system (CNS) insults by a process referred to as reactive astrogliosis. Inhibition of astrocyte growth and activation is an important strategy for promoting injured CNS repair. STAT3 (signal transducer and activator of transcription 3) is reported to be a critical regulator of astrogliosis, and resveratrol (RES, a dietary polyphenol) is considered to be a natural inhibitor of STAT3 expression and phosphorylation. In this study, we investigated the effects of RES on STAT3 expression and phosphorylation, and then on the proliferation and activation of astrocytes, a critical process in reactive astrogliosis, in rat primary cultured astrocytes and an in vitro scratch-wound model. RES downregulated the expression levels of STAT3, P-STAT3 and GFAP (glial fibrillary acidic protein) in cultured astrocytes. The positive index of Ki67 was apparently reduced in cultured astrocytes after RES treatment. Meanwhile, cultured astrocyte proliferation and activation were attenuated by RES. Moreover, in the established in vitro scratch-wound model the increased expression levels of STAT3, P-STAT3 and GFAP induced by scratching injury were also clearly inhibited by RES. In addition, the inhibitory effect of RES on cell proliferation was similar to that of AG490 (a selective inhibitor of STAT3 phosphorylation) and abrogated by Colivelin (a STAT3 activator) stimuli. Taken together, our data suggest that RES is able to inhibit reactive astrocyte proliferation and activation mainly via deactivating STAT3 pathway. So RES may have a therapeutic benefit for the treatment of the injured CNS.
Collapse
|
42
|
Hendouei F, Sanjari Moghaddam H, Mohammadi MR, Taslimi N, Rezaei F, Akhondzadeh S. Resveratrol as adjunctive therapy in treatment of irritability in children with autism: A double‐blind and placebo‐controlled randomized trial. J Clin Pharm Ther 2019; 45:324-334. [DOI: 10.1111/jcpt.13076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/01/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Fatemeh Hendouei
- Psychiatric Research Center Roozbeh Hospital Tehran University of Medical Sciences Tehran Iran
| | | | - Mohammad Reza Mohammadi
- Psychiatric Research Center Roozbeh Hospital Tehran University of Medical Sciences Tehran Iran
| | - Negin Taslimi
- Psychiatric Research Center Roozbeh Hospital Tehran University of Medical Sciences Tehran Iran
| | - Farzin Rezaei
- Qods Hospital Kurdistan University of Medical Sciences Sanandaj Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center Roozbeh Hospital Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
43
|
He J, Zhang A, Song Z, Guo S, Chen Y, Liu Z, Zhang J, Xu X, Liu J, Chu L. The resistant effect of SIRT1 in oxidative stress-induced senescence of rat nucleus pulposus cell is regulated by Akt-FoxO1 pathway. Biosci Rep 2019; 39:BSR20190112. [PMID: 30967498 PMCID: PMC6509061 DOI: 10.1042/bsr20190112] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/07/2019] [Indexed: 01/03/2023] Open
Abstract
Objective: The senescence of nucleus pulposus (NP) cells induced by oxidative stress is one of the important causes of intervertebral disc degeneration (IDD). Herein, we investigated the role and action mechanism of silent information regulator 1 (SIRT1) in oxidative stress-induced senescence of rat NP cell.Methods: Premature senescence of rat NP cells was induced by sublethal concentration of hydrogen peroxide (H2O2) (100 μM). SIRT1 was activated with SRT1720 (5 μM) to explore its effect on NP cells senescence. FoxO1 and Akt were inhibited by AS1842856 (0.2 μM) and MK-2206 (5 μM), respectively, to explore the role of Akt-FoxO1-SIRT1 axis in rat NP cells. Pretreatment with the resveratrol (20 μM), a common antioxidant and indirect activator of SIRT1, was done to investigate its role in senescent rat NP cells.Results: The mRNA and protein levels of SIRT1 were decreased in H2O2-induced senescent rat NP cells, and that specific activation of SIRT1 suppresses senescence. And the Akt-FoxO1 pathway, as the upstream of SIRT1, might be involved in the regulation of H2O2-induced senescence of rat NP cells by affecting the expression of SIRT1. In addition, the resveratrol played an anti-senescence role in rat NP cells, which might affect the Akt-FoxO1-SIRT1 axis.Conclusion: SIRT1 ameliorated oxidative stress-induced senescence of rat NP cell which was regulated by Akt-FoxO1 pathway, and resveratrol exerted anti-senescence effects by affecting this signaling axis.
Collapse
Affiliation(s)
- Junsheng He
- Department of Spinal surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ailiang Zhang
- Department of Spinal surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhiwen Song
- Department of Spinal surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Shiwu Guo
- Department of Spinal surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yuwei Chen
- Department of Spinal surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhiyuan Liu
- Department of Spinal surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Department of Orthopedics, The Affiliated Wujin Hospital of Jiangsu University, Changzhou 213003, China
| | - Jinlong Zhang
- Department of Spinal surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Xu Xu
- Department of Spinal surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Jinbo Liu
- Department of Spinal surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Lei Chu
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
44
|
Dumont U, Sanchez S, Olivier B, Chateil JF, Pellerin L, Beauvieux MC, Bouzier-Sore AK, Roumes H. Maternal consumption of piceatannol: A nutritional neuroprotective strategy against hypoxia-ischemia in rat neonates. Brain Res 2019; 1717:86-94. [PMID: 30991041 DOI: 10.1016/j.brainres.2019.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 11/19/2022]
Abstract
Hypoxia-ischemia (HI) remains a major cause of perinatal mortality and chronic disability in newborns worldwide (1-6 for 1000 births) with a high risk of future motor, behavioral and neurological deficits. Keeping newborns under moderate hypothermia is the unique therapeutic approach but is not sufficiently successful as nearly 50% of infants do not respond to it. In a 7-day post-natal rat model of HI, we used pregnant and breastfeeding female nutritional supplementation with piceatannol (PIC), a polyphenol naturally found in berries, grapes and passion fruit, as a neuroprotective strategy. Maternal supplementation led to neuroprotection against neonate brain damage and reversed their sensorimotor deficits as well as cognitive impairments. Neuroprotection of per os maternal supplementation with PIC is a preventive strategy to counteract brain damage in pups induced by HI. This nutritional approach could easily be adopted as a preventive strategy in humans.
Collapse
Affiliation(s)
- Ursule Dumont
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Stéphane Sanchez
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Benjamin Olivier
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Jean-François Chateil
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Luc Pellerin
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France; Department of Physiology, 7 Rue du Bugnon, CH1005 Lausanne, Switzerland.
| | | | - Anne-Karine Bouzier-Sore
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Hélène Roumes
- CRMSB, UMR 5536, CNRS/University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France.
| |
Collapse
|
45
|
Cao P, Zhang J, Huang Y, Fang Y, Lyu J, Shen Y. The age-related changes and differences in energy metabolism and glutamate-glutamine recycling in the d-gal-induced and naturally occurring senescent astrocytes in vitro. Exp Gerontol 2019; 118:9-18. [PMID: 30610899 DOI: 10.1016/j.exger.2018.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023]
Abstract
Previously, we successfully established a d-galactose (d-gal)-induced astrocyte aging model in vitro. However, whether the changes in the aged astrocytes induced by d-gal are similar to those occurred in naturally are unknown. Therefore, in current study, we simultaneously established d-gal-induced and naturally aged astrocyte aging models in vitro to explore the age-related changes and to compare the differences in these two astrocyte aging models. The Seahorse Extracellular Flux Analyzer was used to examine the mitochondrial metabolism and glycolysis activities of the young and senescent astrocytes. The results showed that the mitochondrial ATP-linked oxygen consumption rates (OCRs) were decreased markedly both in the d-gal-induced and naturally occurring senescent astrocytes. The basal glycolysis activity was increased in the naturally occurring senescent astrocytes, whereas it was decreased in the d-gal-induced senescent astrocytes. Western blot analysis showed that isocitrate dehydrogenase 3 (IDH3), succinate dehydrogenase (SDH) and malate dehydrogenase 2 (MDH2) were markedly decreased both in these two aging models, whereas the iron‑sulfur cluster assembly enzyme (ISCU) was up-regulated in the naturally occurring senescent astrocytes but was down-regulated in the d-gal-induced senescent astrocytes. The expression levels of glial glutamate transporter-1 (GLT-1), glutamine synthetase (GS) and γ-aminobutyric acid type B receptor subunit 2 (GABABR2) were also markedly decreased in these two aging models. In addition, the PI3K/AKT signaling pathway was to be inactivated both in the d-gal-induced and naturally occurring senescent astrocytes. These results indicate that the age-related changes in d-gal-induced senescent astrocytes are not fully consistent with those in naturally occurring senescent astrocytes, and it may be not suitable to use d-gal-induced senescent astrocytes to replace the naturally occurring senescent astrocytes to explore the aging mechanisms under some circumstances.
Collapse
Affiliation(s)
- Pei Cao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jingjing Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuyan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yujia Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China; Zhejiang Provincial People's Hospital, Affliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Yao Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
46
|
Tian M, Xie Y, Meng Y, Ma W, Tong Z, Yang X, Lai S, Zhou Y, He M, Liao Z. Resveratrol protects cardiomyocytes against anoxia/reoxygenation via dephosphorylation of VDAC1 by Akt-GSK3 β pathway. Eur J Pharmacol 2018; 843:80-87. [PMID: 30445019 DOI: 10.1016/j.ejphar.2018.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Our previous studies showed that the effect of resveratrol preventing mitochondrial permeability transition pore (mPTP) opening in myocardial ischemia/reperfusion injury was achieved by regulating voltage-dependent anion channel 1 (VDAC1). However, the underlying mechanism remains unclear. Previous studies demonstrated that the activity and function of VDAC1 are highly regulated by post-translational modification. In present study, we investigated whether resveratrol modulates VDAC1 phosphorylation to achieve cardioprotection and explored the signaling pathways involved. Our findings demonstrated that anoxia/reoxygenation (A/R) treatment, an ischemia/reperfusion model in vitro, enhanced VDAC1 phosphorylation in cardiomyocytes. Moreover, we found phosphorylated VDAC1 showed increased affinity to Bax, whereas interaction with hexokinase 2 (HK2) was reduced. Accordingly, the generation of reactive oxygen species increased, the mitochondrial membrane potential collapsed, mPTP opening increased and cytochrome c released into cytoplasm, thereby leading to increased apoptosis. Moreover, our data showed that pretreatment with resveratrol prior to A/R injury inhibited VDAC1 phosphorylation. Dephosphorylated VDAC1 using pretreated resveratrol promoted dissociation with Bax and binding to HK2, which subsequently protected cardiomyocytes against A/R injury. In addition, Akt and its downstream glycogen synthase kinase 3 β (GSK3β) were phosphorylated by the action of resveratrol. Akt inhibitor IV abrogated Akt-GSK3β phosphorylation and thereby abolished the dephosphorylation activity of resveratrol on VDAC1. Moreover, all resveratrol-mediated protective effects on A/R injured cardiomyocytes were abolished by Akt inhibitor IV. Taken together, our data indicated that A/R injury enhanced VDAC1 phosphorylation in cardiomyocytes, whereas pretreatment with resveratrol dephosphorylated VDAC1 through the Akt-GSK3β pathway, thereby protecting cardiomyocytes against A/R injury.
Collapse
Affiliation(s)
- Mengyuan Tian
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
| | - Yongyan Xie
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, PR China
| | - Yan Meng
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Wen Ma
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Zhihong Tong
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Xiaomei Yang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Songqing Lai
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Yue Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Ming He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
47
|
Examining the relationship between nutrition and cerebral structural integrity in older adults without dementia. Nutr Res Rev 2018; 32:79-98. [PMID: 30378509 DOI: 10.1017/s0954422418000185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The proportion of adults aged 60 years and over is expected to increase over the coming decades. This ageing of the population represents an important health issue, given that marked reductions to cerebral macro- and microstructural integrity are apparent with increasing age. Reduced cerebral structural integrity in older adults appears to predict poorer cognitive performance, even in the absence of clinical disorders such as dementia. As such, it is becoming increasingly important to identify those factors predicting cerebral structural integrity, especially factors that are modifiable. One such factor is nutritional intake. While the literature is limited, data from available cross-sectional studies indicate that increased intake of nutrients such as B vitamins (for example, B6, B12 and folate), choline, n-3 fatty acids and vitamin D, or increased adherence to prudent whole diets (for example, the Mediterranean diet) predicts greater cerebral structural integrity in older adults. There is even greater scarcity of randomised clinical trials investigating the effects of nutritional supplementation on cerebral structure, though it appears that supplementation with B vitamins (B6, B12 and folic acid) or n-3 fatty acids (DHA or EPA) may be beneficial. The current review presents an overview of available research examining the relationship between key nutrients or adherence to select diets and cerebral structural integrity in dementia-free older adults.
Collapse
|
48
|
Sebastiano M, Eens M, Messina S, AbdElgawad H, Pineau K, Beemster GTS, Chastel O, Costantini D. Resveratrol supplementation reduces oxidative stress and modulates the immune response in free‐living animals during a viral infection. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Manrico Sebastiano
- Department of Biology, Behavioural Ecology and Ecophysiology GroupUniversity of Antwerp Antwerp Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology GroupUniversity of Antwerp Antwerp Belgium
| | - Simone Messina
- Department of Biology, Behavioural Ecology and Ecophysiology GroupUniversity of Antwerp Antwerp Belgium
| | - Hamada AbdElgawad
- Department of Biology, Integrated Molecular Plant Physiology Research (IMPRES)University of Antwerp Antwerp Belgium
| | - Kévin Pineau
- Groupe d'Etude et de Protection des Oiseaux en Guyane (GEPOG) Cayenne French Guiana
| | - Gerrit T. S. Beemster
- Department of Biology, Integrated Molecular Plant Physiology Research (IMPRES)University of Antwerp Antwerp Belgium
| | - Olivier Chastel
- Centre d’Etudes Biologiques de Chizé (CEBC)UMR7372 ‐ CNRS/University of La Rochelle La Rochelle France
| | - David Costantini
- Department of Biology, Behavioural Ecology and Ecophysiology GroupUniversity of Antwerp Antwerp Belgium
- UMR 7221 CNRS/MNHN, Muséum National d'Histoire NaturelleSorbonne Universités Paris France
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of Glasgow Glasgow UK
| |
Collapse
|
49
|
Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, Zuo L. Role of ROS and Nutritional Antioxidants in Human Diseases. Front Physiol 2018; 9:477. [PMID: 29867535 PMCID: PMC5966868 DOI: 10.3389/fphys.2018.00477] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
The overproduction of reactive oxygen species (ROS) has been implicated in the development of various chronic and degenerative diseases such as cancer, respiratory, neurodegenerative, and digestive diseases. Under physiological conditions, the concentrations of ROS are subtlety regulated by antioxidants, which can be either generated endogenously or externally supplemented. A combination of antioxidant-deficiency and malnutrition may render individuals more vulnerable to oxidative stress, thereby increasing the risk of cancer occurrence. In addition, antioxidant defense can be overwhelmed during sustained inflammation such as in chronic obstructive pulmonary diseases, inflammatory bowel disease, and neurodegenerative disorders, cardiovascular diseases, and aging. Certain antioxidant vitamins, such as vitamin D, are essential in regulating biochemical pathways that lead to the proper functioning of the organs. Antioxidant supplementation has been shown to attenuate endogenous antioxidant depletion thus alleviating associated oxidative damage in some clinical research. However, some results indicate that antioxidants exert no favorable effects on disease control. Thus, more studies are warranted to investigate the complicated interactions between ROS and different types of antioxidants for restoration of the redox balance under pathologic conditions. This review highlights the potential roles of ROS and nutritional antioxidants in the pathogenesis of several redox imbalance-related diseases and the attenuation of oxidative stress-induced damages.
Collapse
Affiliation(s)
- Zewen Liu
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Anesthesiology, Affiliated Ezhou Central Hospital, Wuhan University, Ezhou, China
| | - Zhangpin Ren
- Department of Pediatrics, Affiliated Ezhou Central Hospital, Wuhan University, Ezhou, China
| | - Jun Zhang
- Department of Rehabilitation, Affiliated Ezhou Central Hospital, Wuhan University, Ezhou, China
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Eswar Kandaswamy
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
50
|
Daverey A, Agrawal SK. Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress. Brain Res 2018; 1692:45-55. [PMID: 29729252 DOI: 10.1016/j.brainres.2018.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 10/17/2022]
Abstract
The two most studied polyphenolic compounds, curcumin (Cur) and resveratrol (Res), have been reported to protect oxidative damage of astrocytes. The present study is designed to examine the comparative anti-oxidative effect of Cur and Res on astrocytes by studying their potential to protect H2O2 induced oxidative stress at 4 h and 24 h time exposure. The effect of Cur and Res on cell viability, ROS production, inflammation and astrogliosis was compared. The effect of these two on Nrf2 expression and its translocation to nuclear compartment was investigated. The results showed that both Cur and Res significantly increase astrocytes survival after oxidative stress at both time points, however, Res demonstrated better effect on cell viability than the Cur. Res, showing significant inhibition of ROS production at both time points. Cur displayed significant inhibition of ROS production at 4 h, suggesting that Cur is more active on ROS inhibition in the earlier phase of insult. Comparing the expression of NF-κB, Cur showed better anti-inflammatory action on NF-κB while Res did not have any effect of NF-κB expression at 4 h. Interestingly, Cur showed an upregulation of nuclear Nrf2 expression at 24 h whereas Res displayed no effect after 24 h incubation. Both Cur and Res inhibited the H2O2 induced translocation of Nrf2 into nucleus. In conclusion, based on our observation, we found that Cur and Res both protected astrocytes from oxidative stress. In addition, we observed that Cur is most effective in early hours of insult while Res is effective in late hours suggesting that Res may or may not have immediate effect on astrocytes.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Surgery, Division of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sandeep K Agrawal
- Department of Surgery, Division of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|