1
|
Boroumand N, Baghdissar C, Elihn K, Lundholm L. Nicotine interacts with DNA lesions induced by alpha radiation which may contribute to erroneous repair in human lung epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117009. [PMID: 39244876 DOI: 10.1016/j.ecoenv.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE Epidemiological studies show that radon and cigarette smoke interact in inducing lung cancer, but the contribution of nicotine in response to alpha radiation emitted by radon is not well understood. MATERIALS AND METHODS Bronchial epithelial BEAS-2B cells were either pre-treated with 2 µM nicotine during 16 h, exposed to radiation, or the combination. DNA damage, cellular and chromosomal alterations, oxidative stress as well as inflammatory responses were assessed to investigate the role of nicotine in modulating responses. RESULTS Less γH2AX foci were detected at 1 h after alpha radiation exposure (1-2 Gy) in the combination group versus alpha radiation alone, whereas nicotine alone had no effect. Comet assay showed less DNA breaks already just after combined exposure, supported by reduced p-ATM, p-DNA-PK, p-p53 and RAD51 at 1 h, compared to alpha radiation alone. Yet the frequency of translocations was higher in the combination group at 27 h after irradiation. Although nicotine did not alter G2 arrest at 24 h, it assisted in cell cycle progression at 48 h post radiation. A slightly faster recovery was indicated in the combination group based on cell viability kinetics and viable cell counts, and significantly using colony formation assay. Pan-histone acetyl transferase inhibition using PU139 blocked the reduction in p-p53 and γH2AX activation, suggesting a role for nicotine-induced histone acetylation in enabling rapid DNA repair. Nicotine had a modest effect on reactive oxygen species induction, but tended to increase alpha particle-induced pro-inflammatory IL-6 and IL-1β (4 Gy). Interestingly, nicotine did not alter gamma radiation-induced γH2AX foci. CONCLUSIONS This study provides evidence that nicotine modulates alpha-radiation response by causing a faster but more error-prone repair, as well as rapid recovery, which may allow expansion of cells with genomic instabilities. These results hold implications for estimating radiation risk among nicotine users.
Collapse
Affiliation(s)
- Nadia Boroumand
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Carol Baghdissar
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, Sweden
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden.
| |
Collapse
|
2
|
Nicotine Inhibits the Cytotoxicity and Genotoxicity of NNK Mediated by CYP2A13 in BEAS-2B Cells. Molecules 2022; 27:molecules27154851. [PMID: 35956805 PMCID: PMC9369970 DOI: 10.3390/molecules27154851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Both tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and nicotine can be metabolized by cytochrome P450 2A13 (CYP2A13). Previous studies have shown that nicotine has a potential inhibitory effect on the toxicity of NNK. However, due to the lack of CYP2A13 activity in conventional lung cell lines, there had been no systematic in vitro investigation for the key target organ, the lung. Here, BEAS-2B cells stably expressing CYP2A13 (B-2A13 cells) were constructed to investigate the effects of nicotine on the cytotoxicity and genotoxicity of NNK. The results showed more sensitivity for NNK-induced cytotoxicity in B-2A13 cells than in BEAS-2B and B-vector cells. NNK significantly induced DNA damage, cell cycle arrest, and chromosomal damage in B-2A13 cells, but had no significant effect on BEAS-2B cells and the vector control cells. The combination of different concentration gradient of nicotine without cytotoxic effects and a single concentration of NNK reduced or even counteracted the cytotoxicity and multi-dimensional genotoxicity in a dose-dependent manner. In conclusion, CYP2A13 caused the cytotoxicity and genotoxicity of NNK in BEAS-2B cells, and the addition of nicotine could inhibit the toxicity of NNK.
Collapse
|
3
|
Cardoso ADOP, Pecli E Silva C, Dos Anjos FDF, Quesnot N, Valenca HDM, Cattani-Cavalieri I, Brito-Gitirana L, Valenca SS, Lanzetti M. Diallyl disulfide prevents cigarette smoke-induced emphysema in mice. Pulm Pharmacol Ther 2021; 69:102053. [PMID: 34214692 DOI: 10.1016/j.pupt.2021.102053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Cigarette smoke (CS) is the main risk factor for the development of chronic obstructive pulmonary disease (COPD) and pulmonary emphysema. The use of antioxidants has emerged as a potential therapeutic strategy to treat airway inflammation and lung diseases. In the current study, we investigated the potential therapeutic impact of diallyl disulfide (Dads) treatment in a murine model of CS-induced emphysema. METHODS C57BL/6 mice were exposed to CS for 60 consecutive days and treated with vehicle or Dads (30, 60 or 90 mg/kg) by oral gavage for the last 30 days, three times/week. The control group was sham-smoked and received vehicle treatment. All mice were euthanized 24 h after day 60; bronchoalveolar lavage (BAL) was performed and lungs were processed for further experimentation. Histological (HE stained sections, assessment of mean linear intercept (Lm)), biochemical (nitrite, superoxide dismutase (SOD), glutathione transferase (GST), and malondialdehyde (MDA) equivalents), and molecular biology (metalloproteinase (MMP) 12, SOD2, carbonyl reductase 1 (CBR1), nitrotyrosine (PNK), 4-hydroxynonenal (4-HNE), and CYP2E1) analyses were performed. RESULTS Treatment with Dads dose-dependently reduced CS-induced leukocyte infiltration into the airways (based on BAL fluid counts) and improved lung histology (indicated by a reduction of Lm). Furthermore, CS exposure dramatically reduced the activity of the antioxidant enzymes SOD and GST in lung tissue and increased nitrite and MDA levels in BAL; these effects were all effectively counteracted by Dads treatment. Western blot analysis further confirmed the antioxidant potential of Dads, showing that treatment prevented the CS-induced decrease in SOD2 expression and increase in lung damage markers, such as CBR1, PNK, and 4-HNE. Furthermore, increased MMP12 (an important hallmark of CS-induced emphysema) and CYP2E1 lung protein levels were significantly reduced in mice receiving Dads treatment. CONCLUSION Our findings demonstrate that treatment with Dads is effective in preventing multiple pathological features of CS-induced emphysema in an in vivo mouse model. In addition, we have identified several proteins/enzymes, including 4-HNE, CBR1, and CYP2E1, that are modifiable by Dads and could represent specific therapeutic targets for the treatment of COPD and emphysema.
Collapse
Affiliation(s)
| | - Cyntia Pecli E Silva
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Nicolas Quesnot
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helber da Maia Valenca
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lycia Brito-Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel Santos Valenca
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Manuella Lanzetti
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Grünig D, Szabo L, Marbet M, Krähenbühl S. Valproic acid affects fatty acid and triglyceride metabolism in HepaRG cells exposed to fatty acids by different mechanisms. Biochem Pharmacol 2020; 177:113860. [PMID: 32165129 DOI: 10.1016/j.bcp.2020.113860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022]
Abstract
Treatment with valproate is associated with hepatic steatosis, but the mechanisms are not fully elucidated in human cell systems. We therefore investigated the effects of valproate on fatty acid and triglyceride metabolism in HepaRG cells, a human hepatoma cell line. In previously fatty acid loaded HepaRG cells, valproate impaired lipid droplet disposal starting at 1 mM after incubation for 3 or 7 days. Valproate increased the expression of genes associated with fatty acid import and triglyceride synthesis, but did not relevantly affect expression of genes engaged in fatty acid activation. Valproate impaired mitochondrial fatty acid metabolism by inhibiting β-ketothiolase and the function of the electron transport chain, which was associated with increased mitochondrial reactive oxygen species production. Valproate increased the mitochondrial DNA copy number per HepaRG cell, possibly as a consequence of impaired mitochondrial function. Valproate decreased the hepatocellular mRNA and protein expression of the fatty acid binding protein 1 (FABP1) and of the microsomal triglyceride transfer protein (MTTP) at 1 mM and increased the hepatocellular concentration of free fatty acids. Furthermore, valproate decreased protein expression and excretion of ApoB100 in HepaRG cells at 1 mM, reflecting impaired formation and excretion of very low-density lipoprotein (VLDL). In conclusion, valproate increased the hepatocellular triglyceride content by multiple mechanisms, whereby impaired expression of FABP1 and MTTP as well as impaired VLDL formation and excretion appeared to be dominant. Valproate caused cell death mainly by apoptosis, which may be a consequence of mitochondrial oxidative stress and increased hepatocellular concentration of free fatty acids.
Collapse
Affiliation(s)
- David Grünig
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Leonora Szabo
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Martina Marbet
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Switzerland.
| |
Collapse
|
5
|
Mišík M, Nersesyan A, Ropek N, Huber WW, Haslinger E, Knasmueller S. Use of human derived liver cells for the detection of genotoxins in comet assays. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:402995. [DOI: 10.1016/j.mrgentox.2018.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 04/09/2023]
|
6
|
In vitro metabolism of N′-Nitrosonornicotine catalyzed by cytochrome P450 2A13 and its inhibition by nicotine, N′-Nitrosoanatabine and N′-Nitrosoanabasine. Chem Biol Interact 2016; 260:263-269. [DOI: 10.1016/j.cbi.2016.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/04/2016] [Accepted: 08/24/2016] [Indexed: 01/02/2023]
|
7
|
Liu X, Zhang J, Zhang C, Yang B, Wang L, Zhou J. The inhibition of cytochrome P450 2A13-catalyzed NNK metabolism by NAT, NAB and nicotine. Toxicol Res (Camb) 2016; 5:1115-1121. [PMID: 30090417 DOI: 10.1039/c6tx00016a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/24/2016] [Indexed: 11/21/2022] Open
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is considered to be the most carcinogenic of the four tobacco-specific nitrosamines (TSNAs) and it needs to be metabolically activated to exert its carcinogenic effect on humans. For the simultaneous intake of NNK and other compounds with similar molecular structures in the context of tobacco smoke, whether (R,S)-N-nitrosoanatabine (NAT), (R,S)-N-nitrosoanabasine (NAB) and nicotine contribute to the inhibitory potency of the cytochrome P450 (CYP) enzyme-catalyzed NNK metabolism or not needs to be investigated. In the in vitro study, 4-oxo-4-(3-pyridyl) butanal (OPB), 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) and 4-oxo-4-(3-pyridyl) butanoic acid (OPBA) were established as the products of the CYP2A13-catalyzed NNK metabolism and the kinetic parameters were calculated from the Michaelis-Menten equation. Addition of NAT, NAB or nicotine resulted in a competitive inhibition for the NNK metabolism catalyzed by CYP2A13. The inhibition constant Ki values were calculated to be 0.21 μM (NAT), 0.23 μM (NAB) and 8.51 μM (nicotine) for OPB formation; 0.71 μM (NAT), 0.87 μM (NAB) and 25.01 μM (nicotine) for HPB formation and 0.36 μM (NAT), 0.50 μM (NAB) and 6.57 μM (nicotine) for OPBA formation, respectively. In addition, the study of the transformation of the three metabolites revealed OPB was not only an end product but also an intermediate product of the CYP2A13-catalyzed NNK metabolism. These results suggest that structurally similar tobacco constituents with weak or no carcinogenicity influence the metabolic activation of NNK, which interferes with its carcinogenicity to some extent.
Collapse
Affiliation(s)
- Xingyu Liu
- Shanghai Tobacco Group Corporation , 99 Wansheng South Street , Tongzhou District , Beijing 101121 , China
| | - Jie Zhang
- Shanghai Tobacco Group Corporation , 99 Wansheng South Street , Tongzhou District , Beijing 101121 , China
| | - Chen Zhang
- Shanghai Tobacco Group Corporation , 99 Wansheng South Street , Tongzhou District , Beijing 101121 , China
| | - Bicheng Yang
- Jiangxi Provincial Maternal and Child Health Hospital , 318 Bayi Road , Nanchang 330006 , Jiangxi , China
| | - Limeng Wang
- Dalian Institute of Chemical Physics , University of Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , Liaoning , China.,Zhengzhou Tobacco Research Institute , 2 Fengyang Road , Zhengzhou 450001 , Henan , China
| | - Jun Zhou
- Shanghai Tobacco Group Corporation , 99 Wansheng South Street , Tongzhou District , Beijing 101121 , China
| |
Collapse
|
8
|
Roy DN, Goswami R. Drugs of abuse and addiction: A slippery slope toward liver injury. Chem Biol Interact 2015; 255:92-105. [PMID: 26409324 DOI: 10.1016/j.cbi.2015.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 02/08/2023]
Abstract
Substances of abuse induce alteration in neurobehavioral symptoms, which can lead to simultaneous exacerbation of liver injury. The biochemical changes of liver are significantly observed in the abused group of people using illicit drugs or drugs that are abused. A huge amount of work has been carried out by scientists for validation experiments using animal models to assess hepatotoxicity in cases of drugs of abuse. The risk of hepatotoxicity from these psychostimulants has been determined by different research groups. Hepatotoxicity of these drugs has been recently highlighted and isolated case reports always have been documented in relation to misuse of the drugs. These drugs induce liver toxicity on acute or chronic dose dependent process, which ultimately lead to liver damage, acute fatty infiltration, cholestatic jaundice, liver granulomas, hepatitis, liver cirrhosis etc. Considering the importance of drug-induced hepatotoxicity as a major cause of liver damage, this review emphasizes on various drugs of abuse and addiction which induce hepatotoxicity along with their mechanism of liver damage in clinical aspect as well as in vitro and in vivo approach. However, the mechanisms of drug-induced hepatotoxicity is dependent on reactive metabolite formation via metabolism, modification of covalent bonding between cellular components with drug and its metabolites, reactive oxygen species generation inside and outside of hepatocytes, activation of signal transduction pathways that alter cell death or survival mechanism, and cellular mitochondrial damage, which leads to alteration in ATP generation have been notified here. Moreover, how the cytokines are modulated by these drugs has been mentioned here.
Collapse
Affiliation(s)
- Dijendra Nath Roy
- Department of Bio Engineering, National Institute of Technology (NIT)-Agartala, West Tripura, Tripura 799046, India.
| | - Ritobrata Goswami
- Institute of Life Sciences, Ahmedabad University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
9
|
Quesnot N, Rondel K, Audebert M, Martinais S, Glaise D, Morel F, Loyer P, Robin MA. Evaluation of genotoxicity using automated detection of γH2AX in metabolically competent HepaRG cells. Mutagenesis 2015; 31:43-50. [PMID: 26282955 DOI: 10.1093/mutage/gev059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The in situ detection of γH2AX was recently reported to be a promising biomarker of genotoxicity. In addition, the human HepaRG hepatoma cells appear to be relevant for investigating hepatic genotoxicity since they express most of drug metabolizing enzymes and a wild type p53. The aim of this study was to determine whether the automated in situ detection of γH2AX positive HepaRG cells could be relevant for evaluation of genotoxicity after single or long-term repeated in vitro exposure compared to micronucleus assay. Metabolically competent HepaRG cells were treated daily with environmental contaminants and genotoxicity was evaluated after 1, 7 and 14 days. Using these cells, we confirmed the genotoxicity of aflatoxin B1 and benzo(a)pyrene and demonstrated that dimethylbenzanthracene, fipronil and endosulfan previously found genotoxic with comet or micronucleus assays also induced γH2AX phosphorylation. Furthermore, we showed that fluoranthene and bisphenol A induced γH2AX while no effect had been previously reported in HepG2 cells. In addition, induction of γH2AX was observed with some compounds only after 7 days, highlighting the importance of studying long-term effects of low doses of contaminants. Together, our data demonstrate that automated γH2AX detection in metabolically competent HepaRG cells is a suitable high-through put genotoxicity screening assay.
Collapse
Affiliation(s)
- Nicolas Quesnot
- Liver, Metabolisms and Cancer, INSERM, UMR991, CHU Pontchaillou, F-35033 Rennes, France, Université de Rennes 1, F-35043 Rennes, France and
| | - Karine Rondel
- Liver, Metabolisms and Cancer, INSERM, UMR991, CHU Pontchaillou, F-35033 Rennes, France, Université de Rennes 1, F-35043 Rennes, France and
| | - Marc Audebert
- Research Centre in Food Toxicology, INRA, UMR1331, Toxalim, F-31027 Toulouse, France
| | - Sophie Martinais
- Liver, Metabolisms and Cancer, INSERM, UMR991, CHU Pontchaillou, F-35033 Rennes, France, Université de Rennes 1, F-35043 Rennes, France and
| | - Denise Glaise
- Liver, Metabolisms and Cancer, INSERM, UMR991, CHU Pontchaillou, F-35033 Rennes, France, Université de Rennes 1, F-35043 Rennes, France and
| | - Fabrice Morel
- Liver, Metabolisms and Cancer, INSERM, UMR991, CHU Pontchaillou, F-35033 Rennes, France, Université de Rennes 1, F-35043 Rennes, France and
| | - Pascal Loyer
- Liver, Metabolisms and Cancer, INSERM, UMR991, CHU Pontchaillou, F-35033 Rennes, France, Université de Rennes 1, F-35043 Rennes, France and
| | - Marie-Anne Robin
- Liver, Metabolisms and Cancer, INSERM, UMR991, CHU Pontchaillou, F-35033 Rennes, France, Université de Rennes 1, F-35043 Rennes, France and
| |
Collapse
|