1
|
Dowling CV, Cevaal PM, Faria M, Johnston ST. On predicting heterogeneity in nanoparticle dosage. Math Biosci 2022; 354:108928. [PMID: 36334785 DOI: 10.1016/j.mbs.2022.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022]
Abstract
Nanoparticles are increasingly employed as a vehicle for the targeted delivery of therapeutics to specific cell types. However, much remains to be discovered about the fundamental biology that dictates the interactions between nanoparticles and cells. Accordingly, few nanoparticle-based targeted therapeutics have succeeded in clinical trials. One element that hinders our understanding of nanoparticle-cell interactions is the presence of heterogeneity in nanoparticle dosage data obtained from standard experiments. It is difficult to distinguish between heterogeneity that arises from stochasticity in nanoparticle-cell interactions, and that which arises from heterogeneity in the cell population. Mathematical investigations have revealed that both sources of heterogeneity contribute meaningfully to the heterogeneity in nanoparticle dosage. However, these investigations have relied on simplified models of nanoparticle internalisation. Here we present a stochastic mathematical model of nanoparticle internalisation that incorporates a suite of relevant biological phenomena such as multistage internalisation, cell division, asymmetric nanoparticle inheritance and nanoparticle saturation. Critically, our model provides information about nanoparticle dosage at an individual cell level. We perform model simulations to examine the influence of specific biological phenomena on the heterogeneity in nanoparticle dosage in the absence of heterogeneity in the cell population. Under certain modelling assumptions, we derive analytic approximations of the nanoparticle dosage distribution. We demonstrate that the analytic approximations are accurate, and show that nanoparticle dosage can be described by a Poisson mixture distribution with rate parameters that are a function of Beta-distributed random variables. We discuss the implications of the analytic results with respect to parameter estimation and model identifiability from standard experimental data. Finally, we highlight extensions and directions for future research.
Collapse
Affiliation(s)
- Celia V Dowling
- School of Mathematics and Statistics, The University of Melbourne, Australia
| | - Paula M Cevaal
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Australia
| | - Stuart T Johnston
- School of Mathematics and Statistics, The University of Melbourne, Australia.
| |
Collapse
|
2
|
Pérez-Guaita D, Quintás G, Farhane Z, Tauler R, Byrne HJ. Combining Pharmacokinetics and Vibrational Spectroscopy: MCR-ALS Hard-and-Soft Modelling of Drug Uptake In Vitro Using Tailored Kinetic Constraints. Cells 2022; 11:1555. [PMID: 35563861 PMCID: PMC9099467 DOI: 10.3390/cells11091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Raman microspectroscopy is a label-free technique which is very suited for the investigation of pharmacokinetics of cellular uptake, mechanisms of interaction, and efficacies of drugs in vitro. However, the complexity of the spectra makes the identification of spectral patterns associated with the drug and subsequent cellular responses difficult. Indeed, multivariate methods that relate spectral features to the inoculation time do not normally take into account the kinetics involved, and important theoretical information which could assist in the elucidation of the relevant spectral signatures is excluded. Here, we propose the integration of kinetic equations in the modelling of drug uptake and subsequent cellular responses using Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and tailored kinetic constraints, based on a system of ordinary differential equations. Advantages of and challenges to the methodology were evaluated using simulated Raman spectral data sets and real Raman spectra acquired from A549 and Calu-1 human lung cells inoculated with doxorubicin, in vitro. The results suggest a dependency of the outcome on the system of equations used, and the importance of the temporal resolution of the data set to enable the use of complex equations. Nevertheless, the use of tailored kinetic constraints during MCR-ALS allowed a more comprehensive modelling of the system, enabling the elucidation of not only the time-dependent concentration profiles and spectral features of the drug binding and cellular responses, but also an accurate computation of the kinetic constants.
Collapse
Affiliation(s)
- David Pérez-Guaita
- FOCAS Research Institute, Technological University Dublin, City Campus, D08 CKP1 Dublin, Ireland;
- Department of Anaytical Chemistry, University of Valencia, 46100 Valencia, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Centre, 08028 Barcelona, Spain;
| | - Zeineb Farhane
- FOCAS Research Institute, Technological University Dublin, City Campus, D08 CKP1 Dublin, Ireland;
| | - Romá Tauler
- Institute of Environmental Assessment and Water Research (IDAEA)—Higher Council for Scientific Research (CSIC), 08043 Barcelona, Spain;
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, D08 CKP1 Dublin, Ireland;
| |
Collapse
|
3
|
Memarian P, Solouk A, Bagher Z, Akbari S, Nazarpak MH. Ionic conductive nanocomposite based on poly( l-lactic acid)/poly(amidoamine) dendrimerelectrospun nanofibrous for biomedical application. Biomed Mater 2021; 17. [PMID: 34731842 DOI: 10.1088/1748-605x/ac361d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
The modification of poly (l-lactic acid) (PLLA) electrospun nanofibrous scaffolds was carried out by blending with second-generation poly amidoamine (PAMAM) for enhancement of their ionic conductivity. The samples containing PLLA and various amounts of PAMAM (1%, 3%, 5%, and 7% by wt.) were fabricated by electrospinning techniques. The electrospun fibers were characterized using scanning electron microscopy (SEM), porosity, Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry, contact angle measurement, water uptake measurement, mechanical properties, and electrical properties. Furthermore,in vitrodegradation study and cell viability assay were investigated in biomaterial applications. Creating amide groups through aminolysis reaction was confirmed by FTIR analysis successfully. The results reveal that adding PAMAM caused an increase in fiber diameter, crystallinity percentage, hydrophilicity, water absorption, elongation-at-break, and OE-mesenchymal stem cell viability. It is worth mentioning that this is the first report investigating the conductivity of PLLA/PAMAM nanofiber. The results revealed that by increasing the amount of PAMAM, the ionic conductivity of scaffolds was enhanced by about nine times. Moreover, the outcomes indicated that the presence of PAMAM could improve the limitations of PLLA like hydrophobicity, lack of active group, and poor cell adhesion.
Collapse
Affiliation(s)
- Paniz Memarian
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, Tehran, Iran
| | - Atefeh Solouk
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, Tehran, Iran
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine,, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Akbari
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
4
|
Byrne HJ, Bonnier F, Efeoglu E, Moore C, McIntyre J. In vitro Label Free Raman Microspectroscopic Analysis to Monitor the Uptake, Fate and Impacts of Nanoparticle Based Materials. Front Bioeng Biotechnol 2020; 8:544311. [PMID: 33195114 PMCID: PMC7658377 DOI: 10.3389/fbioe.2020.544311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023] Open
Abstract
The continued emergence of nanoscale materials for nanoparticle-based therapy, sensing and imaging, as well as their more general adoption in a broad range of industrial applications, has placed increasing demands on the ability to assess their interactions and impacts at a cellular and subcellular level, both in terms of potentially beneficial and detrimental effects. Notably, however, many such materials have been shown to interfere with conventional in vitro cellular assays that record only a single colorimetric end-point, challenging the ability to rapidly screen cytological responses. As an alternative, Raman microspectroscopy can spatially profile the biochemical content of cells, and any changes to it as a result of exogenous agents, such as toxicants or therapeutic agents, in a label free manner. In the confocal mode, analysis can be performed at a subcellular level. The technique has been employed to confirm the cellular uptake and subcellular localization of polystyrene nanoparticles (PSNPs), graphene and molybdenum disulfide micro/nano plates (MoS2), based on their respective characteristic spectroscopic signatures. In the case of PSNPs it was further employed to identify their local subcellular environment in endosomes, lysosomes and endoplasmic reticulum, while for MoS2 particles, it was employed to monitor subcellular degradation as a function of time. For amine functionalized PSNPs, the potential of Raman microspectroscopy to quantitatively characterize the dose and time dependent toxic responses has been explored, in a number of cell lines. Comparing the responses to those of poly (amidoamine) nanoscale polymeric dendrimers, differentiation of apoptotic and necrotic pathways based on the cellular spectroscopic responses was demonstrated. Drawing in particular from the experience of the authors, this paper details the progress to date in the development of applications of Raman microspectroscopy for in vitro, label free analysis of the uptake, fate and impacts of nanoparticle based materials, in vitro, and the prospects for the development of a routine, label free high content spectroscopic analysis technique.
Collapse
Affiliation(s)
- Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Franck Bonnier
- UFR Sciences Pharmaceutiques, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Esen Efeoglu
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Caroline Moore
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Jennifer McIntyre
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Cold Atmospheric Plasma Stimulates Clathrin-Dependent Endocytosis to Repair Oxidised Membrane and Enhance Uptake of Nanomaterial in Glioblastoma Multiforme Cells. Sci Rep 2020; 10:6985. [PMID: 32332819 PMCID: PMC7181794 DOI: 10.1038/s41598-020-63732-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/25/2020] [Indexed: 01/16/2023] Open
Abstract
Cold atmospheric plasma (CAP) enhances uptake and accumulation of nanoparticles and promotes synergistic cytotoxicity against cancer cells. However, the mechanisms are not well understood. In this study, we investigate the enhanced uptake of theranostic nanomaterials by CAP. Numerical modelling of the uptake of gold nanoparticle into U373MG Glioblastoma multiforme (GBM) cells predicts that CAP may introduce a new uptake route. We demonstrate that cell membrane repair pathways play the main role in this stimulated new uptake route, following non-toxic doses of dielectric barrier discharge CAP. CAP treatment induces cellular membrane damage, mainly via lipid peroxidation as a result of reactive oxygen species (ROS) generation. Membranes rich in peroxidised lipids are then trafficked into cells via membrane repairing endocytosis. We confirm that the enhanced uptake of nanomaterials is clathrin-dependent using chemical inhibitors and silencing of gene expression. Therefore, CAP-stimulated membrane repair increases endocytosis and accelerates the uptake of gold nanoparticles into U373MG cells after CAP treatment. We demonstrate the utility of CAP to model membrane oxidative damage in cells and characterise a previously unreported mechanism of membrane repair to trigger nanomaterial uptake. This knowledge will underpin the development of new delivery strategies for theranostic nanoparticles into cancer cells.
Collapse
|
6
|
Forest V, Hochepied JF, Pourchez J. Importance of Choosing Relevant Biological End Points To Predict Nanoparticle Toxicity with Computational Approaches for Human Health Risk Assessment. Chem Res Toxicol 2019; 32:1320-1326. [PMID: 31243983 DOI: 10.1021/acs.chemrestox.9b00022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Because it is impossible to assess in vitro or in vivo the toxicity of all nanoparticles available on the market on a case-by-case basis, computational approaches have been proposed as useful alternatives to predict in silico the hazard potential of engineered nanoparticles. Despite promising results, a major issue associated with these mathematical models lies in the a priori choice of the physicochemical descriptors and the biological end points. We performed a thorough bibliographic survey on the biological end points used for nanotoxicology purposes and compared them between experimental and computational approaches. They were found to be disparate: while conventional in vitro nanotoxicology assays usually investigate a large array of biological effects using eukaryotic cells (cytotoxicity, pro-inflammatory response, oxidative stress, genotoxicity), computational studies mostly focus on cell viability and also include studies on prokaryotic cells. We may thus wonder the relevance of building complex mathematical models able to predict accurately a biological end point if this latter is not the most relevant to support human health risk assessment. The choice of biological end points clearly deserves to be more carefully discussed. This could bridge the gap between experimental and computational nanotoxicology studies and allow in silico predictive models to reach their full potential.
Collapse
Affiliation(s)
- Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet , INSERM, U 1059 Sainbiose, Centre CIS , F-42023 Saint-Etienne , France
| | - Jean-François Hochepied
- MINES ParisTech , PSL Research University , MAT - Centre des matériaux, CNRS UMR 7633 , BP 87 91003 Evry , France.,UCP, ENSTA ParisTech , Université Paris-Saclay , 828 bd des Maréchaux , 91762 Palaiseau cedex , France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet , INSERM, U 1059 Sainbiose, Centre CIS , F-42023 Saint-Etienne , France
| |
Collapse
|
7
|
Oikiri H, Asano Y, Matsusaki M, Akashi M, Shimoda H, Yokoyama Y. Inhibitory effect of carbonyl reductase 1 against peritoneal progression of ovarian cancer: evaluation by ex vivo 3D-human peritoneal model. Mol Biol Rep 2019; 46:4685-4697. [PMID: 31025149 DOI: 10.1007/s11033-019-04788-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022]
Abstract
The current authors previously reported that a carbonyl reductase 1 (CR1) DNA-dendrimer complex could potentially be used in gene therapy for peritoneal metastasis of ovarian cancer. The aims of the current study were to observe the cellular dynamics of peritoneal metastasis of epithelial ovarian cancer cells and to ascertain changes in the dynamics of ovarian cancer cells as a result of transfection of CR1 DNA. (1) Artificial human peritoneal tissue (AHPT) was seeded with serous ovarian cancer cells, and the process leading to development of peritoneal carcinomatosis was observed over time. (2) Peritoneal carcinomatosis was produced in mice and compared to a model using AHPT to determine the appropriateness of AHPT. (3) CR1 DNA was transfected into cancer cells seeded on AHPT, and the dynamics of cancer cells were observed over time. (1) Cancer cells perforated the mesothelium, leaving normal mesothelium intact. However, the cells proliferated between the layers of the mesothelium, forming a mass. After 24 h, cancer cells had invaded the lymphatics, and after 48-72 h cancer cells had invaded deep into the mesothelium, where they formed a mass. (2) Invasion of the peritoneum by cancer cells in a murine model of peritoneal carcinomatosis resembled that in a model using AHPT, and results substantiated the reproducibility of peritoneal carcinomatosis in AHPT. (3) Proliferation of cells transfected with CR1 DNA was significantly inhibited on AHPT, and necrosis was evident. Nevertheless, cancer cell invasion deep into the mesothelium was not inhibited. Use of a new tool, AHPT, in an in vitro model of peritoneal metastasis revealed that CR1 DNA inhibited cancer cell proliferation. CR1 DNA does not play a role in inhibiting invasion of the mesothelium during peritoneal metastasis, but it does affect cancer cell proliferation. Results suggested that CR1 DNA inhibits cancer cell proliferation via necrosis.
Collapse
Affiliation(s)
- Hiroe Oikiri
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hirosaki University, 5 Zaifu, Hirosaki, 036-8562, Japan
| | - Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology, Graduate School of Medicine, Hirosaki University, 5 Zaifu, Hirosaki, 036-8562, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 1-3 Yamada-oka, Osaka, 565-0871, Japan
| | - Mitsuru Akashi
- Building Block Science, Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamada-oka, Osaka, 565-0871, Japan
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and Histology, Graduate School of Medicine, Hirosaki University, 5 Zaifu, Hirosaki, 036-8562, Japan.,Department of Anatomical Science, Graduate School of Medicine, Hirosaki University, 5 Zaifu, Hirosaki, 036-8562, Japan
| | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hirosaki University, 5 Zaifu, Hirosaki, 036-8562, Japan.
| |
Collapse
|
8
|
Lamon L, Asturiol D, Vilchez A, Cabellos J, Damásio J, Janer G, Richarz A, Worth A. Physiologically based mathematical models of nanomaterials for regulatory toxicology: A review. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 9:133-142. [PMID: 31008415 PMCID: PMC6472634 DOI: 10.1016/j.comtox.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 11/20/2022]
Abstract
The development of physiologically based (PB) models to support safety assessments in the field of nanotechnology has grown steadily during the last decade. This review reports on the availability of PB models for toxicokinetic (TK) and toxicodynamic (TD) processes, including in vitro and in vivo dosimetry models applied to manufactured nanomaterials (MNs). In addition to reporting on the state-of-the-art in the scientific literature concerning the availability of physiologically based kinetic (PBK) models, we evaluate their relevance for regulatory applications, mainly considering the EU REACH regulation. First, we performed a literature search to identify all available PBK models. Then, we systematically reported the content of the identified papers in a tailored template to build a consistent inventory, thereby supporting model comparison. We also described model availability for physiologically based dynamic (PBD) and in vitro and in vivo dosimetry models according to the same template. For completeness, a number of classical toxicokinetic (CTK) models were also included in the inventory. The review describes the PBK model landscape applied to MNs on the basis of the type of MNs covered by the models, their stated applicability domain, the type of (nano-specific) inputs required, and the type of outputs generated. We identify the main assumptions made during model development that may influence the uncertainty in the final assessment, and we assess the REACH relevance of the available models within each model category. Finally, we compare the state of PB model acceptance for chemicals and for MNs. In general, PB model acceptance is limited by the absence of standardised reporting formats, psychological factors such as the complexity of the models, and technical considerations such as lack of blood:tissue partitioning data for model calibration/validation.
Collapse
Affiliation(s)
- L. Lamon
- European Commission, Joint Research Centre, Ispra (VA), Italy
| | - D. Asturiol
- European Commission, Joint Research Centre, Ispra (VA), Italy
| | - A. Vilchez
- Leitat Technological Center, c/de la Innovació 2, Terrassa, Barcelona, Spain
| | - J. Cabellos
- Leitat Technological Center, c/de la Innovació 2, Terrassa, Barcelona, Spain
| | - J. Damásio
- Leitat Technological Center, c/de la Innovació 2, Terrassa, Barcelona, Spain
| | - G. Janer
- Leitat Technological Center, c/de la Innovació 2, Terrassa, Barcelona, Spain
| | - A. Richarz
- European Commission, Joint Research Centre, Ispra (VA), Italy
| | - A. Worth
- European Commission, Joint Research Centre, Ispra (VA), Italy
| |
Collapse
|
9
|
Byrne HJ, Bonnier F, Casey A, Maher M, McIntyre J, Efeoglu E, Farhane Z. Advancing Raman microspectroscopy for cellular and subcellular analysis: towards in vitro high-content spectralomic analysis. APPLIED OPTICS 2018; 57:E11-E19. [PMID: 30117916 DOI: 10.1364/ao.57.000e11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
In the confocal mode, Raman microspectroscopy can profile the biochemical content of biological cells at a subcellular level, and any changes to it by exogenous agents, such as therapeutic drugs or toxicants. As an exploration of the potential of the technique as a high-content, label-free analysis technique, this report reviews work to monitor the spectroscopic signatures associated with the uptake and response pathways of commercial chemotherapeutic agents and polymeric nanoparticles by human lung cells. It is demonstrated that the signatures are reproducible and characteristic of the cellular event, and can be used, for example, to identify the mode of action of the agent as well as the subsequent cell death pathway, and even mechanisms of cellular resistance. Data mining approaches are discussed and a spectralomics approach is proposed.
Collapse
|
10
|
Cardile V, Avola R, Graziano ACE, Piovano M, Russo A. Cytotoxicity of demalonyl thyrsiflorin A, a semisynthetic labdane-derived diterpenoid, to melanoma cells. Toxicol In Vitro 2018; 47:274-280. [PMID: 29262311 DOI: 10.1016/j.tiv.2017.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Abstract
Diterpenes are compounds with complex structure and due to their unique carbon skeleton and interesting biological activities, have been the focus of continuous studies for the development of new anticancer agents. The plants of the genus Calceolaria (Scrophulariaceae family), native of South America have also yielded several new diterpenes with the scopadulane skeleton, such as thyrsiflorin A. The present study was undertaken to investigate the effect of the semisynthetic compound, demalonyl thyrsiflorin A on human melanoma cells. In A375 cells compound demalonyl thyrsiflorin A showed a clear dose-response relationship in the range of 6.25-50μM concentrations. In addition, we demonstrated an apoptotic response after treatment of cancer cells with this semisynthetic phenolic labdane diterpene at 6.25 and 12.5μM concentrations that probably involves the reduction of Hsp70 expression and reactive oxygen species production. Alternatively, the inhibition of the caspase cascade at higher concentrations, 25 and 50μM, correlated with additional reactive oxygen species increase, probably switched the mode of demalonyl thyrsiflorin A-induced cell death from apoptosis to necrosis.
Collapse
Affiliation(s)
- V Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via S. Sofia, 95123 Catania, Italy
| | - R Avola
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via S. Sofia, 95123 Catania, Italy
| | - A C E Graziano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via S. Sofia, 95123 Catania, Italy
| | - M Piovano
- Department of Chemistry, University Técnica Federico Santa Maria, Casilla 110-V, Valparaìso, Chile
| | - A Russo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
11
|
Farhane Z, Nawaz H, Bonnier F, Byrne HJ. In vitro label-free screening of chemotherapeutic drugs using Raman microspectroscopy: Towards a new paradigm of spectralomics. JOURNAL OF BIOPHOTONICS 2018; 11:e201700258. [PMID: 29083121 DOI: 10.1002/jbio.201700258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
This overview groups some of the recent studies highlighting the potential application of Raman microspectroscopy as an analytical technique in preclinical development to predict drug mechanism of action and in clinical application as a companion diagnostic and in personalised therapy due to its capacity to predict cellular resistance and therefore to optimise chemotherapeutic treatment efficacy. Notably, the anthracyclines, doxorubicin and actinomycin D, elicit similar spectroscopic signatures of subcellular interaction characteristic of the mode of action of intercalation. Although cisplatin and vincristine show markedly different signatures, at low exposure doses, their signatures at higher doses show marked similarities to those elicited by the intercalating anthracyclines, confirming that anticancer agents can have different modes of action with different spectroscopic signatures, depending on the dose. The study demonstrates that Raman microspectroscopy can elucidate subcellular transport and accumulation pathways of chemotherapeutic agents, characterise and fingerprint their mode of action, and potentially identify cell-resistant strains. The consistency of the spectroscopic signatures for drugs of similar modes of action, in different cell lines, suggests that this fingerprint can be considered a "spectralome" of the drug-cell interaction suggesting a new paradigm of representing spectroscopic responses.
Collapse
Affiliation(s)
- Zeineb Farhane
- FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Physics, Dublin Institute of Technology, Dublin, Ireland
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Franck Bonnier
- Faculty of Pharmacy, Université François-Rabelais de Tours, Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
12
|
Khadjavi A, Stura I, Prato M, Minero VG, Panariti A, Rivolta I, Gulino GR, Bessone F, Giribaldi G, Quaglino E, Cavalli R, Cavallo F, Guiot C. 'In Vitro', 'In Vivo' and 'In Silico' Investigation of the Anticancer Effectiveness of Oxygen-Loaded Chitosan-Shelled Nanodroplets as Potential Drug Vector. Pharm Res 2018; 35:75. [PMID: 29484487 DOI: 10.1007/s11095-018-2371-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/13/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE Chitosan-shelled/decafluoropentane-cored oxygen-loaded nanodroplets (OLN) are a new class of nanodevices to effectively deliver anti-cancer drugs to tumoral cells. This study investigated their antitumoral effects 'per se', using a mathematical model validated on experimental data. METHODS OLN were prepared and characterized either in vitro or in vivo. TUBO cells, established from a lobular carcinoma of a BALB-neuT mouse, were investigated following 48 h of incubation in the absence/presence of different concentrations of OLN. OLN internalization, cell viability, necrosis, apoptosis, cell cycle and reactive oxygen species (ROS) production were checked as described in the Method section. In vivo tumor growth was evaluated after subcutaneous transplant in BALB/c mice of TUBO cells either without treatment or after 24 h incubation with 10% v/v OLN. RESULTS OLN showed sizes of about 350 nm and a positive surface charge (45 mV). Dose-dependent TUBO cell death through ROS-triggered apoptosis following OLN internalization was detected. A mathematical model predicting the effects of OLN uptake was validated on both in vitro and in vivo results. CONCLUSIONS Due to their intrinsic toxicity OLN might be considered an adjuvant tool suitable to deliver their therapeutic cargo intracellularly and may be proposed as promising combined delivery system.
Collapse
Affiliation(s)
- Amina Khadjavi
- Dipartimento di Neuroscienze, Università di Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - Ilaria Stura
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Via Santena 5 bis, Torino, 10126, Italy.
| | - Mauro Prato
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Via Santena 5 bis, Torino, 10126, Italy
| | - Valerio Giacomo Minero
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Torino, Italy
| | - Alice Panariti
- Dipartimento di Medicina Sperimentale, Università Milano Bicocca, Monza, Italy
| | - Ilaria Rivolta
- Dipartimento di Medicina Sperimentale, Università Milano Bicocca, Monza, Italy
| | | | - Federica Bessone
- Dipartimento di Scienze e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | | | - Elena Quaglino
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Torino, Italy
| | - Roberta Cavalli
- Dipartimento di Scienze e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Federica Cavallo
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Torino, Italy
| | - Caterina Guiot
- Dipartimento di Neuroscienze, Università di Torino, Corso Raffaello 30, 10125, Torino, Italy
| |
Collapse
|
13
|
Naha PC, Mukherjee SP, Byrne HJ. Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020338. [PMID: 29443901 PMCID: PMC5858407 DOI: 10.3390/ijerph15020338] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Engineered nanomaterials are increasingly being developed for paints, sunscreens, cosmetics, industrial lubricants, tyres, semiconductor devices, and also for biomedical applications such as in diagnostics, therapeutics, and contrast agents. As a result, nanomaterials are being manufactured, transported, and used in larger and larger quantities, and potential impacts on environmental and human health have been raised. Poly(amidoamine) (PAMAM) dendrimers are specifically suitable for biomedical applications. They are well-defined nanoscale molecules which contain a 2-carbon ethylenediamine core and primary amine groups at the surface. The systematically variable structural architecture and the large internal free volume make these dendrimers an attractive option for drug delivery and other biomedical applications. Due to the wide range of applications, the Organisation for Economic Co-Operation and Development (OECD) have included them in their list of nanoparticles which require toxicological assessment. Thus, the toxicological impact of these PAMAM dendrimers on human health and the environment is a matter of concern. In this review, the potential toxicological impact of PAMAM dendrimers on human health and environment is assessed, highlighting work to date exploring the toxicological effects of PAMAM dendrimers.
Collapse
Affiliation(s)
- Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, USA.
| | - Sourav P Mukherjee
- Molecular Toxicology Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
14
|
Sharma A, Gorey B, Casey A. In vitro comparative cytotoxicity study of aminated polystyrene, zinc oxide and silver nanoparticles on a cervical cancer cell line. Drug Chem Toxicol 2018; 42:9-23. [PMID: 29359584 DOI: 10.1080/01480545.2018.1424181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanoparticles use in nano-biotechnology applications have increased significantly with Aminated polystyrene amine (AmPs NP), Zinc oxide (ZnO NP), and Silver (Ag NP) nanoparticles utilized in wide variety of consumer products. This has presented a number of concerns due to their increased exposure risks and associated toxicity on living systems. Changes in the structural and physicochemical properties of nanoparticles can lead to changes in biological activities. This study investigates, compares, and contrasts the potential toxicity of AmPs, ZnO and Ag NPs on an in vitro model (HeLa cells) and assesses the associated mechanism for their corresponding cytotoxicity relative to the surface material. It was noted that NPs exposure attributed to the reduction in cell viability and high-level induction of oxidative stress. All three test particles were noted to induce ROS to varying degrees which is irrespective of the attached surface group. Cell cycle analysis indicated a G2/M phase cell arrest, with the corresponding reduction in G0/G1 and S phase cells resulting in caspase-mediated apoptotic cell death. These findings suggest that all three NPs resulted in the decrease in cell viability, increase intracellular ROS production, induce cell cycle arrest at the G2/M phase and finally result in cell death by caspase-mediated apoptosis, which is irrespective of their differences in physiochemical properties and attached surface groups.
Collapse
Affiliation(s)
- Akash Sharma
- a NANOLAB Research Centre , Focas Institute, Dublin Institute of Technology , Dublin 8 , Ireland.,b School of Physics, Clinical and Optometric Sciences , Dublin Institute of Technology , Dublin , Ireland
| | - Brian Gorey
- a NANOLAB Research Centre , Focas Institute, Dublin Institute of Technology , Dublin 8 , Ireland
| | - Alan Casey
- a NANOLAB Research Centre , Focas Institute, Dublin Institute of Technology , Dublin 8 , Ireland.,b School of Physics, Clinical and Optometric Sciences , Dublin Institute of Technology , Dublin , Ireland
| |
Collapse
|
15
|
Efeoglu E, Maher MA, Casey A, Byrne HJ. Toxicological assessment of nanomaterials: the role of in vitro Raman microspectroscopic analysis. Anal Bioanal Chem 2017; 410:1631-1646. [DOI: 10.1007/s00216-017-0812-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
|
16
|
Zeng Y, Kurokawa Y, Win-Shwe TT, Zeng Q, Hirano S, Zhang Z, Sone H. Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells. J Toxicol Sci 2017; 41:351-70. [PMID: 27193728 DOI: 10.2131/jts.41.351] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Polyamidoamine (PAMAM) dendrimers have potential for biological applications as delivery systems for genes, drugs, and imaging agents into the brain, but their developmental neurotoxicity remains unknown. We investigated the effects of PAMAM dendrimers with various surface functional groups and multiple generations on neuronal differentiation using human neural progenitor cells at an equal mass concentration. Only PAMAM dendrimers containing amine (NH2) surface groups at concentrations of 10 μg/mL significantly reduced cell viability and neuronal differentiation, compared with non-amine-terminated dendrimers. PAMAM-NH2 with generation (G)3, G4, G5 G6, and G7 significantly decreased cell viability and inhibited neuronal differentiation from a concentration of 5 μg/mL, but G0, G1, and G2 dendrimers did not have any effect at this concentration. Cytotoxicity indices of PAMAM-NH2 dendrimers at 10 μg/mL correlated well with the zeta potentials of the particles. Surface group density and particle number in unit volume is more important characteristic than particle size to influence cytotoxicity for positive changed dendrimers. PAMAM-50% C12 at 1 μg/mL altered the expression level of the oxidative stress-related genes, ROR1, CYP26A1, and TGFB1, which is a DNA damage response gene. Our results indicate that PAMAM dendrimer exposure may have a surface charge-dependent adverse effect on neuronal differentiation, and that the effect may be associated with oxidative stress and DNA damage during development of neural cells.
Collapse
Affiliation(s)
- Yang Zeng
- Center for Environmental Risk Research, National Institute for Environmental Studies
| | | | | | | | | | | | | |
Collapse
|
17
|
Graepel R, Lamon L, Asturiol D, Berggren E, Joossens E, Paini A, Prieto P, Whelan M, Worth A. The virtual cell based assay: Current status and future perspectives. Toxicol In Vitro 2017; 45:258-267. [PMID: 28108195 PMCID: PMC5742635 DOI: 10.1016/j.tiv.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/15/2016] [Accepted: 01/15/2017] [Indexed: 12/22/2022]
Abstract
In order to replace the use of animals in toxicity testing, there is a need to predict in vivo toxic doses from concentrations that cause toxicological effects in relevant in vitro systems. The Virtual Cell Based Assay (VCBA) estimates time-dependent concentration of a test chemical in the cell and cell culture for a given in vitro system. The concentrations in the different compartments of the cell and test system are derived from ordinary differential equations, physicochemical parameters of the test chemical and properties of the cell line. The VCBA has been developed for a range of cell lines including BALB/c 3T3 cells, HepG2, HepaRG, lung A459 cells, and cardiomyocytes. The model can be used to design and refine in vitro experiments and extrapolate in vitro effective concentrations to in vivo doses that can be applied in risk assessment. In this paper, we first discuss potential applications of the VCBA: i) design of in vitro High Throughput Screening (HTS) experiments; ii) hazard identification (based on acute systemic toxicity); and iii) risk assessment. Further extension of the VCBA is discussed in the second part, exploring potential application to i) manufactured nanomaterials, ii) additional cell lines and endpoints, and considering iii) other opportunities. VCBA as an alternative approach can be applied in the domain of nanotoxicology. VCBA can support better testing strategies in acute toxicity. Refinement of the VCBA taking into account biological oscillators could improve toxicity prediction. Extensions of the VCBA can capture effects related to additional subcellular compartments.
Collapse
Affiliation(s)
- Rabea Graepel
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Lara Lamon
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy.
| | - David Asturiol
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Elisabet Berggren
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Elisabeth Joossens
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Alicia Paini
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Pilar Prieto
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Maurice Whelan
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Andrew Worth
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| |
Collapse
|
18
|
Efeoglu E, Casey A, Byrne HJ. Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure. Analyst 2017; 142:3848-3856. [DOI: 10.1039/c7an00969k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman microspectroscopy as anin vitrolabel-free, high content screening technique to determine spectral markers of cytogenotoxicity.
Collapse
Affiliation(s)
- Esen Efeoglu
- School of Physics
- Dublin Institute of Technology
- Dublin 8
- Ireland
- FOCAS Research Institute
| | - Alan Casey
- School of Physics
- Dublin Institute of Technology
- Dublin 8
- Ireland
- FOCAS Research Institute
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| |
Collapse
|
19
|
Efeoglu E, Maher MA, Casey A, Byrne HJ. Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH2). Analyst 2017; 142:3500-3513. [DOI: 10.1039/c7an00461c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman microspectroscopy as a ‘high content nanotoxicological screening technique’ with the aid of multivariate analysis, on non-cancerous and cancerous cell lines.
Collapse
Affiliation(s)
- Esen Efeoglu
- School of Physics
- Dublin Institute of Technology
- Dublin 2
- Ireland
- FOCAS Research Institute
| | - Marcus A. Maher
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| | - Alan Casey
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| |
Collapse
|
20
|
Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol In Vitro 2016; 38:179-192. [PMID: 27816503 DOI: 10.1016/j.tiv.2016.10.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/29/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Abstract
Silver nanoparticles (AgNPs) have generated a great deal of interest in the research, consumer product, and medical product communities due to their antimicrobial and anti-biofouling properties. However, in addition to their antimicrobial action, concerns have been expressed about the potential adverse human health effects of AgNPs. In vitro cytotoxicity studies often are used to characterize the biological response to AgNPs and the results of these studies may be used to identify hazards associated with exposure to AgNPs. Various factors, such as nanomaterial size (diameter), surface area, surface charge, redox potential, surface functionalization, and composition play a role in the development of toxicity in in vitro test systems. In addition, the interference of AgNPs with in vitro cytotoxicity assays may result in false negative or false positive results in some in vitro biological tests. The goal of this review is to: 1) summarize the impact of physical-chemical parameters, including size, shape, surface chemistry and aggregate formation on the in vitro cytotoxic effects of AgNPs; and 2) explore the nature of AgNPs interference in in vitro cytotoxicity assays.
Collapse
|
21
|
Chen Z, Lian F, Wang X, Chen Y, Tang N. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture. Int J Nanomedicine 2016; 11:4247-59. [PMID: 27621619 PMCID: PMC5012632 DOI: 10.2147/ijn.s113407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.
Collapse
Affiliation(s)
- Zhanfei Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital
| | - Fen Lian
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital
| | - Xiaoqian Wang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital
| | - Yanling Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Nanhong Tang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
22
|
In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer. J Nanobiotechnology 2016; 14:45. [PMID: 27297021 PMCID: PMC4906583 DOI: 10.1186/s12951-016-0197-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
Background Breast cancer is the second leading cause of cancer death worldwide. Nanotechnology approaches can overcome the side effects of chemotherapy as well as improve the efficacy of drugs. Dendrimers are nanometric size polymers which are suitable as drug delivery systems. To the best of our knowledge, studies on the application of PAMAM G4.5 (polyamidoamine half generation 4) dendrimers as potential drug delivery systems in breast cancer have not been reported. In this work we developed a PAMAM G4.5 dendrimer containing FITC (fluorescein isothiocyanate) dye to study their uptake by murine breast cancer cells and BALB/c mice breast tumors. Results We performed a reaction between FITC and PAMAM G4.5 dendrimers which were previously derivatized with piperazine (linker molecule), characterized them by 1H NMR (proton nuclear magnetic resonance) spectroscopy and MALDI-TOF (matrix-assisted laser desorption/ionization- time-of-flight) mass spectrometry. The experimental data indicated that 2 FITC molecules could be bound covalently at the PAMAM G4.5 dendrimer surface, with 17 FITC molecules probably occluded in PAMAM dendrimers cavity. PAMAM-FITC dendrimer (PAMAM G4.5-piperazinyl-FITC dendrimer) size distribution was evaluated by DLS (dynamic light scattering) and TEM (transmission electron microscopy). The nanoparticle hydrodynamic size was 96.3 ± 1.4 nm with a PdI (polydispersion index) of 0.0296 ± 0.0171, and the size distribution measured by TEM was 44.2 ± 9.2 nm. PAMAM-FITC dendrimers were neither cytotoxic in 4T1 cells nor hemolytic up to 24 h of incubation. In addition, they were uptaken in vitro by 4T1 cells and in vivo by BALB/c mice breast tumors. PAMAM G4.5-piperazinyl-FITC dendrimer intracellular distribution was observed through histologic analysis of the tumor by laser confocal microscopy. Conclusion These results indicate that PAMAM G4.5 dendrimers enter tumor tissue cells, being good candidates to be used as antitumor drug delivery systems for breast cancer treatment and diagnosis.
Collapse
|
23
|
Chemotherapeutic efficiency of drugs in vitro: Comparison of doxorubicin exposure in 3D and 2D culture matrices. Toxicol In Vitro 2016; 33:99-104. [DOI: 10.1016/j.tiv.2016.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
|
24
|
Evaluation of cytotoxicity profile and intracellular localisation of doxorubicin-loaded chitosan nanoparticles. Anal Bioanal Chem 2016; 408:5443-55. [DOI: 10.1007/s00216-016-9641-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/23/2016] [Accepted: 05/13/2016] [Indexed: 01/08/2023]
|
25
|
Modification of the in vitro uptake mechanism and antioxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 poly(amidoamine) dendrimer nanoparticles. Anal Bioanal Chem 2016; 408:5295-307. [DOI: 10.1007/s00216-016-9623-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/01/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
|
26
|
Zhang B, Cui L, Zhang K. Dosage- and time-dependent antibacterial effect of zinc oxide nanoparticles determined by a highly uniform SERS negating undesired spectral variation. Anal Bioanal Chem 2016; 408:3853-65. [DOI: 10.1007/s00216-016-9478-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/30/2022]
|
27
|
Efeoglu E, Casey A, Byrne HJ. In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy. Analyst 2016; 141:5417-31. [DOI: 10.1039/c6an01199c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monitoring of time and dose dependent molecular changes by using Raman spectroscopy with the aid of multivariate analysis techniques and determination of Raman spectral markers of cellular toxicity.
Collapse
Affiliation(s)
- Esen Efeoglu
- School of Physics
- Dublin Institute of Technology
- Dublin 2
- Ireland
- FOCAS Research Institute
| | - Alan Casey
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 2
- Ireland
| |
Collapse
|
28
|
Luo Y, Zhao L, Li X, Yang J, Guo L, Zhang G, Shen M, Zhao J, Shi X. The design of a multifunctional dendrimer-based nanoplatform for targeted dual mode SPECT/MR imaging of tumors. J Mater Chem B 2016; 4:7220-7225. [DOI: 10.1039/c6tb02190e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A multifunctional dendrimer-based nanoplatform labeled with 99mTc can be synthesized for targeted SPECT/MR dual mode imaging of tumors.
Collapse
Affiliation(s)
- Yu Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| | - Lingzhou Zhao
- Department of Nuclear Medicine
- Shanghai General Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200080
| | - Xin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| | - Jia Yang
- Department of Radiology
- Shanghai General Hospital, School of Medicine
- Shanghai Jiaotong University
- Shanghai 200080
- P. R. China
| | - Lilei Guo
- Department of Nuclear Medicine
- Shanghai General Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200080
| | - Guixiang Zhang
- Department of Radiology
- Shanghai General Hospital, School of Medicine
- Shanghai Jiaotong University
- Shanghai 200080
- P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| | - Jinhua Zhao
- Department of Nuclear Medicine
- Shanghai General Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200080
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| |
Collapse
|
29
|
Zhou D, Li C, He M, Ma M, Li P, Gong Y, Ran H, Wang Z, Wang Z, Zheng Y, Sun Y. Folate-targeted perfluorohexane nanoparticles carrying bismuth sulfide for use in US/CT dual-mode imaging and synergistic high-intensity focused ultrasound ablation of cervical cancer. J Mater Chem B 2016; 4:4164-4181. [PMID: 32264619 DOI: 10.1039/c6tb00261g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The integration of multifunctional contrast agents with HIFU synergistic therapy could real-time guide, monitor, and assess cancer therapeutic procedures and effects.
Collapse
|
30
|
Gao S, Li J, Jiang C, Hong B, Hao B. Plasmid pORF-hTRAIL targeting to glioma using transferrin-modified polyamidoamine dendrimer. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 10:1-11. [PMID: 26719669 PMCID: PMC4690643 DOI: 10.2147/dddt.s95843] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A gene drug delivery system for glioma therapy based on transferrin (Tf)-modified polyamidoamine dendrimer (PAMAM) was prepared. Gene drug, tumor necrosis factor-related apoptosis-inducing ligand (hTRAIL)-encoding plasmid open reading frame (pORF-hTRAIL, Trail), was condensed by Tf-modified PAMAM to form nanoparticles (NPs). PAMAM-PEG-Tf/DNA NPs showed higher cellular uptake, in vitro gene expression, and cytotoxicity than PAMAM-PEG/DNA NPs in C6 cells. The in vivo targeting efficacy of NPs was visualized by ex vivo fluorescence imaging. Tf-modified NPs showed obvious glioma-targeting trend. Plasmid encoding green fluorescence protein (GFP) was also condensed by modified or unmodified PAMAM to evaluate the in vivo gene expression level. The PAMAM-PEG-Tf/plasmid encoding enhanced green fluorescence protein (pEGFP) NPs exhibited higher GFP expression level than PAMAM-PEG/pEGFP NPs. TUNEL assay revealed that Tf-modified NPs could induce much more tumor apoptosis. The median survival time of PAMAM-PEG-Tf/Trail-treated rats (28.5 days) was longer than that of rats treated with PAMAM-PEG/Trail (25.5 days), temozolomide (24.5 days), PAMAM-PEG-Tf/pEGFP (19 days), or saline (17 days). The therapeutic effect was further confirmed by magnetic resonance imaging. This study demonstrated that targeting gene delivery system had potential application for the treatment of glioma.
Collapse
Affiliation(s)
- Song Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jianfeng Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Bing Hao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
31
|
Khalid H, Mukherjee SP, O'Neill L, Byrne HJ. Structural dependence of in vitro cytotoxicity, oxidative stress and uptake mechanisms of poly(propylene imine) dendritic nanoparticles. J Appl Toxicol 2015; 36:464-73. [PMID: 26671548 DOI: 10.1002/jat.3267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/24/2015] [Accepted: 10/24/2015] [Indexed: 01/09/2023]
Abstract
The in vitro cytotoxic and intracellular oxidative stress responses to exposure to poly(propylene imine) (PPI) dendritic nanoparticles of increasing generation (number of repeated branching cycles) (G0-G4) were assessed in an immortal non-cancerous human keratinocyte cell line (HaCaT). Confocal fluorescence microscopy with organelle staining was used to explore the uptake and intracellular trafficking mechanisms. A generation- and dose-dependent cytotoxic response was observed, increasing according to generation and, therefore, number of surface amino groups. A comparison of the cytotoxic response of G4 PPI and the related G4 poly(amido amine) dendrimer indicates that the PPI with the same number of surface amino groups elicits a significantly higher cytotoxic response. The trend of cytotoxicity versus dendrimer generation and, therefore, size is discontinuous in the region of G2, however, indicating a difference in uptake mechanism for higher compared to lower generations. Whereas the higher generations elicit an oxidative stress response at short exposure times, the lower generations indicate an antioxidant response. Confocal microscopy indicates that, whereas they are prominent at early exposure times for the larger PPI dendrimers, no evidence of early stage endosomes was observed for lower generations of PPI. The results are consistent with an alternative uptake mechanism of physical diffusion across the semipermeable cell membrane for the lower generation dendrimers and are discussed in terms of their implications for predictive models for nanotoxicology and design strategies for nanomedical applications.
Collapse
Affiliation(s)
- Humza Khalid
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.,School of Physics, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | | | - Luke O'Neill
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| |
Collapse
|
32
|
Acellular reactivity of polymeric dendrimer nanoparticles as an indicator of oxidative stress in vitro. Anal Bioanal Chem 2015; 408:695-703. [PMID: 26573170 DOI: 10.1007/s00216-015-9171-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 12/17/2022]
Abstract
The need for rapid and cost-effective pre-screening protocols of the toxicological response of the vast array of emerging nanoparticle types is apparent and the emerging consensus on the paradigm of oxidative stress by generation of intracellular reactive oxygen species as a primary source of the toxic response suggests the development of acellular assays to screen for nanoparticle surface reactivity. This study explores the potential of the monoamine oxidase A (MAO-A) enzyme-based assay with polymeric dendrimers as cofactors and serotonin as substrate, which generates H2O2, quantified by the conversion of the Carboxy-H2DCFDA dye to its fluorescent form. A range of generations of both PAMAM (poly(amidoamine)) (G4-G7) and PPI (poly(propylene imine)) (G0-G4) dendritic polymer nanoparticles are used as test particles to validate the quantitative nature of the assay response as a function of nanoparticle physico-chemical properties. The assay is well behaved as a function of dose over low dose ranges and the acellular reaction rate (ARR) is well correlated with the number of surface amino groups for the combined dendrimer series. For each series, the ARR is also well correlated with the previously documented cytotoxicity, although the correlation is substantially different for each series of dendrimers, pointing to the additional importance of cellular uptake rates in the determination of toxicity.
Collapse
|
33
|
Ahamed M, Akhtar MJ, Alhadlaq HA, Khan MAM, Alrokayan SA. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. CHEMOSPHERE 2015; 135:278-288. [PMID: 25966046 DOI: 10.1016/j.chemosphere.2015.03.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/10/2015] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salman A Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
34
|
Farhane Z, Bonnier F, Casey A, Byrne HJ. Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin. Analyst 2015; 140:4212-23. [DOI: 10.1039/c5an00256g] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Raman spectroscopy is used for the localization and tracking of chemotherapeutic drug, doxorubicin, in the intracellular environment of lung cancer cell line. Results show the potential of the technique to monitor the mechanisms of action and response on a molecular level, with subcellular resolution.
Collapse
Affiliation(s)
- Z. Farhane
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| | - F. Bonnier
- Université François-Rabelais de Tours
- Faculty of Pharmacy
- 37200 Tours
- France
| | - A. Casey
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| | - H. J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| |
Collapse
|
35
|
Keating ME, Nawaz H, Bonnier F, Byrne HJ. Multivariate statistical methodologies applied in biomedical Raman spectroscopy: assessing the validity of partial least squares regression using simulated model datasets. Analyst 2015; 140:2482-92. [DOI: 10.1039/c4an02167c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the drive towards biomedical applications of Raman spectroscopy, it is critically important to validate the data analysis tools.
Collapse
Affiliation(s)
- Mark E. Keating
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
- School of Physics
| | - Haq Nawaz
- Department of Chemistry
- University of Agriculture
- Faisalabad
- Pakistan
| | - Franck Bonnier
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
- Université François-Rabelais de Tours
| | - Hugh J. Byrne
- FOCAS Research Institute
- Dublin Institute of Technology
- Dublin 8
- Ireland
| |
Collapse
|
36
|
Gladkovskaya O, Greaney P, Gun'ko YK, O'Connor GM, Meere M, Rochev Y. An experimental and theoretical assessment of quantum dot cytotoxicity. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00149h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Scheme represents the model approach. After exposure to quantum dots initial cell population may follow various pathways which depend on intracellular concentration of quantum dots.
Collapse
Affiliation(s)
- Olga Gladkovskaya
- School of Physics
- National University of Ireland
- Galway
- Ireland
- Network of Excellence for Functional Biomaterials
| | - Paul Greaney
- School of Mathematics
- Statistics and Applied Mathematics
- National University of Ireland
- Galway
- Ireland
| | | | | | - Martin Meere
- School of Mathematics
- Statistics and Applied Mathematics
- National University of Ireland
- Galway
- Ireland
| | - Yury Rochev
- Network of Excellence for Functional Biomaterials
- Galway
- Ireland
- School of Chemistry
- National University of Ireland
| |
Collapse
|