1
|
Vitamin D 3 and Salinomycin synergy in MCF-7 cells cause cell death via endoplasmic reticulum stress in monolayer and 3D cell culture. Toxicol Appl Pharmacol 2022; 452:116178. [PMID: 35914560 DOI: 10.1016/j.taap.2022.116178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/21/2022]
Abstract
1α, 25, dihydroxyvitamin D3 (1,25D), the active form of vitamin D3, has antitumor properties in several cancer cell lines in vitro. Salinomycin (Sal) has anticancer activity against cancer cell lines. This study aims to examine the cytotoxic and antiproliferative effect of Sal associated with 1,25D on MCF-7 breast carcinoma cell line cultured in monolayer (2D) and three-dimensional models (mammospheres). We also aim to evaluate the molecular mechanism of Sal and 1,25D-mediated effects. We report that Sal and 1,25D act synergistically in MCF-7 mammospheres and monolayer causing G1 cell cycle arrest, reduction of mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) overproduction with a long-lasting cytotoxic response represented by clonogenic and mammosphere assay. We observed the induction of cell death by apoptosis with upregulation in mRNA levels of apoptosis-related genes (CASP7, CASP9, and BBC3). Extensive cytoplasmic vacuolization, a morphological characteristic found in paraptosis, was also seen and could be triggered by endoplasmic reticulum stress (ER) as we found transcriptional upregulation of genes related to ER stress (ATF6, GADD153, GADD45G, EIF2AK3, and HSPA5). Overall, Sal and 1,25D act synergistically, inhibiting cell proliferation by activating simultaneously multiple death pathways and may be a novel and promising luminal A breast cancer therapy strategy.
Collapse
|
2
|
Bakar SAA, Ali AM, Noor SNFM, Hamid SBS, Azhar NA, Mohamad NM, Ahmad NH. Combination of Goniothalamin and Sol-Gel-Derived Bioactive Glass 45S5 Enhances Growth Inhibitory Activity via Apoptosis Induction and Cell Cycle Arrest in Breast Cancer Cells MCF-7. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5653136. [PMID: 35872839 PMCID: PMC9303150 DOI: 10.1155/2022/5653136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Combination of natural products with chemically synthesised biomaterials as cancer therapy has attracted great interest lately. Hence, this study is aimed at investigating the combined effects of goniothalamin and bioactive glass 45S5 (GTN-BG) and evaluating their anticancer properties on human breast cancer cells MCF-7. METHODS The BG 45S5 was prepared using the sol-gel process followed by characterisation using PSA, BET, SEM/EDS, XRD, and FTIR. The effects of GTN-BG on the proliferation of MCF-7 were assessed by MTT, PrestoBlue, and scratch wound assays. The cell cycle analysis, Annexin-FITC assay, and activation of caspase-3/7, caspase-8, and caspase-9 assays were determined to further explore its mechanism of action. RESULTS The synthesised BG 45S5 was classified as a fine powder, having a rough surface, and contains mesopores of 12.6 nm. EDS analysis revealed that silica and calcium elements are the primary components of BG powders. Both crystalline and amorphous structures were detected with 73% and 27% similarity to Na2Ca2(Si2O7) and hydroxyapatite, respectively. The combination of GTN-BG was more potent than GTN in inhibiting the proliferation of MCF-7 cells. G0/G1 and G2/M phases of the cell cycle were arrested by GTN and GTN-BG. The percentage of viable cells in GTN-BG treatment was significantly lower than that in GTN. In terms of activation of initiator caspases for both extrinsic and intrinsic apoptosis pathways, caspase-8 and caspase-9 were found more effective in response to GTN-BG than GTN. CONCLUSION The anticancer effect of GTN in MCF-7 cells was improved when combined with BG. The findings provide significant insight into the mechanism of GTN-BG against MCF-7 cells, which can potentially be used as a novel anticancer therapeutic approach.
Collapse
Affiliation(s)
- Siti Aishah Abu Bakar
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Department of Dental Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Shahrul Bariyah Sahul Hamid
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Asna Azhar
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Noor Muzamil Mohamad
- Centralised Laboratory Management Center, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Nor Hazwani Ahmad
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
ShujaaEdin HY, AL-Haj NA, Rasedee A, Alitheen NB, Kadir AA, How CW, Rahman HS, Abdullah ASH. Recombinant Human erythropoietin reduces viability of MCF-7 breast cancer cells from 3D culture without caspase activation. Saudi J Biol Sci 2021; 28:2549-2557. [PMID: 33935571 PMCID: PMC8071958 DOI: 10.1016/j.sjbs.2021.01.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
Recombinant human erythropoietin (rHuEPO) is the erythropoiesis-stimulating hormone that is being used concurrently with chemotherapeutic drugs in the treatment of anemia of cancer. The effect of rHuEPO on cancer cells in 3-dimensional (3D) cultures is not known. The objective of the study was to determine the effect of rHuEPO on the viability of MCF-7 breast cancer cells from 2-dimensional (2D) and 3D cell cultures. The monolayer MCF-7 cells from 2D culture and MCF-7 cell from 3D culture generated by ultra-low adhesive microplate technique, were treated with 0, 0.1, 10, 100 or 200 IU/mL rHuEPO for 24, 48 or 72 h. The effects of rHuEPO on MCF-7 cell viability and proliferation were determined using the (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT), neutral red retention time (NRRT), trypan blue exclusion assay (TBE), DNA fragmentation, acridine orange/propidium iodide staining (AO/PI) assays. The MCF-7 cells for 3D culture were also subjected to caspase assays and cell cycle analysis using flow cytometry. rHuEPO appeared to have greater effect at lowering the viability of MCF-7 cells from 3D than 2D cultures. rHuEPO significantly (p < 0.05) decreased viability and down-regulated the caspase activities of 3D MCF-7 cells in dose- and time-dependent manner. The cell cycle analysis showed that rHuEPO caused MCF-7 cells to enter the subG0/G1 phase. Thus, the study suggests that rHuEPO has a cytostatic effect on the MCF-7 breast cancer cells from 3D culture.
Collapse
Affiliation(s)
| | - Nagi A. AL-Haj
- Faculty of Medicine and Health Sciences, Sana’a University, Yemen
| | - Abdullah Rasedee
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | | | | | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | | | | |
Collapse
|
4
|
de Souza KFS, Tófoli D, Pereira IC, Filippin KJ, Guerrero ATG, Paredes-Gamero EJ, de Fatima Cepa Matos M, Garcez WS, Garcez FR, Perdomo RT. A styrylpyrone dimer isolated from Aniba heringeri causes apoptosis in MDA-MB-231 triple-negative breast cancer cells. Bioorg Med Chem 2021; 32:115994. [PMID: 33477019 DOI: 10.1016/j.bmc.2021.115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/11/2023]
Abstract
The styrylpyrone dehydrogoniothalamin (1) and two of its dimers (2 and 3) were isolated from the leaves of Aniba heringeri (Lauraceae). Compound 3 is new, while 1 and 2 are being reported for the first time in this species. Structures were determined by 1D- and 2D-NMR spectroscopy, mass spectrometry, and optical rotation data. Cytotoxic effects and selectivity indices were evaluated in five neoplastic cell lines-PC-3 (prostate), 786-0 (renal), HT-29 (colon), MCF-7, and MDA-MB-231 (breast)-and a non-neoplastic cell line, (NIH/3T3, murine fibroblast). Compound 1 inhibited cell growth by 50% (GI50) at concentrations in the 90.4-175.7 μM range, while 2 proved active against MCF-7 and MDA-MB-231 breast cells (GI50 = 12.24, and 34.22 μM, respectively). Compound 3 showed strong cytotoxicity (GI50 = 4.4 μM) against MDA-MB-231 (an established basal triple-negative breast carcinoma (TNBC) cell line), with a high selective index of 35. This compound was subsequently evaluated for apoptosis induction in MDA-MB-231 cells, using GI50 and 50% lethal concentrations (LC50). Flow cytometry analysis showed that at LC50 compound 3 induced cell death with phosphatidylserine externalization and caspase-3 activation. Apoptotic genes were measured by RT-qPCR, revealing an upregulation of BAX, with an increase in expression of the BAX/BCL2 ratio in treated cells. Fluorescence microscopy disclosed morphological changes related to apoptosis. Overall, these findings showed compound 3 to be a promising prototype against TNBC cells that tend to respond poorly to conventional therapies.
Collapse
Affiliation(s)
- Kamylla Fernanda Souza de Souza
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Danilo Tófoli
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Indiara Correia Pereira
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Kelly Juliana Filippin
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Edgar Julian Paredes-Gamero
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Maria de Fatima Cepa Matos
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Walmir Silva Garcez
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Renata Trentin Perdomo
- Laboratory of Molecular Biology and Cell Culture, School of Pharmaceutical Sciences, Food Technology, and Nutrition, Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul, Campo Grande, MS, Brazil.
| |
Collapse
|
5
|
Franco DP, de Biazi BI, Zanetti TA, Marques LA, de Lima L, Lepri SR, Mantovani MS. Apoptotic and cell cycle response to homoharringtonine and harringtonine in wild and mutant p53 hepatocarcinoma cells. Hum Exp Toxicol 2020; 39:1405-1416. [PMID: 32431164 DOI: 10.1177/0960327120926257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to evaluate the modes of action of harringtonine (HT) and homoharringtonine (HHT) alkaloids in cell with wild (HepG2/C3A) and mutant p53 (HuH-7.5). We performed assays for cytotoxicity, genotoxicity, induction of apoptosis, cell cycle phase, and membrane integrity. Obtained data were compared with the relative expression of mRNA of genes related to proliferation, apoptosis, cell cycle control, metabolism of xenobiotics, and reticulum endoplasmic stress. The relative expression of the genes showed an increase in apoptosis-inducing mRNAs, such as TNF and BBC3, as well as a reduction in BCL2 and BAK. The mRNAs of CYP2E1 and CYP2C19 xenobiotic metabolism genes increased in both lineages, while CYP3A4 increased only in the HuH-7.5 lineage. The mRNA expression of endoplasmic reticulum (ER) stress genes (ERN1 and EIF2AK3) was shown to increase in HHT and HT treatments. A similar increase was recorded in the mRNA expression of the TRAF2 gene. The changes observed in this study support the hypothesis that ER stress was more strongly associated with TNF induction, causing cell death by apoptosis in p53 mutant cells. This result with wild and mutant p53 cells may have clinical implications in the use of these compounds.
Collapse
Affiliation(s)
- D P Franco
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - B I de Biazi
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - T A Zanetti
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - L A Marques
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Lva de Lima
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - S R Lepri
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - M S Mantovani
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
6
|
Braga CB, Kido LA, Lima EN, Lamas CA, Cagnon VHA, Ornelas C, Pilli RA. Enhancing the Anticancer Activity and Selectivity of Goniothalamin Using pH-Sensitive Acetalated Dextran (Ac-Dex) Nanoparticles: A Promising Platform for Delivery of Natural Compounds. ACS Biomater Sci Eng 2020; 6:2929-2942. [PMID: 33463303 DOI: 10.1021/acsbiomaterials.0c00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Goniothalamin (GTN), a natural compound isolated from Goniothalamus species, has previously demonstrated cytotoxic activity against several cancer cell lines. However, similarly to many natural and synthetic anticancer compounds, GTN presents toxicity toward some healthy cells and low aqueous solubility, decreasing its bioavailability and precluding its application as an antineoplastic drug. In our efforts to improve the pharmacokinetic behavior and selectivity of GTN against cancer cells, we developed a polymeric nanosystem, in which rac-GTN was encapsulated in pH-responsive acetalated dextran (Ac-Dex) nanoparticles (NPs) with high loadings of the bioactive compound. Dynamic light scattering (DLS) analysis showed that the nanoparticles obtained presented a narrow size distribution of around 100 nm in diameter, whereas electron microscopy (EM) images showed nanoparticles with a regular spherical morphology in agreement with the size range obtained by DLS. Stability and release studies indicated that the GTN@Ac-Dex NPs presented high stability under physiological conditions (pH 7.4) and disassembled under slightly acidic conditions (pH 5.5), releasing the rac-GTN in a sustained manner. In vitro assays showed that GTN@Ac-Dex NPs significantly increased cytotoxicity and selectivity against cancer cells when compared with the empty Ac-Dex NPs and the free rac-GNT. Cellular uptake and morphology studies using MCF-7 cells demonstrated that GTN@Ac-Dex NPs are rapidly internalized into the cancer cells, causing cell death. In vivo investigation confirmed the efficient release of rac-GTN from GTN@Ac-Dex NPs, resulting in the delay of prostate cancer progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Furthermore, liver histopathology evaluation after treatment with GTN@Ac-Dex NPs showed no evidence of toxicity. Therefore, the in vitro and in vivo findings suggest that the Ac-Dex NPs are a promising nanosystem for the sustained delivery of rac-GTN into tumors.
Collapse
Affiliation(s)
- Carolyne B Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Larissa A Kido
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Ellen N Lima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Celina A Lamas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Valéria H A Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, CEP 13083-865 Campinas, São Paulo, Brazil
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Goniothalamin Induces Necroptosis and Anoikis in Human Invasive Breast Cancer MDA-MB-231 Cells. Int J Mol Sci 2019; 20:ijms20163953. [PMID: 31416203 PMCID: PMC6720804 DOI: 10.3390/ijms20163953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/26/2019] [Accepted: 08/11/2019] [Indexed: 01/14/2023] Open
Abstract
Goniothalamin (GTN) is toxic to several types of cancer cells in vitro. However, its effects on non-apoptotic cell death induction of human cancer cells have been poorly documented. Here, an investigation of the anti-cancer activity of GTN and the molecular signaling pathways of non-apoptotic cell death in the invasive human breast cancer MDA-MB-231 cell line were undertaken. Apoptotic cell death was suppressed by using a pan-caspase inhibitor (Benzyloxycarbonyl-Val-Ala-Asp-[O-methyl]-fluoromethylketone), z-VAD-fmk) as a model to study whether GTN induced caspase-independent cell death. In the anoikis study, MDA-MB-231 cells were cultured on poly-(2-hydroxyethyl methacrylate)- or poly-HEMA- coated plates to mimic anoikis-resistance growth and determine whether GTN induced cell death and the mechanisms involved. GTN and z-VAD-fmk induced human breast cancer MDA-MB-231 cells to undergo necroptosis via endoplasmic reticulum (ER) and oxidative stresses, with increased expressions of necroptotic genes such as rip1, rip3, and mlkl. GTN induced MDA-MB-231 cells to undergo anoikis via reversed epithelial-mesenchymal transition (EMT) protein expressions, inhibited the EGFR/FAK/Src survival signaling pathway, and decreased matrix metalloproteinase secretion.
Collapse
|
8
|
Punganuru SR, Madala HR, Arutla V, Srivenugopal KS. Selective killing of human breast cancer cells by the styryl lactone (R)-goniothalamin is mediated by glutathione conjugation, induction of oxidative stress and marked reactivation of the R175H mutant p53 protein. Carcinogenesis 2019; 39:1399-1410. [PMID: 30010803 DOI: 10.1093/carcin/bgy093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
The molecular basis of anticancer and apoptotic effects of R-goniothalamin (GON), a plant secondary metabolite was studied. We show that induction of oxidative stress and reactivation of mutant p53 underlie the strong cytotoxic effects of GON against the breast cancer cells. While GON was not toxic to the MCF10a breast epithelial cells, the SKBR3 breast cancer cells harboring an R175H mutant p53 were highly sensitive (IC50 = 7.3 µM). Flow cytometry and other pertinent assays showed that GON-induced abundant reactive oxygen species (ROS), glutathione depletion, protein glutathionylation and activation of apoptotic markers. GON was found to conjugate with glutathione both in vitro and in cells and the product was characterized by mass spectrometry. We hypothesized that the redox imbalance induced by GON may affect the structure of the R175H mutant p53 protein, and account for greater cytotoxicity. Using the SKBR3 breast cancer and p53-null H1299 lung cancer cells stably expressing the R175H p53 mutant protein, we demonstrated that GON triggers the appearance of a wild-type-like p53 protein by using conformation-specific antibodies, immunoprecipitation, DNA-binding assays and target gene expression. p53 restoration was associated with a G2/M arrest, senescence, reduced cell migration, invasion and increased cell death. GON elicited a highly synergistic cytotoxicity with cisplatin in SKBR3 cells. In SKBR3 xenografts developed in nude mice, there was a marked tumor growth delay by GON alone and GON + cisplatin combination. Our studies highlight the impact of tumor redox-stress generated by GON in activating the mutant p53 protein for greater antitumor efficacy.
Collapse
Affiliation(s)
- Surendra R Punganuru
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hanumantha Rao Madala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Viswanath Arutla
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Kalkunte S Srivenugopal
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
9
|
Pilli RA, de Toledo I, Meirelles MA, Grigolo TA. Goniothalamin-Related Styryl Lactones: Isolation, Synthesis, Biological Activity and Mode of Action. Curr Med Chem 2018; 26:7372-7451. [PMID: 30306856 DOI: 10.2174/0929867325666181009161439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/25/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022]
Abstract
This review covers the chemistry and biological aspects of goniothalamin-related styryl lactones isolated from natural sources. This family of secondary metabolites has been reported to display diverse uses in folk medicine, but only a limited number of these compounds have been throughly investigated regarding their biological profile. Herein, we cover the goniothalamin-related styryl lactones having a C6-C3-C4 framework which appeared in the literature for the first time in the period 2000-2017, and the reports on the synthesis, biological activity and mechanism of action which were published from 2007-2017.
Collapse
Affiliation(s)
- Ronaldo Aloise Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Ian de Toledo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| | | | - Thiago Augusto Grigolo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, Brazil
| |
Collapse
|
10
|
Sachs J, Kadioglu O, Weber A, Mundorf V, Betz J, Efferth T, Pietruszka J, Teusch N. Selective inhibition of P-gp transporter by goniothalamin derivatives sensitizes resistant cancer cells to chemotherapy. J Nat Med 2018; 73:226-235. [DOI: 10.1007/s11418-018-1230-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
|
11
|
Yao GD, Sun Q, Song XY, Huang XX, Song SJ. Flavan enantiomers from Daphne giraldii selectively induce apoptotic cell death in p53-null hepatocarcinoma cells in vitro. Chem Biol Interact 2018; 289:1-8. [DOI: 10.1016/j.cbi.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/03/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
12
|
Gonçalves GD, Semprebon SC, Biazi BI, Mantovani MS, Fernandes GSA. Bisphenol A reduces testosterone production in TM3 Leydig cells independently of its effects on cell death and mitochondrial membrane potential. Reprod Toxicol 2018; 76:26-34. [DOI: 10.1016/j.reprotox.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022]
|
13
|
Huang XX, Ren Q, Song XY, Zhou L, Yao GD, Wang XB, Song SJ. Seven new sesquineolignans isolated from the seeds of hawthorn and their neuroprotective activities. Fitoterapia 2018; 125:6-12. [DOI: 10.1016/j.fitote.2017.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/04/2017] [Accepted: 12/09/2017] [Indexed: 11/27/2022]
|
14
|
Weber A, Döhl K, Sachs J, Nordschild ACM, Schröder D, Kulik A, Fischer T, Schmitt L, Teusch N, Pietruszka J. Synthesis and cytotoxic activities of goniothalamins and derivatives. Bioorg Med Chem 2017; 25:6115-6125. [PMID: 28214230 DOI: 10.1016/j.bmc.2017.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
Substituted goniothalamins containing cyclopropane-groups were efficiently prepared in high yields and good selectivity. Antiproliferative activity was measured on three human cancer cell lines (A549, MCF-7, HBL-100), to show which of the structural elements of goniothalamins is mandatory for cytotoxicity. We found that the configuration of the stereogenic centre of the δ-lactone plays an important role for cytotoxicity. In our studies only (R)-configured goniothalamins showed antiproliferative activity, whereby (R)-configuration accords to natural goniothalamin (R)-1. Additionally, the δ-lactone needs to be unsaturated whereas our results show that the vinylic double bond is not mandatory for cytotoxicity. Furthermore, with a two-fold in vitro and in vivo strategy, we determined the inhibitory effect of the compounds to the yeast protein Pdr5. Here, we clearly demonstrate that the configuration seems to be of minor influence, only, while the nature of the substituent of the phenyl ring is of prime importance.
Collapse
Affiliation(s)
- Anja Weber
- Institut für Bioorganische Chemie (IBOC), Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, Stetternicher Forst, Geb. 15.8, 52426 Jülich, Germany
| | - Katja Döhl
- Institut für Biochemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Julia Sachs
- Bio-Pharmaceutical Chemistry and Molecular Pharmacology, Faculty of Applied Science, Technische Hochschule Köln, CHEMPARK, E39 51368 Leverkusen, Germany
| | - Anja C M Nordschild
- Institut für Bioorganische Chemie (IBOC), Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, Stetternicher Forst, Geb. 15.8, 52426 Jülich, Germany
| | - Dennis Schröder
- IBG-1: Biotechnologie, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Andrea Kulik
- Bio-Pharmaceutical Chemistry and Molecular Pharmacology, Faculty of Applied Science, Technische Hochschule Köln, CHEMPARK, E39 51368 Leverkusen, Germany
| | - Thomas Fischer
- BIO-MAR im Augenzentrum Friedrichstadt, Friedrichstraße 140, 40217 Düsseldorf, Germany
| | - Lutz Schmitt
- Institut für Biochemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Nicole Teusch
- Bio-Pharmaceutical Chemistry and Molecular Pharmacology, Faculty of Applied Science, Technische Hochschule Köln, CHEMPARK, E39 51368 Leverkusen, Germany
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie (IBOC), Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, Stetternicher Forst, Geb. 15.8, 52426 Jülich, Germany; IBG-1: Biotechnologie, Forschungszentrum Jülich, 52428 Jülich, Germany.
| |
Collapse
|
15
|
Boonmuen N, Thongon N, Chairoungdua A, Suksen K, Pompimon W, Tuchinda P, Reutrakul V, Piyachaturawat P. 5-Acetyl goniothalamin suppresses proliferation of breast cancer cells via Wnt/β-catenin signaling. Eur J Pharmacol 2016; 791:455-464. [PMID: 27640746 DOI: 10.1016/j.ejphar.2016.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022]
Abstract
Styryl lactones are plant-derived compounds from genus Goniothalamus with promising anti-proliferation and anticancer properties. However, the exact mechanism and the target for their activities remained unclear. In the present study, we investigated the effect of 5-acetyl goniothalamin (5GTN) from Goniothalamus marcanii on Wnt/β-catenin signaling pathway which is a key regulator in controlling cell proliferation in breast cancer cells (MCF-7 and MDA-MB-231). 5GTN, a naturally occurring derivative of goniothalamin (GTN) mediated the toxicity to MCF-7 and MDA-MB-231 cells in a dose- and time- related manner, and was more potent than that of GTN. 5GTN strongly inhibited cell proliferation and markedly suppressed transcriptional activity induced by β-catenin in luciferase reporter gene assay. In consistent with this view, the expression of Wnt/β-catenin signaling target genes including c-Myc, cyclin D1 and Axin2 in MCF-7 and MDA-MB-231 cells were suppressed after treatment with 5GTN. It was concomitant with cell cycle arrest at G1 phase and cell apoptosis in MCF-7 cells. In addition, 5GTN enhanced glycogen synthase kinase (GSK-3β) activity and therefore reduced the expression of active form of β-catenin protein in MCF-7 and MDA-MB-231 cells. Taken together, 5GTN exhibited a promising anticancer effect against breast cancer cells through an inhibition of Wnt/β-catenin signaling. This pathway may be served as a potential chemotherapeutic target for breast cancer by 5GTN.
Collapse
Affiliation(s)
- Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Natthakan Thongon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wilart Pompimon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Lampang Rajabhat University, Lampang 52100, Thailand
| | - Patoomratana Tuchinda
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|