1
|
Pizzoli G, Gargaro M, Drava G, Voliani V. Inorganic Nanomaterials Meet the Immune System: An Intricate Balance. Adv Healthc Mater 2025; 14:e2404795. [PMID: 40079074 PMCID: PMC12023827 DOI: 10.1002/adhm.202404795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/19/2025] [Indexed: 03/14/2025]
Abstract
The immune system provides defense against foreign agents that are considered harmful for the organism. Inorganic nanomaterials can be recognized by the immune system as antigens, inducing an immune reaction dependent on the patient's immunological anamnesis and from several factors including size, shape, and the chemical nature of the nanoparticles. Furthermore, nanomaterials-driven immunomodulation might be exploited for therapeutic purposes, opening new horizons in oncology and beyond. In this scenario, we present a critical review of the state of the art regarding the preclinical evaluation of the effects of the most promising metals for biomedical applications (gold, silver, and copper) on the immune system. Because exploiting the interactions between the immune system and inorganic nanomaterials may result in a game changer for the management of (non)communicable diseases, within this review we encounter the need to summarize and organize the plethora of sometimes inconsistent information, analyzing the challenges and providing the expected perspectives. The field is still in its infancy, and our work emphasizes that a deep understanding on the influence of the features of metal nanomaterials on the immune system in both cultured cells and animal models is pivotal for the safe translation of nanotherapeutics to the clinical practice.
Collapse
Affiliation(s)
- Gloria Pizzoli
- Department of PharmacySchool of Medical and Pharmaceutical SciencesUniversity of GenoaViale Cembrano 4Genoa16148Italy
- Center for Nanotechnology Innovation @NESTIstituto Italiano di TecnologiaPiazza San Silvestro 12Pisa56127Italy
| | - Marco Gargaro
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Giochetto 1Perugia06126Italy
| | - Giuliana Drava
- Department of PharmacySchool of Medical and Pharmaceutical SciencesUniversity of GenoaViale Cembrano 4Genoa16148Italy
| | - Valerio Voliani
- Department of PharmacySchool of Medical and Pharmaceutical SciencesUniversity of GenoaViale Cembrano 4Genoa16148Italy
- Center for Nanotechnology Innovation @NESTIstituto Italiano di TecnologiaPiazza San Silvestro 12Pisa56127Italy
| |
Collapse
|
2
|
Wang K, Wang S, Yin J, Yang Q, Yu Y, Chen L. Long-term application of silver nanoparticles in dental restoration materials: potential toxic injury to the CNS. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:52. [PMID: 37855967 PMCID: PMC10587321 DOI: 10.1007/s10856-023-06753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Silver nanoparticles (AgNPs) have durable and remarkable antimicrobial effects on pathogenic microorganisms, such as bacteria and fungi, in dental plaques. As such, they are widely added to dental restoration materials, including composite resins, denture bases, adhesives, and implants, to solve the problems of denture stomatitis, peri-implant inflammation, and oral infection caused by the long-term use of these dental restoration materials. However, AgNPs can be absorbed into the blood circulatory system through the nasal/oral mucosa, lungs, gastrointestinal tract, skin, and other pathways and then distributed into the lungs, kidneys, liver, spleen, and testes, thereby causing toxic injury to these tissues and organs. It can even be transported across the blood-brain barrier (BBB) and continuously accumulate in brain tissues, causing injury and dysfunction of neurons and glial cells; consequently, neurotoxicity occurs. Other nanomaterials with antibacterial or remineralization properties are added to dental restoration materials with AgNPs. However, studies have yet to reveal the neurotoxicity caused by dental restoration materials containing AgNPs. In this review, we summarize the application of AgNPs in dental restoration materials, the mechanism of AgNPs in cytotoxicity and toxic injury to the BBB, and the related research on the accumulation of AgNPs to cause changes of neurotoxicity. We also discuss the mechanisms of neurotoxicity caused by AgNPs and the mode and rate of AgNPs released from dental restorative materials added with AgNPs to evaluate the probability of neurotoxic injury to the central nervous system (CNS), and then provide a theoretical basis for developing new composite dental restoration materials. Mechanism of neurotoxicity caused by AgNPs: AgNPs in the blood circulation enter the brain tissue after being transported across the BBB through transendothelial cell pathway and paracellular transport pathway, and continuously accumulate in brain tissue, causing damage and dysfunction of neurons and glial cells which ultimately leads to neurotoxicity. The uptake of AgNPs by neurons, astrocytes and microglia causes damage to these cells. AgNPs with non-neurotoxic level often increases the secretion of a variety of cytokines, up-regulates the expression of metallothionein in glial cells, even up-regulates autophagy and inflammation response to protect neurons from the toxic damage of AgNPs. However, the protective effect of glial cells induced by AgNPs exposure to neurotoxic levels is insufficient, which leads to neuronal damage and dysfunction and even neuronal programmed cell death, eventually cause neurotoxicity.
Collapse
Affiliation(s)
- Kaimei Wang
- Guiyang Hospital of Stomatology, Guiyang, Guizhou Province, 563000, China
| | - Shiqi Wang
- The Medical unit of 65651 troops of Chinese people's Liberation Army, Jinzhou, Liaoning Province, 121100, China
| | - Jingju Yin
- Fujian Medical University; Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350002, China
| | - Qiankun Yang
- The Southwest Hospital of Army Medical University, Chongqing, 400038, China
| | - Yi Yu
- Guiyang Hospital of Stomatology, Guiyang, Guizhou Province, 563000, China
| | - Lin Chen
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563100, China.
| |
Collapse
|
3
|
Xiong Y, Xu Y, Zhou F, Hu Y, Zhao J, Liu Z, Zhai Q, Qi S, Zhang Z, Chen L. Bio-functional hydrogel with antibacterial and anti-inflammatory dual properties to combat with burn wound infection. Bioeng Transl Med 2023; 8:e10373. [PMID: 36684072 PMCID: PMC9842067 DOI: 10.1002/btm2.10373] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/07/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Burn infection delays wound healing and increases the burn patient mortality. Consequently, a new dressing with antibacterial and anti-inflammatory dual properties is urgently required for wound healing. In this study, we propose a combination of methacrylate gelatin (GelMA) hydrogel system with silver nanoparticles embed in γ-cyclodextrin metal-organic frameworks (Ag@MOF) and hyaluronic acid-epigallocatechin gallate (HA-E) for the burn wound infection treatment. Ag@MOF is used as an antibacterial agent and epigallocatechin gallate (EGCG) has exhibited biological properties of anti-inflammation and antibacterial. The GelMA/HA-E/Ag@MOF hydrogel enjoys suitable physical properties and sustained release of Ag+. Meanwhile, the hydrogel has excellent biocompatibility and could promote macrophage polarization from M1 to M2. In vivo wound healing evaluations further demonstrate that the GelMA/HA-E/Ag@MOF hydrogel reduces the number of the bacterium efficiently, accelerates wound healing, promotes early angiogenesis, and regulates immune reaction. A further evaluation indicates that the noncanonical Wnt signal pathway is significantly activated in the GelMA/HA-E/Ag@MOF hydrogel treated group. In conclusion, the GelMA/HA-E/Ag@MOF hydrogel could serve as a promising multifunctional dressing for the burn wound healing.
Collapse
Affiliation(s)
- Yahui Xiong
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| | - Yingbin Xu
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| | - Fei Zhou
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| | - Yanke Hu
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| | - Jingling Zhao
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| | - Zhonghua Liu
- South China Agricultural UniversityGuangzhouChina
| | - Qiyi Zhai
- ZhuJiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shaohai Qi
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial SurgeryStomatological Hospital, Southern Medical UniversityGuangzhouChina
| | - Lei Chen
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSunYat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital, SunYat‐Sen UniversityGuangzhouChina
| |
Collapse
|
4
|
Zhang M, Lo ECM. Compare the physicochemical and biological properties of engineered polymer-functionalized silver nanoparticles against Porphyromonas gingivalis. Front Microbiol 2022; 13:985708. [PMID: 36160232 PMCID: PMC9493255 DOI: 10.3389/fmicb.2022.985708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSome polymer-functionalized AgNPs (P-AgNPs) have been developed to optimize the biological properties of AgNPs. However, there are no studies in the literature comparing the differences in physicochemical and biological properties of AgNPs caused by various polymer-functionalizations and providing evidence for the selection of polymers to optimize AgNPs.MethodsTwo AgNPs with similar nano-size and opposite surface charges were synthesized and functionalized by seven polymers. Their physicochemical properties were evaluated by UV-Visible absorption, dynamic light scattering, transmission electron microscopy and inductively coupled plasma optical emission spectroscopy. Their biological properties against Porphyromonas gingivalis and human gingival fibroblast were investigated by MIC determination, time-dependent antibacterial assay, antibiofilm activity and cell viability assay. Silver diamine fluoride, AgNO3 and metronidazole were used as positive controls.ResultsComparative analysis found that there were no significant differences between P-AgNPs and AgNPs in nano-size and in surface charge. Raman spectroscopy analysis provided evidence about the attachment of polymers on AgNPs. For antibacterial property, among the negatively charged AgNPs, only polyvinylpyrrolidone (PVP)-functionalized AgNPs-1 showed a significant lower MIC value than AgNPs-1 (0.79 vs. 4.72 μg/ml). Among the positively charged AgNPs, the MIC values of all P-AgNPs (0.34–4.37 μg/ml) were lower than that of AgNPs-2 (13.89 μg/ml), especially PVP- and Pluronic127-AgNPs-2 (1.75 and 0.34 μg/ml). For antibiofilm property, PVP-AgNPs-1 (7.86 μg/ml, P = 0.002) and all P-AgNPs-2 (3.42–31.14 μg/ml, P < 0.001) showed great antibiofilm effect against P. gingivalis biofilm at 5* to 10*MIC level. For cytotoxicity, all negatively charged AgNPs and PVP-AgNPs-2 showed no cytotoxicity at MIC level, but significant cytotoxicity was detected at 2.5* to 10*MIC levels.ConclusionAmong the polymers studied, polymer functionalization does not significantly alter the physical properties of AgNPs, but modifies their surface chemical property. These modifications, especially the functionalization of PVP, contribute to optimize the antibacterial and antibiofilm properties of AgNPs, while not causing cytotoxicity at the MIC level.
Collapse
|
5
|
Wang Y, Li Q, Peng X, Li Z, Xiang J, Chen Y, Hao K, Wang S, Nie D, Cui Y, Lv F, Wang Y, Wu W, Guo D, Si H. Green synthesis of silver nanoparticles through oil: Promoting full-thickness cutaneous wound healing in methicillin-resistant Staphylococcus aureus infections. Front Bioeng Biotechnol 2022; 10:856651. [PMID: 36082170 PMCID: PMC9445837 DOI: 10.3389/fbioe.2022.856651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Due to the emergence of multi-drug resistant microorganisms, the development and discovery of alternative eco-friendly antimicrobial agents have become a top priority. In this study, a simple, novel, and valid green method was developed to synthesize Litsea cubeba essential oil-silver nanoparticles (Lceo-AgNPs) using Lceo as a reducing and capping agent. The maximum UV absorbance of Lceo-AgNPs appeared at 423 nm and the size was 5-15 nm through transmission electron microscopy result. The results of Fourier transform infrared and DLS showed that Lceo provided sufficient chemical bonds for Lceo-AgNPs to reinforce its stability and dispersion. The in vitro antibacterial effects of Lceo-AgNPs against microbial susceptible multidrug-resistant Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) were determined. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Lceo-AgNPs against E. coli were 25 and 50 μg/ml. The MIC and MBC of Lceo-AgNPs against MRSA were 50 and 100 μg/ml, respectively. The results of scanning electron microscopy showed that the amount of bacteria obviously decreased and the bacteria cells were destroyed by Lceo-AgNPs. In vivo research disclosed significant wound healing and re-epithelialization effects in the Lceo-AgNPs group compared with the self-healing group and the healing activity was better than in the sulfadiazine silver group. In this experiment, Lceo-AgNPs has been shown to have effects on killing multidrug-resistant bacteria and promoting wound healing. This study suggested Lceo-AgNPs as an excellent new-type drug for wound treatment infected with multidrug-resistant bacteria, and now expects to proceed with clinical research.
Collapse
Affiliation(s)
- Yuhan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qinmei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jun Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yunru Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kaiyuan Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuaiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dongyang Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenda Wu
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Rocha ACDS, Pinheiro MVDS, Menezes LRD, Silva EOD. Core-shell nanoparticles based on zirconia covered with silver as an advantageous perspective for obtaining antimicrobial nanocomposites with good mechanical properties and less cytotoxicity. J Mech Behav Biomed Mater 2021; 123:104726. [PMID: 34454208 DOI: 10.1016/j.jmbbm.2021.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
Antimicrobial nanoparticles perform a vast and promising strand of applications, among which, the silver ones stand out due to their broad antimicrobial spectrum. However, their toxicological potential in addition with their not always satisfying mechanical properties limit their wider application. In this sense, the use of core-shell systems can generate materials with improved properties. Thus, the goal of the present work was to obtain zirconia-silver core-shell nanoparticles and, after that, evaluate their properties in systems based on poly(lactide) PLA. Systems containing silver nanoparticles (AgNP), zirconium oxide (ZrNP), a physical mixture of both particles and core-shell nanoparticles (Core-shell NP) were evaluated. The Core-shell NP were characterized by dynamic light scattering (DLS), Energy Dispersive X-Ray (EDX), transmission electronic microscopy (TEM), and antimicrobial activity. The nanocomposite films were evaluated by Fourier transform infrared analysis (FTIR), thermogravimetric analysis (TGA), nano-hardness, tensile strength test, cytotoxicity, and antimicrobial activity. The results obtained from the DLS and EDX analyses confirmed the obtaining of systems covered with silver. Through the TEM analysis, the formation of the core-shell structure with a diameter of about 100 nm was observed. The films containing core-shell NP presented antimicrobial activity with a profile correspondent to the one observed for AgNP. As for cytotoxicity, these particles proved to be less cytotoxic and achieved higher values of hardness (10%), modulus (40%), and toughness (28%) than those observed for AgNP, and these properties were lower than those observed for ZrNP. The core-shell NP also exhibited even greater antimicrobial activities, less cytotoxicity, and largest elastic modulus (17%) than the physical mixture of the particles.
Collapse
Affiliation(s)
- Anne Caroline da Silva Rocha
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Av. Horácio Macedo 2030, bloco J, Centro de Tecnologia, CEP 21941-598, Rio de Janeiro, RJ, Brazil.
| | - Marcelo Vítor Dos Santos Pinheiro
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Av. Horácio Macedo 2030, bloco J, Centro de Tecnologia, CEP 21941-598, Rio de Janeiro, RJ, Brazil
| | - Lívia Rodrigues de Menezes
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Av. Horácio Macedo 2030, bloco J, Centro de Tecnologia, CEP 21941-598, Rio de Janeiro, RJ, Brazil
| | - Emerson Oliveira da Silva
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Av. Horácio Macedo 2030, bloco J, Centro de Tecnologia, CEP 21941-598, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Atmospheric Corrosion, Antibacterial Properties, and Toxicity of Silver Nanoparticles Synthesized by Two Different Routes. Bioinorg Chem Appl 2020; 2020:8891069. [PMID: 33376478 PMCID: PMC7746452 DOI: 10.1155/2020/8891069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been widely employed or incorporated into different materials in biological application, due to their antibacterial properties. Therefore, antimicrobial capacity and cytotoxicity have been highly studied. However, most of these reports do not consider the possible corrosion of the nanomaterials during their exposure to atmospheric conditions since AgNPs undergo a transformation when they come in contact with a particular environment. Derived from this, the functionality and properties of the nanoparticles could decrease noticeably. The most common silver corrosion process occurs by the interaction of AgNPs with sulfur species (H2S) present in the atmospheric air, forming a corrosion layer of silver sulfide around the AgNPs, thus inhibiting the release of the ions responsible for the antimicrobial activity. In this work, AgNPs were synthesized using two different methods: one of them was based on a plant extract (Brickellia cavanillesii), and the other one is the well-known method using sodium borohydride (NaBH4). Chemical stability, corrosion, antibacterial activity, and toxic activity were evaluated for both sets of prepared samples, before and after exposition to atmospheric air for three months. The structural characterization of the samples, in terms of crystallinity, chemical composition, and morphology, evidenced the formation of link structures with nanobridges of Ag2S for non- “green” AgNPs after the air exposition and the intact preservation of silver core for the “green” sample. The antibacterial activity showed a clear improvement in the antimicrobial properties of silver in relation to the “green” functionalization, particle size control, and size reduction, as well as the preservation of the properties after air exposition by the effective “green” protection. The cytotoxicity effect of the different AgNPs against mononuclear cells showed a notable increment in the cell viability by the “green” functionalization.
Collapse
|
8
|
Transformation and Cytotoxicity of Surface-Modified Silver Nanoparticles Undergoing Long-Term Aging. NANOMATERIALS 2020; 10:nano10112255. [PMID: 33203023 PMCID: PMC7697416 DOI: 10.3390/nano10112255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022]
Abstract
Silver nanoparticles (AgNPs) are constituents of many consumer products, but the future of their production depends on ensuring safety. The stability of AgNPs in various physiological solutions and aging in storage may affect the accuracy of predicted nanoparticle toxicity. The goal of this study was to simulate the transformation of AgNPs in different media representatives to the life cycle in the environment and to identify their toxicity to Hepa1c1c7 cells in a long-term aging process. AgNPs coated with citrate, polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and branched polyethyleneimine (BPEI) were studied. Our results show that the exposure media had a significant impact on the transformation of AgNPs. Citrate-coated AgNPs showed significant aggregation in phosphate-buffered saline. The aging of AgNPs in optimal storage showed that the charge-stabilized particles (citrate) were more unstable, with significant aggregation and shape changes, than sterically stabilized particles (PEG AgNPs, PVP AgNPs). The BPEI AgNPs showed the highest dissolution of AgNPs, which induced significantly increased toxicity to Hepa1c1c7 cells. Overall, our findings showed that storage and media of AgNPs influenced the transformation of AgNPs and that the resulting changes in the AgNPs’ physicochemical properties influenced their toxicity. Our study contributes to the understanding of AgNPs’ transformations under realistic exposure scenarios and increasing the predictability of risk assessments.
Collapse
|
9
|
da Luz JZ, Machado TN, Bezerra AG, de Oliveira Ribeiro CA, Neto FF. Cytotoxicity of bismuth nanoparticles in the murine macrophage cell line RAW 264.7. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:95. [PMID: 33128626 DOI: 10.1007/s10856-020-06427-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
A promising use of bismuth nanoparticles (BiNPs) for different biomedical applications leads to a search for the elucidation of their toxicity mechanisms, since toxicity studies are still at early stage. In the current study, cytotoxic effects of BiNPs produced by laser ablation in solution (LASiS) was investigated in the murine macrophage line RAW 264.7. The cells were exposed to 0.01-50 µg ml-1 of BiNPs for 24 and 48 h and then cytotoxicity assays were performed. Decrease of MTT conversion to formazan and of cell attachment were observed with no effects on cell proliferation. No loss of membrane integrity or significant changes of ROS and RNS levels were observed in exposed cells. Foremost, increased phagocytic activity and DNA repair foci occurred for cells exposed to BiNPs. These effects are important findings that must be considered in the case of biomedical application of BiNPs, since inappropriate macrophages activation and inactivation may lead to immunotoxicity. Bismuth nanoparticles (BiNPs) produced by laser ablation in solution and stabilized with BSA decrease enzyme-dependent MTT conversion to formazan and increase phagocytic activity and DNA repair foci in murine macrophage line RAW 264.7 when exposed to 50 µg ml-1. These effects are findings that should be considered in the case of biomedical application of BiNPs, since inappropriate macrophages activation and inactivation may lead to immunotoxicity.
Collapse
Affiliation(s)
- Jessica Zablocki da Luz
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, PR, CEP 81.531-990, Brazil.
| | - Thiago Neves Machado
- Laboratório Fotonanobio, Departamento Acadêmico de Física, Universidade Tecnológica Federal do Paraná, Curitiba, PR, CEP 80.230-901, Brazil
| | - Arandi Ginane Bezerra
- Laboratório Fotonanobio, Departamento Acadêmico de Física, Universidade Tecnológica Federal do Paraná, Curitiba, PR, CEP 80.230-901, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, PR, CEP 81.531-990, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, PR, CEP 81.531-990, Brazil.
| |
Collapse
|
10
|
Zorraquín-Peña I, Cueva C, González de Llano D, Bartolomé B, Moreno-Arribas MV. Glutathione-Stabilized Silver Nanoparticles: Antibacterial Activity against Periodontal Bacteria, and Cytotoxicity and Inflammatory Response in Oral Cells. Biomedicines 2020; 8:E375. [PMID: 32977686 PMCID: PMC7598685 DOI: 10.3390/biomedicines8100375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been proposed as new alternatives to limit bacterial dental plaque because of their antimicrobial activity. Novel glutathione-stabilized silver nanoparticles (GSH-AgNPs) have proven powerful antibacterial properties in food manufacturing processes. Therefore, this study aimed to evaluate the potentiality of GSH-AgNPs for the prevention/treatment of oral infectious diseases. First, the antimicrobial activity of GSH-AgNPs against three oral pathogens (Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mutans) was evaluated. Results demonstrated the efficiency of GSH-AgNPs in inhibiting the growth of all bacteria, especially S. mutans (IC50 = 23.64 μg/mL, Ag concentration). Second, GSH-AgNPs were assayed for their cytotoxicity (i.e., cell viability) toward a human gingival fibroblast cell line (HGF-1), as an oral epithelial model. Results indicated no toxic effects of GSH-AgNPs at low concentrations (≤6.16 µg/mL, Ag concentration). Higher concentrations resulted in losing cell viability, which followed the Ag accumulation in cells. Finally, the inflammatory response in the HGF-1 cells after their exposure to GSH-AgNPs was measured as the production of immune markers (interleukins 6 and 8 (IL-6 and IL-8) and tumor necrosis factor-alpha (TNF-α)). GSH-AgNPs activates the inflammatory response in human gingival fibroblasts, increasing the production of cytokines. These findings provide new insights for the use of GSH-AgNPs in dental care and encourage further studies for their application.
Collapse
Affiliation(s)
| | | | | | | | - M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera, 9, Campus de Cantoblanco, 28049 Madrid, Spain; (I.Z.-P.); (C.C.); (D.G.d.L.); (B.B.)
| |
Collapse
|
11
|
Wang D, Meng Y, Wang X, Xia G, Zhang Q. The Endocytic Mechanism and Cytotoxicity of Boron-Containing Vesicles. Chem Pharm Bull (Tokyo) 2020; 68:618-627. [DOI: 10.1248/cpb.c19-00971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yue Meng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and State Key Laboratory of Natural and Biomimetic Drugs, Peking University
| |
Collapse
|
12
|
Docea AO, Calina D, Buga AM, Zlatian O, Paoliello M, Mogosanu GD, Streba CT, Popescu EL, Stoica AE, Bîrcă AC, Vasile BȘ, Grumezescu AM, Mogoanta L. The Effect of Silver Nanoparticles on Antioxidant/Pro-Oxidant Balance in a Murine Model. Int J Mol Sci 2020; 21:1233. [PMID: 32059471 PMCID: PMC7072874 DOI: 10.3390/ijms21041233] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 02/05/2023] Open
Abstract
This study aimed to evaluate the subacute effect of two types of Ag-NPs(EG-AgNPs and PVP-EG-AgNPs) on antioxidant/pro-oxidant balance in rats. Seventy Wistar rats (35 males and 35 females) were divided in 7 groups and intraperitoneally exposed for 28 days to 0, 1, 2 and 4 mg/kg bw/day EG-Ag-NPs and 1, 2 and 4 mg/kg bw/day PVP- EG-Ag-NPs. After 28 days, the blood was collected, and the total antioxidant capacity (TAC), thiobarbituric reactive species (TBARS),protein carbonyl (PROTC) levels, reduced glutathione (GSH) levels and catalase (CAT) activity were determined. EG-Ag-NPs determined protective antioxidant effects in a dose-dependent manner. The exposure to the 4 mg/kg bw/day EG-Ag-NPs determines both in males and females a significant increase in TAC and CAT and a significant decrease in TBARS and PROTC only in females. The PVP-EG-AgNPs showed a different trend compared to EG-AgNPs. At 4 mg/kg bw/day the PVP-EG-AgNPs induce increased PROTC levels and decreased GSH (males and females) and TAC levels (males). The different mechanisms of EG-AgNPs and PVP-EG-AgNPs on antioxidant-/pro-oxidant balance can be explained by the influence of coating agent used for the preparation of the nanoparticles in the formation and composition of protein corona that influence their pathophysiology in the organism.
Collapse
Affiliation(s)
- Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - M.M.B. Paoliello
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, Londrina 86038-350, Brazil;
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209,1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - George Dan Mogosanu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Costin Teodor Streba
- Department of Research Methodology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Elena Leocadia Popescu
- Doctoral School University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Alexandra Elena Stoica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.E.S.); (A.C.B.); (A.M.G.)
| | - Alexandra Catalina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.E.S.); (A.C.B.); (A.M.G.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.E.S.); (A.C.B.); (A.M.G.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.E.S.); (A.C.B.); (A.M.G.)
| | - Laurentiu Mogoanta
- Department of Histology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
13
|
Gámez E, Mendoza G, Salido S, Arruebo M, Irusta S. Antimicrobial Electrospun Polycaprolactone-Based Wound Dressings: An In Vitro Study About the Importance of the Direct Contact to Elicit Bactericidal Activity. Adv Wound Care (New Rochelle) 2019; 8:438-451. [PMID: 31737424 DOI: 10.1089/wound.2018.0893] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
Objective: To prepare efficient antibacterial carvacrol (CAR) and thymol (THY)-loaded electrospun polycaprolactone (PCL)-based wound dressings. Approach: Using electrospinning we were able to prepare wound dressings with antimicrobial action thanks to their large surface per volume ratio, which allows their loading with therapeutic amounts of active principles. By nuclear magnetic resonance we demonstrated that the antimicrobial compounds are donors of hydrogen bonds to the ester functional group in PCL, which acts as acceptor and that intermolecular interaction is responsible for the high drug loading achieved. Results: Those mats loaded with CAR and THY without the use of solubilizing agents were able to completely eradicate both Gram-positive (Staphylococcus aureus ATCC 25923) and Gram-negative (Escherichia coli S17 strain) bacteria at doses inferior to the ones needed when using the free nonsupported compounds. A superior antimicrobial action was observed for THY and CAR against Gram-negative bacteria than against Gram-positive bacteria, despite the higher hydrophilicity of the outer layer of Gram-negative bacteria. Innovation: We demonstrate that a direct contact between the bacteria and the dressing is required to elicit antimicrobial action. We also evaluated drug loadings by gas chromatography coupled with mass spectrometry and nuclear magnetic resonance validating a new analytical approach. Finally we were able to visualize the pathogenic bacteria on the dressings by confocal microscopy. Conclusion: The interaction between the PCL-based mat and the pathogenic bacteria is a key issue to achieve complete pathogen eradication. Under no-contact conditions, released CAR or THY from the electrospun mats did not exert any antimicrobial action at the doses tested.
Collapse
Affiliation(s)
- Enrique Gámez
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Zaragoza, Spain
| | - Gracia Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - Sofía Salido
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Agrifood Campus of International Excellence (ceiA3), Jaén, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - Silvia Irusta
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| |
Collapse
|
14
|
Nguyen KC, Zhang Y, Todd J, Kittle K, Patry D, Caldwell D, Lalande M, Smith S, Parks D, Navarro M, Massarsky A, Moon TW, Willmore WG, Tayabali AF. Biodistribution and Systemic Effects in Mice Following Intravenous Administration of Cadmium Telluride Quantum Dot Nanoparticles. Chem Res Toxicol 2019; 32:1491-1503. [DOI: 10.1021/acs.chemrestox.8b00397] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kathy C. Nguyen
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, Ontario, Canada K1A 0K9
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario Canada, K1S 5B6
| | - Yan Zhang
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, Ontario, Canada K1A 0K9
| | - Julie Todd
- Bureau of Chemical Safety, Health Products and Food Branch, 251 Sir Frederick Banting Driveway, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Kevin Kittle
- Bureau of Chemical Safety, Health Products and Food Branch, 251 Sir Frederick Banting Driveway, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Dominique Patry
- Bureau of Chemical Safety, Health Products and Food Branch, 251 Sir Frederick Banting Driveway, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Don Caldwell
- Bureau of Chemical Safety, Health Products and Food Branch, 251 Sir Frederick Banting Driveway, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Michelle Lalande
- Bureau of Chemical Safety, Health Products and Food Branch, 251 Sir Frederick Banting Driveway, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Scott Smith
- Bureau of Chemical Safety, Health Products and Food Branch, 251 Sir Frederick Banting Driveway, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Douglas Parks
- Bureau of Chemical Safety, Health Products and Food Branch, 251 Sir Frederick Banting Driveway, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Martha Navarro
- Bureau of Chemical Safety, Health Products and Food Branch, 251 Sir Frederick Banting Driveway, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Andrey Massarsky
- University of Ottawa, Department of Biology, Centre for Advanced Research in Environmental Genomics and the Collaborative Program in Chemical and Environmental Toxicology, 75 Laurier Avenue East, Ottawa, Ontario, Canada K1N 6N5
| | - Thomas W. Moon
- University of Ottawa, Department of Biology, Centre for Advanced Research in Environmental Genomics and the Collaborative Program in Chemical and Environmental Toxicology, 75 Laurier Avenue East, Ottawa, Ontario, Canada K1N 6N5
| | - William G. Willmore
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario Canada, K1S 5B6
| | - Azam F. Tayabali
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, Ontario, Canada K1A 0K9
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario Canada, K1S 5B6
| |
Collapse
|
15
|
Das B, Dadhich P, Pal P, Dutta J, Srivas PK, Dutta A, Mohapatra PKD, Maity AM, Bera S, Dhara S. Doping of carbon nanodots for saving cells from silver nanotoxicity: A study on recovering osteogenic differentiation potential. Toxicol In Vitro 2019; 57:81-95. [DOI: 10.1016/j.tiv.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/02/2019] [Accepted: 02/14/2019] [Indexed: 01/22/2023]
|
16
|
Park S, Ko YS, Jung H, Lee C, Woo K, Ko G. Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:477-485. [PMID: 29291562 DOI: 10.1016/j.scitotenv.2017.12.318] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 05/28/2023]
Abstract
Silver nanoparticles (AgNPs) have been reported as an effective alternative for controlling a broad-spectrum of pathogenic viruses. We developed a micrometer-sized silica hybrid composite decorated with AgNPs (AgNP-SiO2) to prevent the inherent aggregation of AgNPs, and facilitated their recovery from environmental media after use. The production process had a high-yield, and fabrication was cost-effective. We evaluated the antiviral capabilities of Ag30-SiO2 particles against two model viruses, bacteriophage MS2 and murine norovirus (MNV), in four different types of water (deionized, tap, surface, and ground). MNV was more susceptible to Ag30-SiO2 particles in all four types of water compared to MS2. Furthermore, several water-related factors, including temperature and organic matter content, were shown to affect the antimicrobial capabilities of Ag30-SiO2 particles. The modified Hom model was the best-fit disinfection model for MNV disinfection in the different types of water. Additionally, this study demonstrated that the effects of a certain level of physical obstacles in water were negligible in regards to the use of Ag30-SiO2 particles. Thus, effective use of AgNPs in water disinfection processes can be achieved using our novel hybrid composites to inactivate various waterborne viruses.
Collapse
Affiliation(s)
- SungJun Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea; N-Bio, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Young-Seon Ko
- Nanophotonics Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Haeyong Jung
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Cheonghoon Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Kyoungja Woo
- Nanophotonics Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea; N-Bio, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Gioria S, Urbán P, Hajduch M, Barboro P, Cabaleiro N, La Spina R, Chassaigne H. Proteomics study of silver nanoparticles on Caco-2 cells. Toxicol In Vitro 2018; 50:347-372. [PMID: 29626626 PMCID: PMC6021817 DOI: 10.1016/j.tiv.2018.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
Silver nanoparticles (AgNPs) have been incorporated into several consumer products. While these advances in technology are promising and exciting, the effects of these nanoparticles have not equally been studied. Due to the size, AgNPs can penetrate the body through oral exposure and reach the gastrointestinal tract. The present study was designed as a comparative proteomic analysis of Caco-2 cells, used as an in vitro model of the small intestine, exposed to 30 nm citrate stabilized-silver nanoparticles (AgNPs) for 24 or 72 h. Using two complementary proteomic approaches, 2D gel-based and label-free mass spectrometry, we present insight into the effects of AgNPs at proteins level. Exposure of 1 or 10 μg/mL AgNPs to Caco-2 cells resulted in 56 and 88 altered proteins at 24 h and 72 h respectively, by 2D gel-based technique. Ten of these proteins were found to be common between the two time-points. Using label-free mass spectrometry technique, 291 and 179 altered proteins were found at 24 h and 72 h, of which 24 were in common. Analysis of the proteomes showed several major biological processes altered, from which, cell cycle, cell morphology, cellular function and maintenance were the most affected. Comparison between 2D gel-based vs label-free MS based proteomics study Significant changes in the protein profiles of Caco-2 cells exposed to AgNPs. Contribute to understand the mechanisms of action of AgNPs
Collapse
Affiliation(s)
- Sabrina Gioria
- European Commission, Joint Research Centre (JRC), Directorate F - Health, Consumers and Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy.
| | - Patricia Urbán
- European Commission, Joint Research Centre (JRC), Directorate F - Health, Consumers and Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Martin Hajduch
- European Commission, Joint Research Centre (JRC), Directorate F - Health, Consumers and Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Paola Barboro
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132 Genova, Italy
| | - Noelia Cabaleiro
- European Commission, Joint Research Centre (JRC), Directorate F - Health, Consumers and Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Directorate F - Health, Consumers and Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Hubert Chassaigne
- European Commission, Joint Research Centre (JRC), Directorate F - Health, Consumers and Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| |
Collapse
|
18
|
Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J Adv Res 2018; 9:1-16. [PMID: 30046482 PMCID: PMC6057238 DOI: 10.1016/j.jare.2017.10.008] [Citation(s) in RCA: 624] [Impact Index Per Article: 89.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
With the development of nanotechnology, silver nanoparticles (Ag-NPs) have become one of the most in-demand nanoparticles owing to their exponential number of uses in various sectors. The increased use of Ag-NPs-enhanced products may result in an increased level of toxicity affecting both the environment and living organisms. Several studies have used different model cell lines to exhibit the cytotoxicity of Ag-NPs, and their underlying molecular mechanisms. This review aimed to elucidate different properties of Ag-NPs that are responsible for the induction of cellular toxicity along with the critical mechanism of action and subsequent defense mechanisms observed in vitro. Our results show that the properties of Ag-NPs largely vary based on the diversified synthesis processes. The physiochemical properties of Ag-NPs (e.g., size, shape, concentration, agglomeration, or aggregation interaction with a biological system) can cause impairment of mitochondrial function prior to their penetration and accumulation in the mitochondrial membrane. Thus, Ag-NPs exhibit properties that play a central role in their use as biocides along with their applicability in environmental cleaning. We herein report a current review of the synthesis, applicability, and toxicity of Ag-NPs in relation to their detailed characteristics.
Collapse
Key Words
- Ag+, silver ions
- Ag-NPs, silver nanoparticles
- Cytotoxicity
- DNA, deoxyribonucleic acid
- GSH, glutathione
- LDH, lactate dehydrogenase
- Mechanism
- NPs, nanoparticles
- PVP, polyvinylpyrrolidone
- Physiochemical properties
- ROS, reactive oxygen species
- Silver nanoparticles
- TMRE, tetramethylrhodamine ethyl ester
- TT, toxicity threshold
- ppm, parts per million
Collapse
Affiliation(s)
- Mahmuda Akter
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Md. Tajuddin Sikder
- Group of Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, 060-0810 Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0817, Japan
- Department of Public Health and Informatics, Jahangirnagar University, Bangladesh
| | - Md. Mostafizur Rahman
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - A.K.M. Atique Ullah
- Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | | | - Subrata Banik
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Toshiyuki Hosokawa
- Research Division of Higher Education, Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0817, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
- Group of Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, 060-0810 Sapporo, Japan
| |
Collapse
|
19
|
Johnston HJ, Verdon R, Gillies S, Brown DM, Fernandes TF, Henry TB, Rossi AG, Tran L, Tucker C, Tyler CR, Stone V. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. Crit Rev Toxicol 2017; 48:252-271. [PMID: 29239234 DOI: 10.1080/10408444.2017.1404965] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Assessing the safety of engineered nanomaterials (NMs) is paramount to the responsible and sustainable development of nanotechnology, which provides huge societal benefits. Currently, there is no evidence that engineered NMs cause detrimental health effects in humans. However, investigation of NM toxicity using in vivo, in vitro, in chemico, and in silico models has demonstrated that some NMs stimulate oxidative stress and inflammation, which may lead to adverse health effects. Accordingly, investigation of these responses currently dominates NM safety assessments. There is a need to reduce reliance on rodent testing in nanotoxicology for ethical, financial and legislative reasons, and due to evidence that rodent models do not always predict the human response. We advocate that in vitro models and zebrafish embryos should have greater prominence in screening for NM safety, to better align nanotoxicology with the 3Rs principles. Zebrafish are accepted for use by regulatory agencies in chemical safety assessments (e.g. developmental biology) and there is growing acceptance of their use in biomedical research, providing strong foundations for their use in nanotoxicology. We suggest that investigation of the response of phagocytic cells (e.g. neutrophils, macrophages) in vitro should also form a key part of NM safety assessments, due to their prominent role in the first line of defense. The development of a tiered testing strategy for NM hazard assessment that promotes the more widespread adoption of non-rodent, alternative models and focuses on investigation of inflammation and oxidative stress could make nanotoxicology testing more ethical, relevant, and cost and time efficient.
Collapse
Affiliation(s)
| | - Rachel Verdon
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Suzanne Gillies
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - David M Brown
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | | | - Theodore B Henry
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| | - Adriano G Rossi
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Lang Tran
- c Institute of Occupational Medicine , Edinburgh , UK
| | - Carl Tucker
- b Medical Research Council (MRC) Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Charles R Tyler
- d Department of Biosciences , College of Life and Environmental Sciences, University of Exeter , Exeter , UK
| | - Vicki Stone
- a Nano Safety Research Group , Heriot-Watt University , Edinburgh , UK
| |
Collapse
|
20
|
Shiraiwa M, Ueda K, Pozzer A, Lammel G, Kampf CJ, Fushimi A, Enami S, Arangio AM, Fröhlich-Nowoisky J, Fujitani Y, Furuyama A, Lakey PSJ, Lelieveld J, Lucas K, Morino Y, Pöschl U, Takahama S, Takami A, Tong H, Weber B, Yoshino A, Sato K. Aerosol Health Effects from Molecular to Global Scales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13545-13567. [PMID: 29111690 DOI: 10.1021/acs.est.7b04417] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.
Collapse
Affiliation(s)
- Manabu Shiraiwa
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Kayo Ueda
- Kyoto University , Kyoto 606-8501, Japan
| | | | - Gerhard Lammel
- Research Centre for Toxic Compounds in the Environment, Masaryk University , 625 00 Brno, Czech Republic
| | - Christopher J Kampf
- Institute for Organic Chemistry, Johannes Gutenberg University , 55122 Mainz, Germany
| | - Akihiro Fushimi
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Andrea M Arangio
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | | | - Yuji Fujitani
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Akiko Furuyama
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Pascale S J Lakey
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | | | | | - Yu Morino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | - Satoshi Takahama
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | - Akinori Takami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | | | - Ayako Yoshino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Kei Sato
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| |
Collapse
|
21
|
Pinzaru I, Coricovac D, Dehelean C, Moacă EA, Mioc M, Baderca F, Sizemore I, Brittle S, Marti D, Calina CD, Tsatsakis AM, Şoica C. Stable PEG-coated silver nanoparticles - A comprehensive toxicological profile. Food Chem Toxicol 2017; 111:546-556. [PMID: 29191727 DOI: 10.1016/j.fct.2017.11.051] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 12/18/2022]
Abstract
The present study was purported to assess the toxicological profile of bare and polyethylene glycol (PEG) coated spherical silver nanoparticles (AgNPs) by means of in vitro (on human keratinocytes - HaCat cells) and in vivo non-invasive tests (after intraperitoneal - i.p. administration to mice). Bare and PEG-coated AgNPs were synthesized by applying Turkevich's method slightly modified. The physico-chemical characterization revealed the formation of stable, spherical AgNPs and PEG-AgNPs, with narrow size distributions and mean hydrodynamic sizes in the range of 19 nm and 50 nm, respectively. Toxicity data revealed a dose-dependent safe profile for low concentrations of test compounds (<10 μM) in terms of cell viability, whereas higher concentrations were associated with a high rate of cell mortality. In vivo acute/subacute toxicity data showed no denotive changes in mice health status after i.p. administration. Histological observations of internal organs and the biochemical parameters analyzed together with the other biological observations showed a low toxicity level with no major differences related to control, albeit at skin level a reduced number of mast cells was detected. All these observations provide strong support for the idea that coated silver nanoparticles could be applied as targeted nanocarriers for skin pathologies and diagnostic.
Collapse
Affiliation(s)
- Iulia Pinzaru
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| | - Dorina Coricovac
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| | - Cristina Dehelean
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| | - Elena-Alina Moacă
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| | - Marius Mioc
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| | - Flavia Baderca
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| | - Ioana Sizemore
- Department of Chemistry, Wright State University, Dayton, OH, 45435-0001, USA.
| | - Seth Brittle
- Department of Chemistry, Wright State University, Dayton, OH, 45435-0001, USA.
| | - Daniela Marti
- Western University Vasile Goldis Arad, 94 Revolutiei Blvd., 310025, Arad, Romania.
| | - Cornelia Daniela Calina
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, Petru Rares 2, 200349, Craiova, Romania.
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece.
| | - Codruţa Şoica
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| |
Collapse
|
22
|
Mendoza G, Regiel-Futyra A, Tamayo A, Monzon M, Irusta S, de Gregorio MA, Kyzioł A, Arruebo M. Chitosan-based coatings in the prevention of intravascular catheter-associated infections. J Biomater Appl 2017; 32:725-737. [PMID: 29111850 DOI: 10.1177/0885328217739199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Central venous access devices play an important role in patients with prolonged intravenous administration requirements. In the last years, the coating of these devices with bactericidal compounds has emerged as a potential tool to prevent bacterial colonization. Our study describes the modification of 3D-printed reservoirs and silicone-based catheters, mimicking central venous access devices, through different approaches including their coating with the well known biocompatible and bactericidal polymer chitosan, with the anionic polysaccharide alginate; also, plasma treated surfaces were included in the study to promote polymer adhesion. The evaluation of the antimicrobial action of those surface modifications compared to that exerted by a model antibiotic (ciprofloxacin) adsorbed on the surface of the devices was carried out. Surface characterization was developed by different methodologies and the bactericidal effects of the different coatings were assayed in an in vitro model of Staphylococcus aureus infection. Our results showed a significant reduction in the reservoir roughness (≤73%) after coating though no changes were observed for coated catheters which was also confirmed by scanning electron microscopy, pointing to the importance of the surface device topography for the successful attachment of the coating and for the subsequent development of bactericidal effects. Furthermore, the single presence of chitosan on the reservoirs was enough to fully inhibit bacterial growth exerting the same efficiency as that showed by the model antibiotic. Importantly, chitosan coating showed low cytotoxicity against human keratinocytes, human lung adenocarcinoma epithelial cells, and murine colon carcinoma cells displaying viability percentages in the range of the control samples (>95%). Chitosan-based coatings are proposed as an effective and promising solution in the prevention of microbial infections associated to medical devices.
Collapse
Affiliation(s)
- Gracia Mendoza
- 1 Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), 88201 University of Zaragoza , Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Anna Regiel-Futyra
- 2 Faculty of Chemistry, Jagiellonian University, Ingardena 3, Kraków, Poland
| | - Alejandra Tamayo
- 1 Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), 88201 University of Zaragoza , Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Marta Monzon
- 3 Research Centre for Encephalopathies and Transmissible Emerging Diseases, 88201 Universidad de Zaragoza , Zaragoza, Spain
| | - Silvia Irusta
- 1 Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), 88201 University of Zaragoza , Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Miguel Angel de Gregorio
- 4 Grupo de Investigación en Técnicas de Mínima Invasión (GITMI) del Gobierno de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Agnieszka Kyzioł
- 2 Faculty of Chemistry, Jagiellonian University, Ingardena 3, Kraków, Poland
| | - Manuel Arruebo
- 1 Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), 88201 University of Zaragoza , Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| |
Collapse
|
23
|
Duan J, Hu H, Feng L, Yang X, Sun Z. Silica nanoparticles inhibit macrophage activity and angiogenesis via VEGFR2-mediated MAPK signaling pathway in zebrafish embryos. CHEMOSPHERE 2017; 183:483-490. [PMID: 28570891 DOI: 10.1016/j.chemosphere.2017.05.138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
The safety evaluation of silica nanoparticles (SiNPs) are getting great attention due to its widely-used in food sciences, chemical industry and biomedicine. However, the adverse effect and underlying mechanisms of SiNPs on cardiovascular system, especially on angiogenesis is still unclear. This study was aimed to illuminate the possible mechanisms of SiNPs on angiogenesis in zebrafish transgenic lines, Tg(fli-1:EGFP) and Albino. SiNPs caused the cardiovascular malformations in a dose-dependent manner via intravenous microinjection. The incidences of cardiovascular malformations were observed as: Pericardial edema > Bradycardia > Blood deficiency. The area of subintestinal vessels (SIVs) was significant reduced in SiNPs-treated groups, accompanied with the weaken expression of vascular endothelial cells in zebrafish embryos. Using neutral red staining, the quantitative number of macrophage was declined; whereas macrophage inhibition rate was elevated in a dose-dependent way. Furthermore, SiNPs significantly decreased the mRNA expression of macrophage activity related gene, macrophage migration inhibitory factor (MIF) and the angiogenesis related gene, vascular endothelial growth factor receptor 2 (VEGFR2). The protein levels of p-Erk1/2 and p-p38 MAPK were markedly decreased in zebrafish exposed to SiNPs. Our results implicate that SiNPs inhibited the macrophage activity and angiogenesis via the downregulation of MAPK singaling pathway.
Collapse
Affiliation(s)
- Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China.
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| |
Collapse
|
24
|
Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model. Int J Mol Sci 2016; 17:ijms17101603. [PMID: 27669221 PMCID: PMC5085636 DOI: 10.3390/ijms17101603] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023] Open
Abstract
Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs.
Collapse
|