1
|
Wang D, Bai L, Wang W, Zhang R, Li S, Yan W. Adsorption behavior of ZIF-67 to bisphenol compounds affects combined toxicity on Photobacterium phosphoreum. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136140. [PMID: 39426145 DOI: 10.1016/j.jhazmat.2024.136140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
ZIF-67, as a typical MOF material, is considered a new type of high-potential adsorbent due to its ample surface area and tunable surface chemistry, which has the potential to interact with other contaminants in unforeseen ways, resulting in combined toxicity. To further elucidate this possibility, we chose typical bisphenol compound (BP) which is widely used in commercial manufacturing, to explore the combined toxicity with MOF. MOF showed a high adsorption capacity for BPAF (> 80 %) and the weakest adsorption capacity for BPA (< 10 %), and DFT confirmed the different interaction strengths of MOF for BPs. The difference in adsorption capacity for BPs resulted in different amounts of free BPs, contributing to combined toxicity. Based on flow cytometry and TEM, the results showed that membrane damage was reduced and the ability of ZIF-67 to enter the cell was decreased in the low-concentration ZIF-67 mixing group, and the ability of ZIF-67 to enter the cell was increased in the high-concentration ZIF-67 mixing group, and the membranes were severely damaged. RT-PCR and biochemical indicators measurements helped to explain the underlying toxicity mechanism. This study is of practical significance for the development of environmental guidelines for mixed contaminant effects and accurate risk assessments.
Collapse
Affiliation(s)
- Dan Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; China National Key Laboratory of Aerospace Chemical Power, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Linming Bai
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; China National Key Laboratory of Aerospace Chemical Power, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Wenlong Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ruixue Zhang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan Li
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Wei Yan
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Toxicity of Different Types of Surfactants via Cellular and Enzymatic Assay Systems. Int J Mol Sci 2022; 24:ijms24010515. [PMID: 36613956 PMCID: PMC9820146 DOI: 10.3390/ijms24010515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
Surfactants have a widespread occurrence, not only as household detergents, but also in their application in industry and medicine. There are numerous bioassays for assessing surfactant toxicity, but investigations of their impact on biological systems at the molecular level are still needed. In this paper, luminous marine bacteria and their coupled NAD(P)H:FMN-oxidoreductase + luciferase (Red + Luc) enzyme system was applied to examine the effects of different types of surfactants, including cationic cetyltrimethylammonium bromide (CTAB), non-ionic polyoxyethylene 20 sorbitan monooleate (Tween 80) and anionic sodium lauryl sulfate (SLS), and to assess whether the Red + Luc enzyme system can be used as a more sensitive indicator of toxicity. It was shown that the greatest inhibitory effect of the surfactants on the activity of luminous bacteria and the Red + Luc enzyme system was in the presence of SLS samples. The calculated IC50 and EC50 values of SLS were 10-5 M and 10-2 M for the enzymatic and cellular assay systems, respectively. The results highlight the benefits of using the enzymatic assay system in ecotoxicology as a tool for revealing surfactant effects on intracellular proteins if the cellular membrane is damaged under a long-term exposure period in the presence of the surfactants. For this purpose, the bioluminescent enzyme-inhibition-based assay could be used as an advanced research tool for the evaluation of surfactant toxicity at the molecular level of living organisms due to its technical simplicity and rapid response time.
Collapse
|
3
|
Bioluminescent-Inhibition-Based Biosensor for Full-Profile Soil Contamination Assessment. BIOSENSORS 2022; 12:bios12050353. [PMID: 35624654 PMCID: PMC9138560 DOI: 10.3390/bios12050353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
A bioluminescent-enzyme-inhibition-based assay was applied to predict the potential toxicity of the full profile of the following soil samples: agricultural grassland, 10-year fallow land (treated with remediation processes for 10 years) and uncontaminated (virgin) land. This assay specifically detects the influence of aqueous soil extracts from soils on the activity of a coupled enzyme system of luminescent bacteria: NAD(P)H:FMN-oxidoreductase + luciferase (Red + Luc). It was shown that the inhibitory effect of the full-profile soil samples on the Red + Luc system decreased with depth for the 10-year fallow-land and virgin-land samples, which correlated with a decrease in the humic organic matter content in the soils. The inhibitory effect of the agricultural grassland on the Red + Luc enzyme system activity was more complex and involved the presence of the humic organic matter content, as well as the presence of pollutants in the whole-soil profile. However, if the interfering effect of humic organic substances on the Red + Luc system’s activity is taken into account during full-profile soil toxicity assessments, it might help to detect pollutant mobility and its leaching into the subsoil layer. Thus, this bioluminescent method, due to the technical simplicity, rapid response time and high sensitivity, has the potential to be developed as a biological part of the inhibition-based assay and/or biosensors for the preventive tracing of potential full-profile soil contamination.
Collapse
|
4
|
Adaptation of a Bacterial Bioluminescent Assay to Monitor Bioeffects of Gold Nanoparticles. Bioengineering (Basel) 2022; 9:bioengineering9020061. [PMID: 35200414 PMCID: PMC8868574 DOI: 10.3390/bioengineering9020061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
Our current study aimed to adapt a bioluminescent bacteria-based bioassay to monitor the bioeffects of gold nanoparticles (AuNPs). Luminous marine bacteria Photobacterium phosphoreum and AuNPs modified with polyvinylpyrrolidone were employed; low-concentration (≤10−3 g/L) bioeffects of AuNPs were studied. Bioluminescence intensity was used as an indicator of physiological activity in bacteria. Two additional methods were used: reactive oxygen species (ROS) content was estimated with a chemiluminescent luminol method, and bacterial size was monitored using electron microscopy. The bacterial bioluminescent response to AuNPs corresponded to the “hormesis” model and involved time-dependent bioluminescence activation, as well as a pronounced increase in the number of enlarged bacteria. We found negative correlations between the time courses of bioluminescence and the ROS content in bacterial suspensions, demonstrating the relationship between bioluminescence activation and bacterial ROS consumption. The combined effects of AuNPs and a beta-emitting radionuclide, tritium, revealed suppression of bacterial bioluminescent activity (as compared to their individual effects) and a reduced percentage of enlarged bacteria. Therefore, we demonstrated that our bacteria-based bioluminescence assay is an appropriate tool to study the bioeffects of AuNPs; the bioeffects can be further classified within a unified framework for rapid bioassessment.
Collapse
|
5
|
Esimbekova EN, Torgashina IG, Kalyabina VP, Kratasyuk VA. Enzymatic Biotesting: Scientific Basis and Application. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521030069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Bimová P, Barbieriková Z, Grenčíková A, Šípoš R, Škulcová AB, Krivjanská A, Mackuľak T. Environmental risk of nanomaterials and nanoparticles and EPR technique as an effective tool to study them-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22203-22220. [PMID: 33733403 DOI: 10.1007/s11356-021-13270-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Nanotechnologies and different types of nanomaterials belong in present day to intensively studied materials due to their unique properties and diverse potential applications in, e.g., electronics, medicine, or display technologies. Together with the investigation of their desired beneficial properties, a need to investigate and evaluate their influence on the environment and possible harmful effects towards living organisms is growing. This review summarizes possible toxic effects of nanomaterials on environment and living organisms, focusing on the possible bioaccumulation in organisms, toxicity, and its mechanisms. The main goal of this review is to refer to potential environmental risks rising from the use of nanomaterials and the necessity to deal with the possible toxic effects considering the growing interest in the wide-scale utilization of these materials. Electron paramagnetic resonance spectroscopy as the only analytical technique capable of detecting radical species enables detection, quantification, and monitoring of the generation of short-lived radicals often coupled with toxic effects of nanomaterials, which makes it an important method in the process of nanotoxicity mechanism determination.
Collapse
Affiliation(s)
- Paula Bimová
- Department of Inorganic Technology, Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| | - Zuzana Barbieriková
- Department of Physical Chemistry, Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Anna Grenčíková
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Rastislav Šípoš
- Department of Inorganic Chemistry, Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Andrea Butor Škulcová
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Anna Krivjanská
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Tomáš Mackuľak
- Department of Environmental Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| |
Collapse
|
7
|
Kratasyuk VA, Kolosova EM, Sutormin OS, Lonshakova-Mukina VI, Baygin MM, Rimatskaya NV, Sukovataya IE, Shpedt AA. Software for Matching Standard Activity Enzyme Biosensors for Soil Pollution Analysis. SENSORS (BASEL, SWITZERLAND) 2021; 21:1017. [PMID: 33540862 PMCID: PMC7867351 DOI: 10.3390/s21031017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
This work is dedicated to developing enzyme biosensor software to solve problems regarding soil pollution analysis. An algorithm and specialised software have been developed which stores, analyses and visualises data using JavaScript programming language. The developed software is based on matching data of 51 non-commercial standard soil samples and their inhibitory effects on three enzyme systems of varying complexity. This approach is able to identify the influence of chemical properties soil samples, without toxic agents, on enzyme biosensors. Such software may find wide use in environmental monitoring.
Collapse
Affiliation(s)
- Valentina A. Kratasyuk
- Department of Biophysics, Institute of Fundamental Biology and Biotechology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia; (V.A.K.); (O.S.S.); (V.I.L.-M.); (N.V.R.); (I.E.S.)
- Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, 50/50 Akagemgorodok, 660036 Krasnoyarsk, Russia
| | - Elizaveta M. Kolosova
- Department of Biophysics, Institute of Fundamental Biology and Biotechology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia; (V.A.K.); (O.S.S.); (V.I.L.-M.); (N.V.R.); (I.E.S.)
| | - Oleg S. Sutormin
- Department of Biophysics, Institute of Fundamental Biology and Biotechology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia; (V.A.K.); (O.S.S.); (V.I.L.-M.); (N.V.R.); (I.E.S.)
| | - Viktoriya I. Lonshakova-Mukina
- Department of Biophysics, Institute of Fundamental Biology and Biotechology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia; (V.A.K.); (O.S.S.); (V.I.L.-M.); (N.V.R.); (I.E.S.)
| | - Matvey M. Baygin
- Department of High-Efficiency Calculations, Siberian Federal University, 26-ULK building Kirensky St., 660074 Krasnoyarsk, Russia;
| | - Nadezhda V. Rimatskaya
- Department of Biophysics, Institute of Fundamental Biology and Biotechology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia; (V.A.K.); (O.S.S.); (V.I.L.-M.); (N.V.R.); (I.E.S.)
| | - Irina E. Sukovataya
- Department of Biophysics, Institute of Fundamental Biology and Biotechology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia; (V.A.K.); (O.S.S.); (V.I.L.-M.); (N.V.R.); (I.E.S.)
| | - Alexander A. Shpedt
- Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, Krasnoyarsk Research Institute of Agriculture, Russian Academy of Sciences, Siberian Branch, 66 Svobodny pr., 660037 Krasnoyarsk, Russia;
- Department of Aquatic and Terrestrial Ecosystems, Institute of Fundamental Biology and Biotechology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
| |
Collapse
|
8
|
Sukovatyi LA, Lisitsa AE, Kratasyuk VA, Nemtseva EV. The Effect of Osmolytes on the Bioluminescent Reaction of Bacteria: Structural and Dynamic Properties. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920060202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Kratasyuk VA, Stepanova LV, Ranjan R, Sutormin OS, Pande S, Zhukova GV, Miller OM, Maznyak NV, Kolenchukova OA. A noninvasive and qualitative bioluminescent assay for express diagnostics of athletes' responses to physical exertion. LUMINESCENCE 2020; 36:384-390. [PMID: 32986910 DOI: 10.1002/bio.3954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022]
Abstract
Upcoming professional sports authorities seek rapid noninvasive biosensing tools for regular monitoring of athletes' physiological states. The analysis of saliva through luminescence-based biosensors has been perceived as a suitable candidate for such purposes. The present study reports a qualitative bioluminescence assay based on a coupled enzyme system that consists of bacterial luciferase (BLuc) and nicotinamide adenine dinucleotide (NADH):flavin mononucleotide (FMN) oxidoreductase (Red), BLuc-Red, for the express diagnostics of athletes' stress levels before and after physical exertion. The volunteers who participated in the study were grouped as freestyle wrestlers and students who adapted to different levels of physical activities. Under physical exertion modelling conditions, the influence of participant saliva on BLuc-Red catalyzed light emission was investigated. Results showed a significant increase in residual luminescence (Iexp , mean maximum bioluminescence intensity of the experimental measurement (Iexp ); Ic , luminescence intensity in control; Iexp /Ic , %) values for participants in the wrestler group while a decrease in the student group (P < 0.05). Such contrasting residual luminescence values in both groups were found to be dependent on the catalase activity of saliva. The proposed bioluminescence assay can be utilized as a potential nonspecific biosensing tool for determining the physical state of athletes under high loads.
Collapse
Affiliation(s)
- Valentina A Kratasyuk
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia.,Federal Research Center 'Krasnoyarsk Science Center SB RAS', Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk, Russia
| | - Lyudmila V Stepanova
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia
| | - Rajeev Ranjan
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia
| | - Oleg S Sutormin
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia
| | - Shubhra Pande
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia.,Krasnoyarsk State Medical University named after professor V.F.Voyno-Yasenetsky of the Ministry of Health of the Russian Federation, Av. Partizan Zheleznyak 1, Krasnoyarsk, Russia
| | - Galina V Zhukova
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia
| | - Olga M Miller
- Krasnoyarsk Maternity and Childhood Protection Center, Kirenskogo Street 2a, Krasnoyarsk, Russia
| | - Natalya V Maznyak
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia
| | - Oksana A Kolenchukova
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodny prospect 79, Krasnoyarsk, Russia.,Scientific Research Institute of Medical Problems of the North, Av. Partizan Zheleznyak 3g, Krasnoyarsk, Russia
| |
Collapse
|
10
|
Zhang W, Zeng Z, Liu Z, Huang J, Xiao R, Shao B, Liu Y, Liu Y, Tang W, Zeng G, Gong J, He Q. Effects of carbon nanotubes on biodegradation of pollutants: Positive or negative? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109914. [PMID: 31761551 DOI: 10.1016/j.ecoenv.2019.109914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Recently, a large quantity of carbon nanotubes (CNTs) enters the environment due to the increasing production and applications. More and more researches are focused on the fate and possible ecological risks of CNTs. Some literatures summarized the effects of CNTs on the chemical behavior and fate of pollutants. However, little reviewed the effects of CNTs on the biodegradation of pollutants. In general, the effects of CNTs on the biodegradation of pollutants and the related mechanisms were summarized in this review. CNTs have positive or negative effects on the biodegradation of contaminants by affecting the functional microorganisms, enzymes and the bioavailability of pollutants. CNTs may affect the microbial growth, activity, biomass, community composition, diversity and the activity of enzymes. The decrease of the bioavailability of pollutants due to the sorption on CNTs also causes the reduction of the biodegradation of contaminants. In addition, the roles of CNTs are controlled by multiple mechanisms, which are divided into three aspects i.e., properties of CNTs, environment condition, and microorganisms themself. The better understanding of the fate of CNTs and their impacts on the biochemical process in the environment is conducive to determine the release of CNTs into the environment.
Collapse
Affiliation(s)
- Wei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhuotong Zeng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Rong Xiao
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yujie Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
11
|
Wang X, Zhu Y, Chen M, Yan M, Zeng G, Huang D. How do proteins 'response' to common carbon nanomaterials? Adv Colloid Interface Sci 2019; 270:101-107. [PMID: 31200262 DOI: 10.1016/j.cis.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/01/2022]
Abstract
Carbon nanomaterials are widely produced and applied in biological and environmental fields because of their outstanding physical and chemical properties, which pose a threat to the safety of living organisms and the ecological environment. Therefore, understanding how carbon nanomaterials and their derivatives work on organisms is becoming important. In recent years, more and more researchers have explored the damage of carbon nanomaterials to organisms at the molecular level. This review pays special emphasis on how proteins response to the main carbon nanomaterials (fullerene, carbon nanotubes, graphene and their derivatives). In addition, how to use the interaction between carbon nanomaterials and proteins to do some beneficial things for human and the development of safe nanomaterials is simply discussed. Finally, some suggestions have been made to lay a theoretical foundation for future research.
Collapse
Affiliation(s)
- Xianfeng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
12
|
Denisov I, Lukyanenko K, Yakimov A, Kukhtevich I, Esimbekova E, Belobrov P. Disposable luciferase-based microfluidic chip for rapid assay of water pollution. LUMINESCENCE 2018; 33:1054-1061. [DOI: 10.1002/bio.3508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | - Elena Esimbekova
- Siberian Federal University; Krasnoyarsk Russia
- Institute of Biophysics SB RAS Federal Research Center'Krasnoyarsk Science Center SB RAS’; Krasnoyarsk Russia
| | | |
Collapse
|