1
|
Shayestehyekta M, Moradi M. Graphene oxide and silymarin combination: A novel approach to improving post-cryopreservation quality of ram sperm. Cryobiology 2025; 118:105199. [PMID: 39800041 DOI: 10.1016/j.cryobiol.2025.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Graphene oxide (GO) has been extensively studied for its diverse biomedical applications, including drug delivery, imaging, and tissue engineering. Silymarin, as a flavonoid complex derived from the milk thistle plant, has recently shown potential health benefits, particularly concerning reproductive health. This study aims to evaluate the effects of GO and silymarin supplementation, both individually and in combination, on the characteristics of frozen-thawed ram sperm. Semen samples were collected using standard artificial insemination (AI) techniques with an artificial vagina. The collected semen was evaluated and cryopreserved in a tris-based extender containing varying concentrations of silymarin and GO (0, 10, or 20 μg/mL) or their combination. Post-thaw assessments evaluated sperm motility, viability, morphological abnormalities, DNA integrity, membrane integrity, malondialdehyde (MDA) levels, superoxide dismutase (SOD) activity, and total antioxidant capacity (TAC). Our findings revealed that the combination of 20 μg/mL silymarin and 20 μg/mL GO significantly enhanced total motility, viability, membrane integrity, and DNA integrity of sperm. Additionally, this treatment effectively reduced morphological abnormalities and MDA levels post-thawing. Notably, SOD and TAC activities were improved following the freeze-thaw compared to other treatment groups. In conclusion, the combination of silymarin and GO significantly improves the quality of frozen-thawed ram sperm by enhancing sperm parameters while reducing oxidative stress markers. The results suggest their potential as effective additives in cryopreservation protocols, providing a promising avenue for improving reproductive outcomes in rams and potentially other livestock species.
Collapse
Affiliation(s)
- Mohsen Shayestehyekta
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mojtaba Moradi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Bae G, Cho H, Hong BH. A review on synthesis, properties, and biomedical applications of graphene quantum dots (GQDs). NANOTECHNOLOGY 2024; 35:372001. [PMID: 38853586 DOI: 10.1088/1361-6528/ad55d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
A new type of 0-dimensional carbon-based materials called graphene quantum dots (GQDs) is gaining significant attention as a non-toxic and eco-friendly nanomaterial. GQDs are nanomaterials composed of sp2hybridized carbon domains and functional groups, with their lateral size less than 10 nm. The unique and exceptional physical, chemical, and optical properties arising from the combination of graphene structure and quantum confinement effect due to their nano-size make GQDs more intriguing than other nanomaterials. Particularly, the low toxicity and high solubility derived from the carbon core and abundant edge functional groups offer significant advantages for the application of GQDs in the biomedical field. In this review, we summarize various synthetic methods for preparing GQDs and important factors influencing the physical, chemical, optical, and biological properties of GQDs. Furthermore, the recent application of GQDs in the biomedical field, including biosensor, bioimaging, drug delivery, and therapeutics are discussed. Through this, we provide a brief insight on the tremendous potential of GQDs in biomedical applications and the challenges that need to be overcome in the future.
Collapse
Affiliation(s)
- Gaeun Bae
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Hyeonwoo Cho
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Fernández-Núñez A, EL Haskouri J, Amorós P, Ros-Lis JV. Graphene oxide as inhibitor on the hydrolysis of fats under simulated in vitro duodenal conditions. Heliyon 2024; 10:e28624. [PMID: 38560126 PMCID: PMC10979235 DOI: 10.1016/j.heliyon.2024.e28624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Obesity is a global pandemic, thus novel developments that reduce the absorption of fats is of interest. We have evaluated the effect of graphene oxide (GO) on the lipase catalyzed hydrolysis of fats (tributyrin, sunflower and olive oil) under simulated duodenal conditions. Results indicate that the presence of GO in the digestion mixture can inhibit lipase activity up to a 90% of the initial reaction rate, and this inhibition lasts even during 2 h of digestion. The inhibition mechanism seems non competitive and could be opposite to the effect of bile salts, although the direct interaction between GO and the enzyme cannot be discarded. The inhibition is found also in alimentary fats suggesting that GO could be a strong inhibitor for fat hydrolysis.
Collapse
Affiliation(s)
- Alberto Fernández-Núñez
- Institut de Ciència dels Materials (ICMUV), Universitat de València, c/ Catedrático José Beltrán 2, Paterna, 46980, Valencia, Spain
| | - Jamal EL Haskouri
- Institut de Ciència dels Materials (ICMUV), Universitat de València, c/ Catedrático José Beltrán 2, Paterna, 46980, Valencia, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), Universitat de València, c/ Catedrático José Beltrán 2, Paterna, 46980, Valencia, Spain
| | - Jose V. Ros-Lis
- REDOLí Research Group, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Doctor Moliner 50, Burjassot, Valencia, 46100, Spain
| |
Collapse
|
4
|
Fadaka AO, Akinsoji T, Klein A, Madiehe AM, Meyer M, Keyster M, Sikhwivhilu LM, Sibuyi NRS. Stage-specific treatment of colorectal cancer: A microRNA-nanocomposite approach. J Pharm Anal 2023; 13:1235-1251. [PMID: 38174117 PMCID: PMC10759263 DOI: 10.1016/j.jpha.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 01/05/2024] Open
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer mortality. The lifetime risk of developing CRC is about 5% in adult males and females. CRC is usually diagnosed at an advanced stage, and at this point therapy has a limited impact on cure rates and long-term survival. Novel and/or improved CRC therapeutic options are needed. The involvement of microRNAs (miRNAs) in cancer development has been reported, and their regulation in many oncogenic pathways suggests their potent tumor suppressor action. Although miRNAs provide a promising therapeutic approach for cancer, challenges such as biodegradation, specificity, stability and toxicity, impede their progression into clinical trials. Nanotechnology strategies offer diverse advantages for the use of miRNAs for CRC-targeted delivery and therapy. The merits of using nanocarriers for targeted delivery of miRNA-formulations are presented herein to highlight the role they can play in miRNA-based CRC therapy by targeting different stages of the disease.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Taiwo Akinsoji
- School of Medicine, Southern Illinois University, Springfield, IL, 62702, USA
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Lucky Mashudu Sikhwivhilu
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg, 2125, South Africa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, 0950, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg, 2125, South Africa
| |
Collapse
|
5
|
Li N, Cui J, Chi M, Thieringer FM, Sharma N. Building a better bone: The synergy of 2D nanomaterials and 3D printing for bone tissue engineering. MATERIALS & DESIGN 2023; 234:112362. [DOI: 10.1016/j.matdes.2023.112362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Valdehita A, Fernández-Cruz ML, Navas JM. The Potentiating Effect of Graphene Oxide on the Arylhydrocarbon Receptor (AhR)-Cytochrome P4501A (Cyp1A) System Activated by Benzo(k)fluoranthene (BkF) in Rainbow Trout Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2501. [PMID: 37764529 PMCID: PMC10534689 DOI: 10.3390/nano13182501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
The increasing use of graphene oxide (GO) will result in its release into the environment; therefore, it is essential to determine its final fate and possible metabolism by organisms. The objective of this study was to assess the possible role of the aryl hydrocarbon receptor (AhR)-dependent cytochrome P4501A (Cyp1A) detoxification activities on the catabolism of GO. Our hypothesis is that GO cannot initially interact with the AhR, but that after an initial degradation caused by other mechanisms, small fractions of GO could activate the AhR, inducing Cyp1A. The environmental pollutant benzo(k)fluoranthene (BkF) was used for the initial activation of the AhR in the rainbow trout (Oncorhynchus mykiss) cell line RTL-W1. Pre-, co-, and post-exposure experiments with GO were performed and Cyp1A induction was monitored. The strong stimulation of Cyp1A observed in cells after exposure to GO, when BkF levels were not detected in the system, suggests a direct action of GO. The role of the AhR was confirmed by a blockage of the observed effects in co-treatment experiments with αNF (an AhR antagonist). These results suggest a possible role for the AhR and Cyp1A system in the cellular metabolism of GO and that GO could modulate the toxicity of environmental pollutants.
Collapse
Affiliation(s)
| | | | - José M. Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain; (A.V.); (M.L.F.-C.)
| |
Collapse
|
7
|
Jiang Q, Wang L, Si X, Bian Y, Zhang W, Cui H, Gui H, Zhang Y, Li B, Tan D. Pterostilbene antagonizes homocysteine-induced oxidative stress, apoptosis and lipid deposition in vascular endothelial cells. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Jin Y, Zhou J, Zhao X, Zhang X, Su Z. When 2D nanomaterials meet biomolecules: design strategies and hybrid nanostructures for bone tissue engineering. J Mater Chem B 2022; 10:9040-9053. [PMID: 36317564 DOI: 10.1039/d2tb01489k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
2D nanomaterials show great potential in biomedical applications due to their unique physical and chemical surface properties. This review includes typical 2D nanomaterials used in bone tissue engineering (BTE), such as graphene oxide, hexagonal boron nitride, molybdenum disulfide, black phosphorus, and MXenes. Moreover, the construction methods of BTE materials with 2D nanosheets are analyzed. Before designing a BTE material, it is essential to understand the relationship between the material structure and properties. Notably, 2D nanomaterials can be hybridized with biomaterials, such as polypeptides, proteins, and polysaccharides, to improve biocompatibility and host responses. The effects of the surface properties and size of 2D nanomaterials on cellular behavior, gene expression, antibacterial properties, and cytotoxicity in BTE applications are also discussed. This work provides new design ideas and directions for constructing 2D nanomaterial-based BTE scaffolds.
Collapse
Affiliation(s)
- Yuchen Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jie Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Fantinel LA, Bonetto LR, Baldasso C, Poletto M. Evaluation of the use of adsorbents based on graphene oxide and cellulose for Cr(VI) adsorption. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lucas Antônio Fantinel
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Luis Rafael Bonetto
- Chemical Engineering, Exact Sciences, and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Camila Baldasso
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Matheus Poletto
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| |
Collapse
|
10
|
Yadav S, Singh Raman AP, Meena H, Goswami AG, Bhawna, Kumar V, Jain P, Kumar G, Sagar M, Rana DK, Bahadur I, Singh P. An Update on Graphene Oxide: Applications and Toxicity. ACS OMEGA 2022; 7:35387-35445. [PMID: 36249372 PMCID: PMC9558614 DOI: 10.1021/acsomega.2c03171] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 08/24/2023]
Abstract
Graphene oxide (GO) has attracted much attention in the past few years because of its interesting and promising electrical, thermal, mechanical, and structural properties. These properties can be altered, as GO can be readily functionalized. Brodie synthesized the GO in 1859 by reacting graphite with KClO3 in the presence of fuming HNO3; the reaction took 3-4 days to complete at 333 K. Since then, various schemes have been developed to reduce the reaction time, increase the yield, and minimize the release of toxic byproducts (NO2 and N2O4). The modified Hummers method has been widely accepted to produce GO in bulk. Due to its versatile characteristics, GO has a wide range of applications in different fields like tissue engineering, photocatalysis, catalysis, and biomedical applications. Its porous structure is considered appropriate for tissue and organ regeneration. Various branches of tissue engineering are being extensively explored, such as bone, neural, dentistry, cartilage, and skin tissue engineering. The band gap of GO can be easily tuned, and therefore it has a wide range of photocatalytic applications as well: the degradation of organic contaminants, hydrogen generation, and CO2 reduction, etc. GO could be a potential nanocarrier in drug delivery systems, gene delivery, biological sensing, and antibacterial nanocomposites due to its large surface area and high density, as it is highly functionalized with oxygen-containing functional groups. GO or its composites are found to be toxic to various biological species and as also discussed in this review. It has been observed that superoxide dismutase (SOD) and reactive oxygen species (ROS) levels gradually increase over a period after GO is introduced in the biological systems. Hence, GO at specific concentrations is toxic for various species like earthworms, Chironomus riparius, Zebrafish, etc.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | | | - Harshvardhan Meena
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Abhay Giri Goswami
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Bhawna
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Pallavi Jain
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Uttar Pradesh, India
| | - Gyanendra Kumar
- Department
of Chemistry, University of Delhi, Delhi, India
- Swami Shraddhanand
College, University of Delhi, Delhi, India
| | - Mansi Sagar
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Devendra Kumar Rana
- Department
of Physics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Indra Bahadur
- Department
of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
11
|
Grilli F, Hajimohammadi Gohari P, Zou S. Characteristics of Graphene Oxide for Gene Transfection and Controlled Release in Breast Cancer Cells. Int J Mol Sci 2022; 23:6802. [PMID: 35743245 PMCID: PMC9224565 DOI: 10.3390/ijms23126802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Functionalized graphene oxide (GO) nanoparticles are being increasingly employed for designing modern drug delivery systems because of their high degree of functionalization, high surface area with exceptional loading capacity, and tunable dimensions. With intelligent controlled release and gene silencing capability, GO is an effective nanocarrier that permits the targeted delivery of small drug molecules, antibodies, nucleic acids, and peptides to the liquid or solid tumor sites. However, the toxicity and biocompatibility of GO-based formulations should be evaluated, as these nanomaterials may introduce aggregations or may accumulate in normal tissues while targeting tumors or malignant cells. These side effects may potentially be impacted by the dosage, exposure time, flake size, shape, functional groups, and surface charges. In this review, the strategies to deliver the nucleic acid via the functionalization of GO flakes are summarized to describe the specific targeting of liquid and solid breast tumors. In addition, we describe the current approaches aimed at optimizing the controlled release towards a reduction in GO accumulation in non-specific tissues in terms of the cytotoxicity while maximizing the drug efficacy. Finally, the challenges and future research perspectives are briefly discussed.
Collapse
Affiliation(s)
- Francesca Grilli
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Parisa Hajimohammadi Gohari
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada; (F.G.); (P.H.G.)
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
12
|
Frontiñan-Rubio J, Llanos-González E, González VJ, Vázquez E, Durán-Prado M. Subchronic Graphene Exposure Reshapes Skin Cell Metabolism. J Proteome Res 2022; 21:1675-1685. [PMID: 35611947 PMCID: PMC9251767 DOI: 10.1021/acs.jproteome.2c00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
In recent years,
the toxicity of graphene-related materials (GRMs)
has been evaluated in diverse models to guarantee their safety. In
most applications, sublethal doses of GRMs contact human barriers
such as skin in a subchronic way. Herein, the subchronic effect (30
day exposure) of three GRMs (GO 1, GO 2, and FLG) with different oxidation
degrees and sizes was studied. The effects of these materials on human
skin cells, HaCaTs, were assayed through high-throughput metabolic-based
readout and other cell-based assays. A differential effect was found
between the different GRMs. GO 2 induced a metabolic remodeling in
epithelial cells, increasing the level of tricarboxylic acid components,
mirrored by increased cell proliferation and changes in cell phenotype.
The oxidation degree, size, and method of manufacture of GRMs dictated
harmful effects on cell metabolism and behavior generated by nontoxic
exposures. Therefore, a “safe by design” procedure is
necessary when working with these nanomaterials.
Collapse
Affiliation(s)
| | | | - Viviana Jehová González
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.,Faculty of Chemical Science and Technology, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.,Faculty of Chemical Science and Technology, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Mario Durán-Prado
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
13
|
The convergence of in silico approach and nanomedicine for efficient cancer treatment; in vitro investigations on curcumin loaded multifunctional graphene oxide nanocomposite structure. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Han D, Xu C, Ren XH, Peng Y, Xu B, Song JL, Chen J, Cheng SX. In Situ Detection of Nanotoxicity in Living Cells Based on Multiple miRNAs Probed by a Peptide Functionalized Nanoprobe. Anal Chem 2022; 94:2399-2407. [PMID: 35099175 DOI: 10.1021/acs.analchem.1c03950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The potential toxicity of nanoparticles, especially for clinically applicable ones, has become a critical concern. Technologies that can in situ-evaluate the toxicity of nanoparticles with high sensitivity are urgently needed. In this study, a facile strategy was developed for sensitive detection on the nanotoxicity of nanoparticles with low toxicity or a low dose. A functional nanoprobe loaded with molecular beacons was constructed to realize in situ evaluation of the nanotoxicity through probing multiple miRNAs in nanoparticle-exposed living cells. Being composed of protamine complexed with molecular beacons for miRNA detection and decorated by TAT and KALA peptides, the dual-peptide functionalized nanoprobe can efficiently deliver molecular beacons into living cells to realize the real-time monitoring of early biomarkers (miR-21 and miR-221) to evaluate nanotoxicity. Using mesoporous silica nanoparticles (MSNs) with different surface modifications as typical representatives of low toxic nanoparticles, we demonstrate that our nanoprobe can sensitively detect miRNA changes in cells under diverse exposure conditions, that is, MSN-NH2 exhibits the strongest capability to upregulate miR-21 and miR-221, and the upregulation is exposure dose- and time-dependent. Our approach is much more sensitive as compared with conventional methods to study cytotoxicity such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell morphology observation, and reactive oxygen species (ROS) assay. This study paves a path for effective and facile nanotoxicity evaluation and provides insights into the biological impacts of MSNs.
Collapse
Affiliation(s)
- Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yan Peng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jun-Long Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jing Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
15
|
PEGylated Graphene Quantum Dot Improved Cardiac Function in Rats with Myocardial Infarction: Morphological, Oxidative Stress, and Toxicological Evidences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8569225. [PMID: 34845418 PMCID: PMC8627339 DOI: 10.1155/2021/8569225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/21/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Introduction The biocompatibility and potential application of graphene-based nanomaterials in biomedicine have been documented. The effects of polyethylene glycol-graphene quantum dots (GQDs-PEG) on cardiac function in rats with myocardial infarction (MI) were examined. Methods Wistar rats were randomly assigned to two main groups, each consisting of sham-Veh., MI-Veh., and MI+GQDs-PEG at doses of 5, 10, and 20 mg/kg. MI was induced by the closure of the left anterior descending (LAD) coronary artery. After MI, GQDs-PEG were injected at different doses IP every other day for two weeks. In the end, hemodynamic and heart contractility indices were assessed. The levels of myocardial MDA (malondialdehyde), SOD (superoxide dismutase), GPX (glutathione peroxidase), and TAC (total antioxidant capacity) were measured by the ELISA method. The serum ALP, ALT, AST, creatinine, and urea levels were measured using the photometric method. The infarct size was assessed by TTC staining. Results GQDs-PEG decreased the infarct size at doses of 10 and 20 mg/kg and recovered the MI-induced reductions of +dp/dt max and -dp/dt max in the study groups. GQDs-PEG normalized systolic blood pressure and left ventricular systolic pressure reduction at the dose of 20 mg/kg in the MI group. Heart SOD, GPX, and TAC increased in the GQDs-PEG 10 and 20 groups. Almost no signs of toxic effects due to GQDs-PEG administration were observed on the liver and kidneys. Conclusions The results provided clear evidence that GQDs-PEG improve cardiac performance and hemodynamic parameters in rats with MI by reducing oxidative stress. GQDs-PEG is proposed as a therapeutic target for the treatment of MI.
Collapse
|
16
|
Wu X, Manickam S, Wu T, Pang CH. Insights into the Role of Graphene/Graphene‐hybrid Nanocomposites in Antiviral Therapy. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinyun Wu
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
| | - Sivakumar Manickam
- University of Technology Brunei Department of Petroleum and Chemical Engineering BE1410 Bandar Seri Begawan Brunei Darussalam
| | - Tao Wu
- University of Nottingham Ningbo China Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province 315100 Ningbo China
- University of Nottingham Ningbo China New Materials Institute 315100 Ningbo China
| | - Cheng Heng Pang
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
- University of Nottingham Ningbo China Municipal Key Laboratory of Clean Energy Conversion Technologies 315100 Ningbo China
| |
Collapse
|
17
|
Tade RS, More MP, Nangare SN, Patil PO. Graphene quantum dots (GQDs) nanoarchitectonics for theranostic application in lung cancer. J Drug Target 2021; 30:269-286. [PMID: 34595987 DOI: 10.1080/1061186x.2021.1987442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Lung cancer (LC) is heading up as a substantial cause of mortality worldwide. Despite enormous progress in cancer management, LC remains a crucial problem for oncologists due to the lack of early diagnosis and precise treatment. In this context, numerous early diagnosis and treatment approaches for LC at the cellular level have been developed using advanced nanomaterials in the last decades. Amongst this, graphene quantum dots (GQDs) as a novel fluorescent material overwhelmed the horizons of materials science and biomedical fields due to their multifunctional attributes. Considering the complex nature of LC, emerging diagnostic and therapeutic (Theranostics) strategies using GQDs proved to be an effective way for the current practice in LC. In this line, we have abridged various approaches used in the LC theranostics using GQDs and its surface-engineered motif. The admirable photophysical attributes of GQDs realised in photolytic therapy (PLT), hyperthermia therapy (HTT), and drug delivery have been discussed. Furthermore, we have engrossed the impasse and its effects on the use of GQDs in cancer treatments from cellular level (in vivo-in vitro) to clinical. Inclusively, this review will be an embodiment for the scientific fraternity to design and magnify their view for the theranostic application of GQDs in LC treatment.
Collapse
Affiliation(s)
- Rahul S Tade
- Department of Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Mahesh P More
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, India
| | - Sopan N Nangare
- Department of Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Pravin O Patil
- Department of Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
18
|
Fallah Z, Zare EN, Ghomi M, Ahmadijokani F, Amini M, Tajbakhsh M, Arjmand M, Sharma G, Ali H, Ahmad A, Makvandi P, Lichtfouse E, Sillanpää M, Varma RS. Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials. CHEMOSPHERE 2021; 275:130055. [PMID: 33984903 PMCID: PMC8588192 DOI: 10.1016/j.chemosphere.2021.130055] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 05/04/2023]
Abstract
The worldwide development of agriculture and industry has resulted in contamination of water bodies by pharmaceuticals, pesticides and other xenobiotics. Even at trace levels of few micrograms per liter in waters, these contaminants induce public health and environmental issues, thus calling for efficient removal methods such as adsorption. Recent adsorption techniques for wastewater treatment involve metal oxide compounds, e.g. Fe2O3, ZnO, Al2O3 and ZnO-MgO, and carbon-based materials such as graphene oxide, activated carbon, carbon nanotubes, and carbon/graphene quantum dots. Here, the small size of metal oxides and the presence various functional groups has allowed higher adsorption efficiencies. Moreover, carbon-based adsorbents exhibit unique properties such as high surface area, high porosity, easy functionalization, low price, and high surface reactivity. Here we review the cytotoxic effects of pharmaceutical drugs and pesticides in terms of human risk and ecotoxicology. We also present remediation techniques involving adsorption on metal oxides and carbon-based materials.
Collapse
Affiliation(s)
- Zari Fallah
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | | | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-41167, Iran
| | - Farhad Ahmadijokani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Majed Amini
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mahmood Tajbakhsh
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Arjmand
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab. for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Hamna Ali
- Department of Chemistry, The University of Lahore, Lahore, 54590, Pakistan
| | - Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore, 54590, Pakistan
| | - Pooyan Makvandi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Eric Lichtfouse
- Aix-Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, 13100, Aix en Provence, France.
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Š lechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
19
|
Jafarinejad-Farsangi S, Hashemi MS, Yazdi Rouholamini SE, Gharbi S, Ansari-Asl Z, Jafari E, Shiralizadeh Dezfuli A, Shahrokhi-Farjah M. Curcumin loaded on graphene nanosheets induced cell death in mammospheres from MCF-7 and primary breast tumor cells. Biomed Mater 2021; 16. [PMID: 34020433 DOI: 10.1088/1748-605x/ac0400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 05/21/2021] [Indexed: 12/30/2022]
Abstract
Elimination of tumor cells is still a therapeutic challenge for breast cancer (BC) in men and women. Mammospheres serve as valuablein vitrotools for evaluating tumor behavior and sensitivity to anticancer treatments. Graphene nanosheets with unique physicochemical properties have been considered as potential biomedical approaches for drug delivery, bioimaging, and therapy. Graphene oxide (GO) and graphene quantum dots (GQDs) are suitable nanocarriers for hydrophobic and low bioaccessible anti-tumor materials like curcumin. Despite extensive studies on the potential application of graphene nanosheets in medicine, our knowledge of how different cells function and respond to these nanoparticles remains limited. Here, we evaluated cell death in mammospheres from MCF-7 and primary tumor cells in response to curcumin loaded on graphene nanosheets. Mammospheres were exposed to graphene oxide-curcumin (GO-Cur) and graphene quantum dots-curcumin (GQDs-Cur), and the incidence of cell death was evaluated by Hoechst 33342/propidium iodide double staining and flow cytometry. Besides, the expression of miR-21, miR-29a, Bax, and Bcl-2 genes were assessed using RT-qPCR. We observed, GO, and GQDs had no cytotoxic effect on Kerman male breast cancer/71 (KMBC/71) and MCF-7 tumor cells, while curcumin induced death in more than 50% of tumor cells. GO-Cur and GQDs-Cur synergistically enhanced anti-tumor activity of curcumin. Moreover, GQDs-Cur induced cell death in almost all cells of KMBC/71 mammospheres (99%;p< 0.0001). In contrast, GO-Cur induced cell death in only 21% of MCF-7 mammosphere cells (p< 0.0001). Also, the expression pattern of miR-21, miR-29a, and Bax/Bcl-2 ratio in KMBC/71 and MCF-7 mammospheres was different in response to GO-Cur and GQDs-Cur. Although KMBC/71 and MCF-7 tumor cells had similar clinical features and displayed similar responses to curcumin, more investigations are needed to clarify the detailed molecular mechanisms underlying observed differences in response to GO-Cur and GQDs-Cur.
Collapse
Affiliation(s)
| | - Mahnaz Sadat Hashemi
- Student Research Committee, School of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Seyede Elmira Yazdi Rouholamini
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sdigheh Gharbi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zeinab Ansari-Asl
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Kerman University of Medical Science, Kerman, Iran
| | | | - Mariam Shahrokhi-Farjah
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Synthesis and Toxicity of Graphene Oxide Nanoparticles: A Literature Review of In Vitro and In Vivo Studies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5518999. [PMID: 34222470 PMCID: PMC8213470 DOI: 10.1155/2021/5518999] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/11/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022]
Abstract
Nanomaterials have been widely used in many fields in the last decades, including electronics, biomedicine, cosmetics, food processing, buildings, and aeronautics. The application of these nanomaterials in the medical field could improve diagnosis, treatment, and prevention techniques. Graphene oxide (GO), an oxidized derivative of graphene, is currently used in biotechnology and medicine for cancer treatment, drug delivery, and cellular imaging. Also, GO is characterized by various physicochemical properties, including nanoscale size, high surface area, and electrical charge. However, the toxic effect of GO on living cells and organs is a limiting factor that limits its use in the medical field. Recently, numerous studies have evaluated the biocompatibility and toxicity of GO in vivo and in vitro. In general, the severity of this nanomaterial's toxic effects varies according to the administration route, the dose to be administered, the method of GO synthesis, and its physicochemical properties. This review brings together studies on the method of synthesis and structure of GO, characterization techniques, and physicochemical properties. Also, we rely on the toxicity of GO in cellular models and biological systems. Moreover, we mention the general mechanism of its toxicity.
Collapse
|
21
|
Sun T, Kang Y, Liu J, Zhang Y, Ou L, Liu X, Lai R, Shao L. Nanomaterials and hepatic disease: toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. J Nanobiotechnology 2021; 19:108. [PMID: 33863340 PMCID: PMC8052793 DOI: 10.1186/s12951-021-00843-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of nanomaterials (NMs) has raised concerns that exposure to them may introduce potential risks to the human body and environment. The liver is the main target organ for NMs. Hepatotoxic effects caused by NMs have been observed in recent studies but have not been linked to liver disease, and the intrinsic mechanisms are poorly elucidated. Additionally, NMs exhibit varied toxicokinetics and induce enhanced toxic effects in susceptible livers; however, thus far, this issue has not been thoroughly reviewed. This review provides an overview of the toxicokinetics of NMs. We highlight the possibility that NMs induce hepatic diseases, including nonalcoholic steatohepatitis (NASH), fibrosis, liver cancer, and metabolic disorders, and explore the underlying intrinsic mechanisms. Additionally, NM toxicokinetics and the potential induced risks in the livers of susceptible individuals, including subjects with liver disease, obese individuals, aging individuals and individuals of both sexes, are summarized. To understand how NM type affect their toxicity, the influences of the physicochemical and morphological (PCM) properties of NMs on their toxicokinetics and toxicity are also explored. This review provides guidance for further toxicological studies on NMs and will be important for the further development of NMs for applications in various fields.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatological Hospital, Foshan University, Foshan, 528000, China.
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China.
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lingling Ou
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Xiangning Liu
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Renfa Lai
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
22
|
Kumar SR, Hsu YH, Vi TTT, Pang JHS, Lee YC, Hsieh CH, Lue SJ. Graphene Oxide-Induced Protein Conformational Change in Nasopharyngeal Carcinoma Cells: A Joint Research on Cytotoxicity and Photon Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1396. [PMID: 33805683 PMCID: PMC8001416 DOI: 10.3390/ma14061396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
The objectives of this work aim to investigate the interaction and cytotoxicity between nanometric graphene oxide (GO) and nasopharyngeal carcinoma cells (NPC-BM1), and possible application in photon therapy. GO nanosheets were obtained in the size range of 100-200 nm, with a negative surface charge. This nanometric GO exhibited a limited (<10%) cytotoxicity effect and no significant dimensional change on NPC-BM1 cells in the tested GO concentration range (0.1-10 µg·mL-1). However, the secondary protein structure was modified in the GO-treated NPC-BM1 cells, as determined through synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM) mapping. To further study the cellular response of GO-treated NPC-BM1 cancer cells at low GO concentration (0.1 µg·mL-1), photon radiation was applied with increasing doses, ranging from 2 to 8 Gy. The low radiation energy (<5 Gy) did not cause significant cell mortality (5-7%). Increasing the radiation energy to 6-8 Gy accelerated cell apoptosis rate, especially in the GO-treated NPC-BM1 cells (27%). This necrosis may be due to GO-induced conformational changes in protein and DNA/RNA, resulting in cell vulnerability under photon radiation. The findings of the present work demonstrate the potential biological applicability of nanometric GO in different areas, such as targeted drug delivery, cellular imaging, and radiotherapy, etc.
Collapse
Affiliation(s)
- Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (S.R.K.); (T.T.T.V.)
| | - Ya-Hui Hsu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (Y.-H.H.); (J.-H.S.P.)
| | - Truong Thi Tuong Vi
- Department of Chemical and Materials Engineering, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (S.R.K.); (T.T.T.V.)
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (Y.-H.H.); (J.-H.S.P.)
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Dinghu Road, Guishan, Taoyuan 333, Taiwan
| | - Yao-Chang Lee
- National Synchrotron Radiation Research Center, Hsin Ann Road, Hsinchu City 300, Taiwan;
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, Jincheng Road, New Taipei City 236, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Fusing Street, Guishan, Taoyuan 333, Taiwan
- School of Medicine, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (S.R.K.); (T.T.T.V.)
- Division of Join Reconstruction, Department of Orthopedics, Chang Gung Medical Center at Linkou, Fusing Street, Guishan, Taoyuan 333, Taiwan
- Department of Safety, Health and Environment Engineering, Ming-Chi University of Technology, Gongzhuan Road, Taishan, New Taipei City 243, Taiwan
- Center for Environmental Sustainability and Human Health, Ming-Chi University of Technology, Gongzhuan Road, Taishan, New Taipei City 243, Taiwan
| |
Collapse
|
23
|
Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1059. [PMID: 33668271 PMCID: PMC7956197 DOI: 10.3390/ma14051059] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Collapse
Affiliation(s)
- Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
24
|
Liang L, Peng X, Sun F, Kong Z, Shen JW. A review on the cytotoxicity of graphene quantum dots: from experiment to simulation. NANOSCALE ADVANCES 2021; 3:904-917. [PMID: 36133293 PMCID: PMC9419276 DOI: 10.1039/d0na00904k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/25/2020] [Indexed: 05/03/2023]
Abstract
Graphene quantum dots (GQDs) generate intrinsic fluorescence and improve the aqueous stability of graphene oxide (GO) while maintaining wide chemical adaptability and high adsorption capacity. Despite GO's remarkable advantages in bio-imaging, bio-sensing, and other biomedical applications, many experiments and simulations have focused on the biosafety of GQDs. Here, we review the findings on the biosafety of GQDs from experiments; then, we review the results from simulated interactions with biological membranes, DNA molecules, and proteins; finally, we examine the intersection between experiments and simulations. The biosafety results from simulations are explained in detail. Based on the literature and our experiments, we also discuss the trends toward GQDs with better biosafety.
Collapse
Affiliation(s)
- Lijun Liang
- College of Automation, Hangzhou Dianzi University Hangzhou 310018 People's Republic of China +86 571 87951895
| | - Xiangming Peng
- Department of Clinical Laboratory, GuangZhou Red Cross Hospital 396 Tongfu Zhong Road Guangzhou 510220 GuangDong China
| | - Fangfang Sun
- College of Automation, Hangzhou Dianzi University Hangzhou 310018 People's Republic of China +86 571 87951895
| | - Zhe Kong
- Center of Advanced Optoelectronic Materials and Devices, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 People's Republic of China
| | - Jia-Wei Shen
- School of Medicine, Hangzhou Normal University Hangzhou 311121 People's Republic of China
| |
Collapse
|
25
|
Xu Q, Gao J, Wang S, Wang Y, Liu D, Wang J. Quantum dots in cell imaging and their safety issues. J Mater Chem B 2021; 9:5765-5779. [PMID: 34212167 DOI: 10.1039/d1tb00729g] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When quantum dots are used as fluorescent probes or drug tracers for in vivo imaging, the quantum dots in the blood will come into direct contact with vascular endothelial cells. Thus, it is necessary to study whether quantum dots can affect endothelial function after being injected into blood vessels as imaging agents. In recent years, there have been numerous studies on the toxicity of quantum dots. Herein, we focused on five types of quantum dots (Cd-containing quantum dots, CuInS2 quantum dots, black phosphorus quantum dots, MXene quantum dots, and carbon-based quantum dots) for cell imaging and their toxicity in vivo and in vitro. Although current research on the toxicity of quantum dots has not reached a consistent conclusion, it can guide the next step in evaluating their cytotoxicity.
Collapse
Affiliation(s)
- Quan Xu
- State Key Laboraty of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jiajia Gao
- State Key Laboraty of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Siyang Wang
- State Key Laboraty of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yi Wang
- State Key Laboraty of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Dong Liu
- Strategic Support Force Medical Center Clinical Laboratory, Beijing, 100101, China.
| | - Juncheng Wang
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|