1
|
Han X, Zhang G, Pang M, Hu C, Xu T, Wu Y, Xie L, Chen G, Xu H, Liu M, Hua Y, Tan Z, Bi Y, Fan H, Liu B, Zhou Y. Taohong siwu decoction suppresses oxidative stress-induced myocardial apoptosis post-myocardial infarction by inhibiting PTEN pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155388. [PMID: 39515108 DOI: 10.1016/j.phymed.2024.155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is an important factor inducing mortality globally. Apoptosis and oxidative stress have been identified as major drivers for MI development. Anti-apoptosis therapies exhibit promising effects in protecting against MI. Typically, Taohong Siwu Decoction (THSWD) exerts cardioprotective properties. However, whether THSWD suppresses oxidative stress-induced myocardial apoptosis after MI and the associated mechanisms remain unclear. PURPOSE The present work focused on examining the protective effects of THSWD on oxidative stress-induced myocardial apoptosis after MI and its possible mechanisms. METHODS The MI mouse model was established via left anterior descending coronary artery (LAD) ligation. Thereafter, echocardiography and histopathology were performed to examine the cardioprotective effects of THSWD. Meanwhile, the protective potential of THSWD against myocardial apoptosis and oxidative stress, as well as modulation of phosphatase and tensin homolog (PTEN) pathway in MI were investigated through TUNEL staining, ROS analysis, immunohistochemistry (IHC), Western blot (WB) and oxidative stress-related biochemical enzyme assay, respectively. Further, the apoptosis of neonatal cardiomyocytes (NCMs) and H9C2 cells was induced by TBHP in vitro. Thereafter, the impacts of THSWD on the TBHP-induced H9C2 and NCMs were detected by Hoechst33342/PI fluorescent staining, WB, ROS analysis, and oxidative stress-related biochemical enzyme assay. In addition, PTEN was overexpressed using transfection viruses in vivo and in vitro for further investigation. RESULTS THSWD might inhibit PTEN and promote the PI3K/AKT pathway in MI mice to prevent myocardial apoptosis. In vitro, THSWD prevented the TBHP-induced apoptosis of NCMs and H9C2 cells. This was achieved by blocking PTEN activity and regulating PI3K/AKT pathway. Moreover, PTEN overexpression significantly enhanced the TBHP-induced H9C2 apoptosis and oxidative stress-induced myocardial apoptosis after MI, and partially blocked the protection of THSWD against myocardial apoptosis and modulating PI3K/AKT pathway in vitro and in vivo. CONCLUSION THSWD suppressed oxidative stress-induced myocardial apoptosis in vitro and in vivo by inhibiting PTEN pathway.
Collapse
Affiliation(s)
- Xin Han
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Guoyong Zhang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Mingjie Pang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Changlei Hu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Tong Xu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuting Wu
- Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Lingpeng Xie
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, PR China
| | - Guanghong Chen
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Honglin Xu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Min Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Yue Hua
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhangbin Tan
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yiming Bi
- The Affliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510515, PR China
| | - Huijie Fan
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, 529500, PR China
| | - Bin Liu
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Yingchun Zhou
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
2
|
Zhang H, Sun K, Gao M, Xu S. Zinc Inhibits Lead-Induced Oxidative Stress and Apoptosis of ST Cells Through ROS/PTEN/PI3K/AKT Axis. Biol Trace Elem Res 2024; 202:980-989. [PMID: 37269454 DOI: 10.1007/s12011-023-03721-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Lead (Pb) is a widely distributed toxic heavy metal element known to have strong male reproductive toxicity, which can result in issues such as abnormal count and morphology of sperm. Zinc (Zn) is an essential trace element for the human body that can antagonize the activity of Pb in some physiological environments, and it also possesses antioxidant and anti-inflammatory effects. However, the specific mechanism of Zn's antagonism against Pb remains largely unclear. In our study, we conducted research using swine testis cells (ST cells) and confirmed that the half maximal inhibitory concentration of Pb on ST cells was 994.4 μM, and the optimal antagonistic concentration of Zn was 10 μM. Based on this information, we treated ST cells with Pb and Zn and detected related indices such as apoptosis, oxidative stress, and the PTEN/PI3K/AKT pathway using flow cytometry, DCFH-DA staining, RT-PCR, and Western blot. Our results demonstrated that Pb exposure can generate excessive reactive oxygen species (ROS), disrupt the antioxidant system, upregulate PTEN expression, and inhibit the PI3K/AKT pathway in ST cells. In contrast, Zn significantly inhibited the overproduction of ROS, improved oxidative stress, and decreased PTEN expression, thus protecting the PI3K/AKT pathway compared to Pb-exposed ST cells. Furthermore, we found that Pb exposure exacerbated the expression of genes related to the apoptosis pathway and reduced the expression of anti-apoptotic genes. Furthermore, this situation was significantly improved when co-cultured with Pb and Zn. In summary, our study demonstrated that Zn alleviated Pb-induced oxidative stress and apoptosis through the ROS/PTEN/PI3K/AKT axis in ST cells.
Collapse
Affiliation(s)
- Haoyu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kexin Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
3
|
Trujillo-Hernandez JA, Levine RL. Response to oxidative stress of AML12 hepatocyte cells with knockout of methionine sulfoxide reductases. Free Radic Biol Med 2023; 205:100-106. [PMID: 37290581 PMCID: PMC11626390 DOI: 10.1016/j.freeradbiomed.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Methionine sulfoxide reductases are enzymes that reduce methionine oxidation in the cell. In mammals there are three B-type reductases that act on the R-diastereomer of methionine sulfoxide, and one A-type reductase (MSRA) that acts on the S-diastereomer. Unexpectedly, knocking out the four genes in the mouse protected from oxidative stresses such as ischemia-reperfusion injury and paraquat. To elucidate the mechanism by which lack of the reductases protects against oxidative stresses, we aimed to create a cell culture model with AML12 cells, a differentiated hepatocyte cell line. We employed CRISPR/Cas9 to create lines lacking the four individual reductases. All were viable and their susceptibility to oxidative stresses was the same as the parental strain. The triple knockout lacking all three methionine sulfoxide reductases B was also viable, but the quadruple knockout was lethal. We thus modeled the quadruple knockout mouse by creating an AML12 line lacking the three MSRB and heterozygous for the MSRA (Msrb3KO-Msra+/-). We measured the effect of ischemia-reperfusion on the various AML12 cell lines, using a protocol that modeled the ischemic phase by glucose and oxygen deprivation for 36 h followed by return of glucose and oxygen for 3 h as the reperfusion phase. This stress killed ∼50% of the parental line, an effect we chose to facilitate detection of either protective or deleterious changes in the knockout lines. Unlike the protection afforded the mouse, the knockout lines produced by CRISPR/Cas9 did not differ from the parental line in their response to ischemia-reperfusion injury or paraquat poisoning. In the mouse, inter-organ communication may be essential for protection induced by lack of methionine sulfoxide reductases.
Collapse
Affiliation(s)
| | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, 50 South Dr Bethesda, Maryland, 20814, USA.
| |
Collapse
|
4
|
Zeng H, Li Y, Liu X, Li X, Zhou T, Cao S, Wang M, Ju M. Overexpression of miR-383-3p protects cardiomyocytes against hypoxia/reoxygenation injury via regulating PTEN/PI3K/AKT signal pathway. J Biochem Mol Toxicol 2022; 36:e23205. [PMID: 36224710 DOI: 10.1002/jbt.23205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
MicroRNAs are widely reported as biomarkers and therapeutic targets in cardiovascular diseases. This study is aimed to expound on the regulatory responsibility of miR-383-3p in H/R-induced injury of H9c2 cells. In this study, H9c2 cells were administrated with H/R. MiR-383-3p expression was measured using qRT-PCR. ELISA was used to determine lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA) levels. Reactive oxygen species (ROS) were detected with 2,7-Dichlorodihydrofluorescein diacetate probe. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide, flow cytometry, and TUNEL experiments were conducted to measure cell viability and apoptosis. Cleaved caspase-3, caspase-3, Bax, Bcl-2, PTEN, PI3K, p-PI3K, Akt, p-AKT expression levels were examined by Western blot. Cleaved caspase-3 expression was also measured by immunofluorescence staining. Dual-luciferase reporter gene assay was applied to validate the binding sites in miR-383-3p and the 3'UTR of PTEN. We reported that, miR-383-3p expression in H9c2 cells treated with H/R was remarkably decreased. MiR-383-3p overexpression ameliorated oxidative stress and apoptosis and promoted cell viability in H9c2 cells treated with H/R, while miR-383-3p inhibitor showed the reverse effects. PTEN was identified as a target gene of miR-383-3p. Additionally, enhancement of PTEN expression abolished the influences of miR-383-3p on H9c2 cells. MiR-383-3p mimics could significantly decrease PTEN expression in H9c2 cells while increasing p-PI3K expression and p-AKT expression, while the miR-383-3p inhibitors showed the opposed effects. In conclusion, miR-383-3p protected H9c2 cells from H/R-induced injury via regulating PTEN/PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Huan Zeng
- Department of Cardiac Function, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Ying Li
- Department of Cardiac Function, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Xinzong Liu
- Institute of Orthopedics and Traumatology, The People's Hospital of Three Gorges University, The First People's Hospital of Yichang, Yichang, China
| | - Xinxin Li
- Department of Emergency Internal Medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Tian Zhou
- Department of Cardiac Function, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Shanshan Cao
- Department of Cardiac Function, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Mingjuan Wang
- Department of Emergency Internal Medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Experimental Center of Morphology, Chengde Medical University, Chengde, China
| | - Mingfei Ju
- Department of Emergency Internal Medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Department of Emergency, Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
5
|
Yang D, Wang M, Hu Z, Ma Y, Shi Y, Cao X, Guo T, Cai H, Cai H. Extracorporeal Cardiac Shock Wave-Induced Exosome Derived From Endothelial Colony-Forming Cells Carrying miR-140-3p Alleviate Cardiomyocyte Hypoxia/Reoxygenation Injury via the PTEN/PI3K/AKT Pathway. Front Cell Dev Biol 2022; 9:779936. [PMID: 35083214 PMCID: PMC8784835 DOI: 10.3389/fcell.2021.779936] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Stem cell-derived exosomes have great potential in the treatment of myocardial ischemia–reperfusion injury (IRI). Extracorporeal cardiac shock waves (ECSW) as effective therapy, in part, could activate the function of exosomes. In this study, we explored the effect of ECSW-induced exosome derived from endothelial colony-forming cells on cardiomyocyte hypoxia/reoxygenation (H/R) injury and its underlying mechanisms. Methods: The exosomes were extracted and purified from the supernatant of endothelial colony-forming cells (ECFCs-exo). ECFCs-exo treated with shock wave (SW-exo) or without shock wave (CON-exo) were performed with high-throughput sequencing of the miRNA. H9c2 cells were incubated with SW-exo or CON-exo after H/R injury. The cell viability, cell apoptosis, oxidative stress level, and inflammatory factor were assessed. qRT-PCR was used to detect the expression levels of miRNA and mRNA in cells and exosomes. The PTEN/PI3K/AKT pathway-related proteins were detected by Western blotting, respectively. Results: Exosomes secreted by ECFCs could be taken up by H9c2 cells. Administration of SW-exo to H9c2 cells after H/R injury could significantly improve cell viability, inhibit cell apoptosis, and downregulate oxidative stress level (p < 0.01), with an increase in Bcl-2 protein and a decrease in Bax, cleaved caspase-3, and NF-κB protein (p < 0.05). Notably, miR-140-3p was found to be highly enriched both in ECFCs and ECFCs-exo treated with ECSW (p < 0.05) and served as a critical mediator. SW-exo increased miR-140-3p expression but decreased PTEN expression in H9c2 cells with enhanced phosphorylation of the PI3K/AKT signaling pathway. These cardioprotective effects of SW-exo on H/R injury were blunted by the miR-140-3p inhibitor. Dual-luciferase assay verified that miR-140-3p could directly target the 3′UTR of PTEN mRNA and exert a negative regulatory effect. Conclusion: This study has shown the potential of ECSW as an effective stimulation for the exosomes derived from ECFCs in vitro. SW-exo exerted a stronger therapeutic effect on H/R injury in H9c2 cells possibly via delivering exosomal miR-140-3p, which might be a novel promising strategy for the myocardial IRI.
Collapse
Affiliation(s)
- Dan Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mingqiang Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Ma
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingyu Cao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tao Guo
- Department of Cardiology, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Hongbo Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongyan Cai
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|