1
|
Grafals-Ruiz N, Sánchez-Álvarez AO, Santana-Rivera Y, Lozada-Delgado EL, Rabelo-Fernandez RJ, Rios-Vicil CI, Valiyeva F, Vivas-Mejia PE. MicroRNA-92b targets tumor suppressor gene FBXW7 in glioblastoma. Front Oncol 2023; 13:1249649. [PMID: 37752997 PMCID: PMC10518455 DOI: 10.3389/fonc.2023.1249649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Introduction Glioblastoma (GBM) is a highly aggressive and lethal primary brain tumor. Despite limited treatment options, the overall survival of GBM patients has shown minimal improvement over the past two decades. Factors such as delayed cancer diagnosis, tumor heterogeneity, cancer stem cell survival, infiltrative nature of GBM cells, metabolic reprogramming, and development of therapy resistance contribute to treatment failure. To address these challenges, multitargeted therapies are urgently needed for improved GBM treatment outcomes. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. Dysregulated miRNAs have been identified in GBM, playing roles in tumor initiation, progression, and maintenance. Among these miRNAs, miR-92b (miRNA-92b-3p) has been found to be overexpressed in various cancers, including GBM. However, the specific target genes of miR-92b and its therapeutic potential in GBM remain poorly explored. Methods Samples encompassed T98G, U87, and A172 human GBM cell lines, GBM tumors from Puerto Rican patients, and murine tumors. In-situ hybridization (ISH) assessed miR-92b expression in patient tumors. Transient and stable transfections modified miR-92b levels in GBM cell lines. Real-time PCR gauged gene expressions. Caspase 3 and Trypan Blue assays evaluated apoptosis and viability. Bioinformatics tools (TargetScanHuman 8.0, miRDB, Diana tools, miRWalk) predicted targets. Luciferase assays and Western Blots validated miRNA-target interactions. A subcutaneous GBM Xenograft mouse model received intraperitoneal NC-OMIs or miR92b-OMIs encapsulated in liposomes, three-times per week for two weeks. Analysis utilized GraphPad Prism 8; statistical significance was assessed using 2-tailed, unpaired Student's t-test and two-way ANOVA as required. Results This study investigated the expression of miR-92b in GBM tumors compared to normal brain tissue samples, revealing a significant upregulation. Inhibition of miR-92b using oligonucleotide microRNA inhibitors (OMIs) suppressed GBM cell growth, migration, and induced apoptosis, while ectopic expression of miR-92b yielded opposite effects. Systemic administration of liposomal-miR92b-OMIs in GBM xenograft mice resulted in reductions in tumor volume and weight. Subsequent experiments identified F-Box and WD Repeat Domain Containing 7 (FBXW7) as a direct target gene of miR-92b in GBM cells. Discussion FBXW7 acts as a tumor suppressor gene in various cancer types, and analysis of patient data demonstrated that GBM patients with higher FBXW7 mRNA levels had significantly better overall survival compared to those with lower levels. Taken together, our findings suggest that the dysregulated expression of miR-92b in GBM contributes to tumor progression by targeting FBXW7. These results highlight the potential of miR-92b as a therapeutic target for GBM. Further exploration and development of miR-92b-targeted therapies may offer a novel approach to improve treatment outcomes in GBM patients.
Collapse
Affiliation(s)
- Nilmary Grafals-Ruiz
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
- Department of Physiology, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Yasmarie Santana-Rivera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Dentistry School, University of Puerto Rico, San Juan, Puerto Rico
| | - Eunice L. Lozada-Delgado
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Departments of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Robert J. Rabelo-Fernandez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Departments of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Fatima Valiyeva
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Pablo E. Vivas-Mejia
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
2
|
HPV-Induced MiR-21 Promotes Epithelial Mesenchymal Transformation and Tumor Progression in Cervical Cancer Cells through the TGFβ R2/hTERC Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6297694. [PMID: 36105448 PMCID: PMC9458404 DOI: 10.1155/2022/6297694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Cervical cancer (CC) is a common malignant tumor in women. It ranks first among the malignant tumors of woman reproductive organs and is one of the most important cancers in the world. Current studies suggest that human papillomavirus (HPV) infection, especially high-risk persistent infection, is the basic cause of cervical precancerous lesions and cervical cancer. MicroRNA-21 (miR-21) plays a role similar to oncogenes in the occurrence and growth of malignant tumors and can be developed as a potential target for treating malignant tumors. Recently, the study of the mechanism of malignant invasion and metastasis has made great progress. The current consensus is that the invasion and metastasis of malignant tumors is a complicated biological process with multistep and multigene control; the process of epithelial mesenchymal transition (EMT) may be the initial event of invasion and metastasis of epithelial malignant tumors. EMT means that epithelial cells obtain the characteristics of mesenchymal cells, which has main characteristics such as the loss of epithelial cell characteristics and the achievement of mesenchymal cell features, and then induce epithelial cells to acquire the ability of migration and invasion, and participate in many physiological and pathological processes of human body, including embryogenesis, organ differentiation, tissue inflammation, and wound healing. Research has proved that miR-21 is associated with the invasion and metastasis of cervical cancer, and its specific mechanism has not been completely clear; EMT exerts a significant effect on the invasion and metastasis of epithelial malignant tumors; we speculate whether miR-21 regulates the EMT process of cervical cancer cells. ELISA and RT-PCR studied HPV-induced cervical cancer cells, and it was found that HPV may induce miR-21 to pass through the TGF β R2/hTERC pathway which promotes epithelial stromal transformation and tumor progression of cervical cancer cells.
Collapse
|
3
|
Tian Y, Luo Y, Wang J. MicroRNA-425 induces apoptosis and suppresses migration and invasion of human cervical cancer cells by targeting RAB2B. Int J Immunopathol Pharmacol 2021; 35:20587384211016131. [PMID: 34024178 PMCID: PMC8150419 DOI: 10.1177/20587384211016131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Dysregulation of microRNA-425 (miR-425) has been reported in several human cancers. However, the role of miR-425 in human cervical cancer via modulation of RAB2B expression is still unclear. This study was therefore designed to examine the expression and decipher the role of miR-425 in cervical cancer. The qRT-PCR was used for expression analysis. MTT and EdU assays were used for the determination of cell viability and proliferation, respectively. Annexin V/PI staining was used to detect apoptosis. Wound healing and transwell assays were used to monitor cell migration and invasion. Western blotting was used for protein expression analysis. The in vivo study was performed in xenografted mice model. The results of the present study revealed miR-425 to be significantly (P = 0.032) down-regulated in cervical cancer tissues and cell lines. Additionally, low expression of miR-425 was associated with significantly (P = 0.035) lower survival rate of the cervical cancer patients. Overexpression of miR-425 resulted in significant (P = 0.024) decline of cervical cancer cell proliferation via induction of apoptosis. The induction of apoptosis was associated with up-regulation of Bax and down-regulation of Bcl-2. Besides, the migration and invasion of cancer cells significantly (P < 0.01) decreased under miR-425 overexpression. Additionally, miR-425 could inhibit the growth of xenografted tumors in vivo. In silico analysis and dual luciferase assay revealed RAB2B as the direct target of miR-425 in cervical cancer. RAB2B was found to be significantly (P < 0.05) up-regulated in cervical cancer tissues and cell lines and miR-425 overexpression suppressed the expression of RAB2B. Additionally, silencing of RAB2B could suppress the growth of cervical cancer cells but its overexpression could rescue the tumor-suppressive effects of miR-425. Taken together, the results revealed the tumor-suppressive roe of miR-425 and point towards its therapeutic potential in the management of cervical cancer.
Collapse
Affiliation(s)
- Yue Tian
- Delivery Room, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Ying Luo
- Delivery Room, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Jing Wang
- Department of Obstetrics, Linyi Central Hospital, Shangdong Province, China
| |
Collapse
|
4
|
Grafals-Ruiz N, Rios-Vicil CI, Lozada-Delgado EL, Quiñones-Díaz BI, Noriega-Rivera RA, Martínez-Zayas G, Santana-Rivera Y, Santiago-Sánchez GS, Valiyeva F, Vivas-Mejía PE. Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma. Int J Nanomedicine 2020; 15:2809-2828. [PMID: 32368056 PMCID: PMC7185647 DOI: 10.2147/ijn.s241055] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). METHODS Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. RESULTS SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. DISCUSSION SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.
Collapse
Affiliation(s)
- Nilmary Grafals-Ruiz
- Department of Physiology, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Christian I Rios-Vicil
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Neurosurgery, University of Puerto Rico, San Juan, Puerto Rico
| | - Eunice L Lozada-Delgado
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Blanca I Quiñones-Díaz
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Ricardo A Noriega-Rivera
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Gabriel Martínez-Zayas
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Ginette S Santiago-Sánchez
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Fatma Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
5
|
Abstract
Sialylation (the covalent addition of sialic acid to the terminal end of glycoproteins or glycans), tightly regulated cell- and microenvironment-specific process and orchestrated by sialyltransferases and sialidases (neuraminidases) family, is one of the posttranslational modifications, which plays an important biological role in the maintenance of normal physiology and involves many pathological dysfunctions. Glycans have roles in all the cancer hallmarks, referring to capabilities acquired during all steps of cancer development to initiate malignant transformation (a driver of a malignant genotype), enable cancer cells to survive, proliferate, and metastasize (a consequence of a malignant phenotype), which includes sustaining proliferative signaling, evading growth suppressor, resisting cell apoptosis, enabling replicative immortality, inducing angiogenesis, reprogramming of energy metabolism, evading tumor destruction, accumulating inflammatory microenvironment, and activating invasion and accelerating metastases. Regarding the important role of altered sialylation of cancers, further knowledge about the initiation and the consequences of altered sialylation pattern in tumor cells is needed, because all may offer a better chance for developing novel therapeutic strategy. In this review, we would like to update alteration of sialylation in ovarian cancers.
Collapse
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
6
|
Affiliation(s)
- Yiu-Tai Li
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan, ROC
| | - Fa-Kung Lee
- Department of Obstetrics and Gynecology, Cathy General Hospital, Taipei, Taiwan, ROC
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
7
|
Marciniak A, Patro-Małysza J, Kimber-Trojnar Ż, Marciniak B, Oleszczuk J, Leszczyńska-Gorzelak B. Fetal programming of the metabolic syndrome. Taiwan J Obstet Gynecol 2017; 56:133-138. [PMID: 28420495 DOI: 10.1016/j.tjog.2017.01.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2017] [Indexed: 12/14/2022] Open
Abstract
Prenatal development is currently recognized as a critical period in the etiology of human diseases. This is particularly so when an unfavorable environment interacts with a genetic predisposition. The fetal programming concept suggests that maternal nutritional imbalance and metabolic disturbances may have a persistent and intergenerational effect on the health of offspring and on the risk of diseases such as obesity, diabetes, and cardiovascular diseases.
Collapse
Affiliation(s)
- Aleksandra Marciniak
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Jolanta Patro-Małysza
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Żaneta Kimber-Trojnar
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
| | - Beata Marciniak
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Jan Oleszczuk
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Bożena Leszczyńska-Gorzelak
- Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
8
|
Liu CH, Huang Q, Jin ZY, Zhu CL, Liu Z, Wang C. miR-21 and KLF4 jointly augment epithelial‑mesenchymal transition via the Akt/ERK1/2 pathway. Int J Oncol 2017; 50:1109-1115. [PMID: 28197636 PMCID: PMC5363879 DOI: 10.3892/ijo.2017.3876] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/20/2016] [Indexed: 01/29/2023] Open
Abstract
miR-21 induces epithelial-mesenchymal transition (EMT) of human cholangiocarcinoma (CCA) cells. However, the mechanism by which this occurs remains unclear. In the present study, high throughput platform was employed to detect the genes that are differential expressed in QBC939 cells transfected with a hsa-miR-21 antagomir or control vectors. The EMT-related Krüppel-like factor 4 (KLF4) gene was down-regulated after miR-21 was knocked down. Overexpression of miR-21 upregulated KLF4, Akt, ERK and mesenchymal cell markers (N-cadherin and vimentin), downregulated the expression of epithelial cell marker E-cadherin and reduced cell migration and invasion. Immunohistochemistry showed that KLF4, pAkt and pERK were upregulated in tumor xenografts transfected with miR-21 mimics. Inhibitors of the PI3K-Akt and ERK1/2 pathways, LY294002 and U0126, significantly suppressed the EMT phenotype. The present data demonstrated that overexpression of miR-21, accompanied with KLF4, augmented the EMT via inactivation of Akt and ERK1/2 pathways. In conclusion, we have identified a novel mechanism that may be targeted in an attempt to relieve the malignant biological behavior of CCA cells.
Collapse
Affiliation(s)
- Chen-Hai Liu
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Qiang Huang
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Zhi-Yuan Jin
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Cheng-Lin Zhu
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Zhen Liu
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Chao Wang
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
9
|
Zhu L, Huang F, Deng G, Nie W, Huang W, Xu H, Zheng S, Yi Z, Wan T. MicroRNA-212 targets FOXA1 and suppresses the proliferation and invasion of intrahepatic cholangiocarcinoma cells. Exp Ther Med 2016; 12:3790-3796. [PMID: 28105112 DOI: 10.3892/etm.2016.3824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs), which are a class of small RNAs, have been shown to negatively regulate the expression of their target genes by directly binding to the 3'-untranslated region (3'-UTR) of mRNA. miRNA dysregulation has been associated with the pathogenesis of numerous types of human cancer. However, the role of miRNAs in intrahepatic cholangiocarcinoma (ICC) has yet to be fully elucidated. The present study aimed to investigate the role of miR-212 in the growth and metastasis of ICC in vitro, as well as the underlying mechanism. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to examine mRNA and protein expression. An MTT assay and transwell assay were conducted to determine cell proliferation and invasion rates. The results of the RT-qPCR demonstrated that miR-212 was downregulated in the majority of investigated ICC tissues, as compared with their matched adjacent non-tumor tissues. In addition, miR-212 expression was shown to be markedly downregulated in three ICC cell lines, as compared with human intrahepatic biliary epithelial cells. Furthermore, restoration of miR-212 expression significantly suppressed the proliferation and invasion of ICC QBC939 cells. Forkhead box protein A1 (FOXA1) was predicted to be a putative target of miR-212 by bioinformatics analysis with TargetScan. Therefore, a luciferase reporter assay was conducted to confirm that miR-212 was able to directly bind to the 3'-UTR of FOXA1 mRNA. In addition, using western blot analysis, the protein expression of FOXA1 was shown to be negatively regulated by miR-212 in ICC QBC939 cells. In conclusion, it was demonstrated that FOXA1 was frequently upregulated in various ICC tissues and cell lines. The results of the present study suggested that miR-212 inhibits the proliferation and invasion of ICC cells by directly targeting FOXA1, and thus may be considered a potential candidate for the treatment of ICC.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Feizhou Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Gang Deng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wanpin Nie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongbo Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Shaopeng Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhongjie Yi
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Tao Wan
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
10
|
Yen MS, Chen JR, Wang PH, Wen KC, Chen YJ, Ng HT. Uterine sarcoma part III-Targeted therapy: The Taiwan Association of Gynecology (TAG) systematic review. Taiwan J Obstet Gynecol 2016; 55:625-634. [PMID: 27751406 DOI: 10.1016/j.tjog.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2016] [Indexed: 12/29/2022] Open
Abstract
Uterine sarcoma is a very aggressive and highly lethal disease. Even after a comprehensive staging surgery or en block cytoreduction surgery followed by multimodality therapy (often chemotherapy and/or radiation therapy), many patients relapse or present with distant metastases, and finally die of diseases. The worst outcome of uterine sarcomas is partly because of their rarity, unknown etiology, and highly divergent genetic aberration. Uterine sarcomas are often classified into four distinct subtypes, including uterine leiomyosarcoma, low-grade uterine endometrial stromal sarcoma, high-grade uterine endometrial stromal sarcoma, and undifferentiated uterine sarcoma. Currently, evidence from tumor biology found that these tumors showed alternation and/or mutation of genomes and the intracellular signal pathway. In addition, some preclinical studies showed promising results for targeting receptor tyrosine kinase signaling, phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway, various kinds of growth factor pathways, Wnt/beta-catenin signaling pathway, transforming growth factor β/bone morphogenetic protein signal pathway, aurora kinase A, MDM2 proto-oncogene, histone deacetylases, sex hormone receptors, certain types of oncoproteins, and/or loss of tumor suppressor genes. The current review is attempted to summarize the recurrent advance of targeted therapy for uterine sarcomas.
Collapse
Affiliation(s)
- Ming-Shyen Yen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Foundation of Female Cancer, Taipei, Taiwan
| | - Jen-Ruei Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Kuo-Chang Wen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Jen Chen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Heung-Tat Ng
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan; Foundation of Female Cancer, Taipei, Taiwan
| |
Collapse
|
11
|
Sun J, Tao S, Liu L, Guo D, Xia Z, Huang M. miR‑140‑5p regulates angiogenesis following ischemic stroke by targeting VEGFA. Mol Med Rep 2016; 13:4499-505. [PMID: 27035554 DOI: 10.3892/mmr.2016.5066] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 02/22/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA or miR) expression profiles are altered in tissues under hypoxic-ischemic conditions. The expression of miR‑140 is downregulated >2-fold following hypoxic-ischemic brain damage, however, its role in angiogenesis subsequent to cerebral ischemia is not fully understood. The present study aimed to investigate the role of miR-140-5p in angiogenesis and the molecular mechanism mediated by vascular endothelial growth factor A (VEGFA) in an in vitro model for brain ischemia. A rat middle cerebral artery occlusion (MCAO) model was constructed, and the results from reverse transcription-quantitative polymerase chain reaction and western blot analysis demonstrated that the expression levels of miR-140‑5p were significantly decreased, while the expression levels of VEGFA were significantly increased between 12 and 48 h in the rat cerebral following MCAO. Furthermore, human umbilical vein endothelial cells (HUVECs) were exposed to low oxygen conditions and it was demonstrated that hypoxia downregulated miR-140-5p and upregulated VEGFA expression levels. The miR-140-5p mimic was transfected into the normoxic and hypoxic HUVECs and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Transwell migration and tube formation assays were performed. The results indicated that miR‑140‑5p inhibited angiogenesis by decreasing cell proliferation, migration and tube formation. Additionally, in human embryonic kidney 293 cells, results from the luciferase reporter assay revealed that miR‑140‑5p directly targeted the 3' untranslated region of VEGFA and that miR‑140‑5p regulated the protein expression of VEGFA. To further analyze this effect, a VEGFA‑pEGFP‑C1 plasmid was transfected into the normoxic and hypoxic HUVECs, and it was revealed that the inhibitory effect of miR‑140‑5p on angiogenesis was attenuated by the overexpression of VEGFA. In conclusion, to the best of our knowledge, the present study is the first to suggest that miR‑140‑5p exerts an inhibitory effect on angiogenesis in an in vitro model of ischemia, and this effect is achieved partially by targeting VEGFA. The present study provided a novel biomarker for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Jijun Sun
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Shuxin Tao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lifeng Liu
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Dong Guo
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Min Huang
- Department of Neurology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
12
|
Kouhkan F, Mobarra N, Soufi-Zomorrod M, Keramati F, Hosseini Rad SMA, Fathi-Roudsari M, Tavakoli R, Hajarizadeh A, Ziaei S, Lahmi R, Hanif H, Soleimani M. MicroRNA-129-1 acts as tumour suppressor and induces cell cycle arrest of GBM cancer cells through targeting IGF2BP3 and MAPK1. J Med Genet 2015; 53:24-33. [PMID: 26510428 DOI: 10.1136/jmedgenet-2015-103225] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 09/21/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND MicroRNA-129-1 (miR-129-1) seems to behave as a tumour suppressor since its decreased expression is associated with different tumours such as glioblastoma multiforme (GBM). GBM is the most common form of brain tumours originating from glial cells. The impact of miR-129-1 downregulation on GBM pathogenesis has yet to be elucidated. METHODS MiR-129-1 was overexpressed in GBM cells, and its effect on proliferation was investigated by cell cycle assay. MiR-129-1 predicted targets (CDK6, IGF1, HDAC2, IGF2BP3 and MAPK1) were also evaluated by western blot and luciferase assay. RESULTS Restoration of miR-129-1 reduced cell proliferation and induced G1 accumulation, significantly. Several functional assays confirmed IGF2BP3, MAPK1 and CDK6 as targets of miR-129-1. Despite the fact that IGF1 expression can be suppressed by miR-129-1, through 3'-untranslated region complementary sequence, we could not find any association between IGF1 expression and GBM. MiR-129-1 expression inversely correlates with CDK6, IGF2BP3 and MAPK1 in primary clinical samples. CONCLUSION This is the first study to propose miR129-1 as a negative regulator of IGF2BP3 and MAPK1 and also a cell cycle arrest inducer in GBM cells. Our data suggests miR-129-1 as a potential tumour suppressor and presents a rationale for the use of miR-129-1 as a novel strategy to improve treatment response in GBM.
Collapse
Affiliation(s)
- Fatemeh Kouhkan
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Naser Mobarra
- Metabolic Disorders Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mina Soufi-Zomorrod
- Department of Hematology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Farid Keramati
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | | | | | - Rezvan Tavakoli
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Athena Hajarizadeh
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Said Ziaei
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Lahmi
- Department of Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Hamed Hanif
- Department of Neurosurgery, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran Department of Hematology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Zhong W, Yang J, Cao Q, Huan X. Association between miR-181b and PKG 1 in myocardial hypertrophy and its clinical implications. Exp Ther Med 2015; 10:857-862. [PMID: 26622405 DOI: 10.3892/etm.2015.2647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 04/13/2015] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to explore the microRNA (miR)-181b expression in myocardial hypertrophy and to investigate its association with cGMP-dependent protein kinase type I (PKG 1) in an in vitro model. The miR-181b level in the peripheral blood was determined in patients with myocardial hypertrophy, and an in vitro model was established via phenylephrine (PE) treatment. Reverse transcription-quantitative polymerase chain reaction analysis and western blotting were performed to detect the expression levels of miR-181b, PKG 1 and hypertrophy-related genes. The results revealed that the expression of miR-181b was elevated in the peripheral blood of patients with myocardial hypertrophy, and this may have contributed to the pathology and progression of the disease. When the primary myocardial cells were treated with PE, microscopic observation and flow cytometry revealed significant hypertrophy. Furthermore, upregulation of myocardial hypertrophy-related genes, including β-myosin heavy chain, α-sarcomeric actinin and atrial natriuretic peptide, was observed. The miR-181b expression level in the PE-treated cells was elevated, while the mRNA and protein expression levels of PKG 1 were decreased, indicating a negative correlation between miR-181b and PKG 1 in myocardial hypertrophy. In addition, when the PE-treated primary myocardial cells were transfected with miR-181b inhibitor, the reduced PKG 1 expression was restored and the myocardial hypertrophy alleviated, as indicated by the reduced cellular sizes and decreased expression levels of the myocardial hypertrophy-related genes. In conclusion, miR-181b expression has been shown to be upregulated in myocardial hypertrophy, and this may play a role in the pathogenesis of the disease by regulating the expression of PKG 1. The present findings suggest that miR-181b is a promising molecular indicator for the clinical diagnosis and treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Wei Zhong
- Cadre Ward, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Jun Yang
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Qian Cao
- Department of Cardiology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong 277100, P.R. China
| | - Xiaodong Huan
- Cadre Ward, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| |
Collapse
|
14
|
Goh JN, Loo SY, Datta A, Siveen KS, Yap WN, Cai W, Shin EM, Wang C, Kim JE, Chan M, Dharmarajan AM, Lee ASG, Lobie PE, Yap CT, Kumar AP. microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer. Biol Rev Camb Philos Soc 2015; 91:409-28. [DOI: 10.1111/brv.12176] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Jen N. Goh
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Ser Y. Loo
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR); Singapore 138672 Singapore
| | - Arpita Datta
- Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
| | - Kodappully S. Siveen
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Wei N. Yap
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Eun M. Shin
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
| | - Chao Wang
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
| | - Ji E. Kim
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
| | - Maurice Chan
- Division of Medical Sciences; National Cancer Centre; Singapore 169610 Singapore
| | - Arun M. Dharmarajan
- Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University; 6845 Perth Western Australia Australia
| | - Ann S.-G. Lee
- Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
- Division of Medical Sciences; National Cancer Centre; Singapore 169610 Singapore
- Duke-NUS Graduate Medical School; Singapore 169857 Singapore
| | - Peter E. Lobie
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
- National University Cancer Institute; Singapore 1192288 Singapore
| | - Celestial T. Yap
- Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
- National University Cancer Institute; Singapore 1192288 Singapore
| | - Alan P. Kumar
- Cancer Science Institute of Singapore, National University of Singapore; Singapore 117599 Singapore
- Department of Pharmacology; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117599 Singapore
- Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University; 6845 Perth Western Australia Australia
- National University Cancer Institute; Singapore 1192288 Singapore
- Department of Biological Sciences; University of North Texas; Denton TX 76203-5017 U.S.A
| |
Collapse
|
15
|
Wang PHP, Chen CP. Celebration of the Taiwanese Journal of Obstetrics and Gynecology. Taiwan J Obstet Gynecol 2014. [DOI: 10.1016/j.tjog.2014.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Catalpol suppresses proliferation and facilitates apoptosis of OVCAR-3 ovarian cancer cells through upregulating microRNA-200 and downregulating MMP-2 expression. Int J Mol Sci 2014; 15:19394-405. [PMID: 25347277 PMCID: PMC4264118 DOI: 10.3390/ijms151119394] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/14/2022] Open
Abstract
Catalpol is expected to possess diverse pharmacological actions including anti-cancer, anti-inflammatory and hypoglycemic properties. Matrix metalloproteinase-2 (MMP-2) is closely related to the pathogenesis of ovarian cancer. In addition, microRNA-200 (miR-200) can modulate phenotype, proliferation, infiltration and transfer of various tumors. Here, OVCAR-3 cells were employed to investigate whether the effect of catalpol (25, 50 and 100 μg/mL) promoted apoptosis of ovarian cancer cells and to explore the potential mechanisms. Our results demonstrate that catalpol could remarkably reduce the proliferation and accelerate the apoptosis of OVCAR-3 cells. Interestingly, our findings show that catalpol treatment significantly decreased the MMP-2 protein level and increased the miR-200 expression level in OVCAR-3 cells. Further, microRNA-200 was shown to regulate the protein expression of MMP-2 in OVCAR-3 cells. It is concluded that catalpol suppressed cellular proliferation and accelerated apoptosis in OVCAR-3 ovarian cancer cells via promoting microRNA-200 expression levels and restraining MMP-2 signaling.
Collapse
|
17
|
Gao Q, Tang J, Chen J, Jiang L, Zhu X, Xu Z. Epigenetic code and potential epigenetic-based therapies against chronic diseases in developmental origins. Drug Discov Today 2014; 19:1744-1750. [PMID: 24880107 DOI: 10.1016/j.drudis.2014.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/05/2014] [Accepted: 05/07/2014] [Indexed: 12/14/2022]
Abstract
Accumulated findings have demonstrated that the epigenetic code provides a potential link between prenatal stress and changes in gene expression that could be involved in the developmental programming of various chronic diseases in later life. Meanwhile, based on the fact that epigenetic modifications are reversible and can be manipulated, this provides a unique chance to develop multiple novel epigenetic-based therapeutic strategies against many chronic diseases in early developmental periods. This article will give a short review of recent findings of prenatal insult-induced epigenetic changes in developmental origins of several chronic diseases, and will attempt to provide an overview of the current epigenetic-based strategies applied in the early prevention, diagnosis and possible therapies for human chronic diseases.
Collapse
Affiliation(s)
- Qinqin Gao
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqi Tang
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Jie Chen
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Lin Jiang
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Xiaolin Zhu
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China
| | - Zhice Xu
- Institute for Fetology, The First Hospital of Soochow University, Suzhou 215006, China; Center for Prenatal Biology, Loma Linda University, CA 92350, USA.
| |
Collapse
|