1
|
Gatti M, Beretti F, Ravegnini G, Gorini F, Ceneri E, Bertucci E, Follo MY, Maraldi T. Evaluation of the Anti-Cancer Potential of Extracellular Vesicles Derived from Human Amniotic Fluid Stem Cells: Focus on Effective miRNAs in the Treatment of Melanoma Progression. Int J Mol Sci 2024; 25:12502. [PMID: 39684214 DOI: 10.3390/ijms252312502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) and their secretome show intrinsic antitumor properties, however, the anti-cancer effects of MSCs remain debated and depend on the cancer type or model. MSCs derived from discarded samples, such as human amniotic fluid (hAFSC), have been introduced as an attractive and potent stem cell source for clinical applications due to their collection procedures, which minimize ethical issues. Until now, various studies have obtained controversial results and poor understanding of the mechanisms behind the effects of perinatal cells on cancer cells. To better clarify this aspect, protein and miRNA expression profiling isolated from Extracellular vesicles (EVs) secreted by hAFSCs, obtained in the II or III trimester, were evaluated. Bioinformatic analysis was performed aiming at evaluating differential expression, pathway enrichment, and miRNA-mRNA networks. We highlighted that most of the highest expressed proteins and miRNAs are mainly involved in antioxidant and anti-cancer effects. Indeed, in the presence of hAFSC-EVs, a reduction of the G2/M phase was observed on melanoma cell lines, an activation of the apoptotic pathway occurred and the migration and invasion ability reduced. Our data demonstrated that II or III trimester hAFSCs can release bioactive factors into EVs, causing an efficient anti-cancer effect inhibiting melanoma progression.
Collapse
Affiliation(s)
- Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Department of Biomedical and Neuromotor Science, Cellular Signalling Laboratory, University of Bologna, 40126 Bologna, Italy
| | - Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Eleonora Ceneri
- Department of Biomedical and Neuromotor Science, Cellular Signalling Laboratory, University of Bologna, 40126 Bologna, Italy
| | - Emma Bertucci
- Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Science, Cellular Signalling Laboratory, University of Bologna, 40126 Bologna, Italy
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
2
|
Pontiggia L, Michalak-Micka K, Hürlimann N, Yosef HK, Böni R, Klar AS, Ehrbar M, Ochsenbein-Kölble N, Biedermann T, Moehrlen U. Raman spectroscopy analysis of human amniotic fluid cells from fetuses with myelomeningocele. Exp Cell Res 2024; 439:114048. [PMID: 38697275 DOI: 10.1016/j.yexcr.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/04/2024]
Abstract
Prenatal surgery for the treatment of spina bifida (myelomeningocele, MMC) significantly enhances the neurological prognosis of the patient. To ensure better protection of the spinal cord by large defects, the application of skin grafts produced with cells gained from the amniotic fluid is presently studied. In order to determine the most appropriate cells for this purpose, we tried to shed light on the extremely complex amniotic fluid cellular composition in healthy and MMC pregnancies. We exploited the potential of micro-Raman spectroscopy to analyse and characterize human amniotic fluid cells in total and putative (cKit/CD117-positive) stem cells of fetuses with MMC in comparison with amniotic fluid cells from healthy individuals, human fetal dermal fibroblasts and adult adipose derived stem cells. We found that (i) the differences between healthy and MMC amniocytes can be attributed to specific spectral regions involving collagen, lipids, sugars, tryptophan, aspartate, glutamate, and carotenoids, (ii) MMC amniotic fluid contains two particular cell populations which are absent or reduced in normal pregnancies, (iii) the cKit-negative healthy amniocyte subpopulation shares molecular features with human fetal fibroblasts. On the one hand we demonstrate a different amniotic fluid cellular composition in healthy and MMC pregnancies, on the other our work confirms micro-Raman spectroscopy to be a valuable tool for discriminating cell populations in unknown mixtures of cells.
Collapse
Affiliation(s)
- Luca Pontiggia
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Nadine Hürlimann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | | | - Roland Böni
- White House Center for Liposuction, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland; University of Zurich, 8091, Zurich, Switzerland
| | - Martin Ehrbar
- Zurich Center for Fetal Diagnosis and Treatment, 8032 Zurich, Switzerland; University of Zurich, 8091, Zurich, Switzerland; Department of Obstetrics, University Hospital of Zurich, Zurich, Switzerland
| | - Nicole Ochsenbein-Kölble
- Zurich Center for Fetal Diagnosis and Treatment, 8032 Zurich, Switzerland; Department of Obstetrics, University Hospital of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland; University of Zurich, 8091, Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Spina Bifida Center, University Children's Hospital Zurich, Zurich, Switzerland; Zurich Center for Fetal Diagnosis and Treatment, 8032 Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland; University of Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
3
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
4
|
Rosner M, Horer S, Feichtinger M, Hengstschläger M. Multipotent fetal stem cells in reproductive biology research. Stem Cell Res Ther 2023; 14:157. [PMID: 37287077 DOI: 10.1186/s13287-023-03379-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Due to the limited accessibility of the in vivo situation, the scarcity of the human tissue, legal constraints, and ethical considerations, the underlying molecular mechanisms of disorders, such as preeclampsia, the pathological consequences of fetomaternal microchimerism, or infertility, are still not fully understood. And although substantial progress has already been made, the therapeutic strategies for reproductive system diseases are still facing limitations. In the recent years, it became more and more evident that stem cells are powerful tools for basic research in human reproduction and stem cell-based approaches moved into the center of endeavors to establish new clinical concepts. Multipotent fetal stem cells derived from the amniotic fluid, amniotic membrane, chorion leave, Wharton´s jelly, or placenta came to the fore because they are easy to acquire, are not associated with ethical concerns or covered by strict legal restrictions, and can be banked for autologous utilization later in life. Compared to adult stem cells, they exhibit a significantly higher differentiation potential and are much easier to propagate in vitro. Compared to pluripotent stem cells, they harbor less mutations, are not tumorigenic, and exhibit low immunogenicity. Studies on multipotent fetal stem cells can be invaluable to gain knowledge on the development of dysfunctional fetal cell types, to characterize the fetal stem cells migrating into the body of a pregnant woman in the context of fetomaternal microchimerism, and to obtain a more comprehensive picture of germ cell development in the course of in vitro differentiation experiments. The in vivo transplantation of fetal stem cells or their paracrine factors can mediate therapeutic effects in preeclampsia and can restore reproductive organ functions. Together with the use of fetal stem cell-derived gametes, such strategies could once help individuals, who do not develop functional gametes, to conceive genetically related children. Although there is still a long way to go, these developments regarding the usage of multipotent fetal stem cells in the clinic should continuously be accompanied by a wide and detailed ethical discussion.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Stefanie Horer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | | | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Long P, Shi Y, Sun F, Wei Y, Wu B, Li Q, Jie Q, Ma Y. Establishment of a non‐integrated induced pluripotent stem cell line derived from human chorionic villi cells. J Clin Lab Anal 2022; 36:e24464. [PMID: 35527669 PMCID: PMC9169189 DOI: 10.1002/jcla.24464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Few studies have investigated the generation of induced pluripotent stem cells (iPSCs) derived from human primary chorionic villi (CV) cells. The present study aimed to explore an optimal electroporation (EP) condition for generating non‐integrated iPSCs from CV cells (CV‐iPSCs). Methods The EGFP plasmid was transfected into CV cells under different EP conditions to evaluate cell adherence and the rate of EGFP positive cells. Subsequently, CV cells were transfected with the pEP4‐E02S‐ET2K and pCEP4‐miR‐302–367 plasmids under optimal EP conditions. Finally, CV‐iPSC pluripotency, karyotype analysis, and differentiation ability were investigated. Results Following EP for 48 h under different conditions, different confluency, and transfection efficiency were observed in CV cells. Higher cell density was observed in CV cells exposed to 200 V for 100 s, while higher transfection efficiency was obtained in cells electroporated at a pulse of 300 V for 300 s. To generate typical primitive iPSCs, CV cells were transfected with pEP4‐E02S‐ET2K and pCEP4‐miR‐302–367 plasmids using EP and were then cultured in induction medium for 20 days under selected conditions. Subsequently, monoclonal iPSCs were isolated and were evaluated pluripotency with AP positive staining, the expression of OCT4, SOX2, and NANOG in vitro and the formation of three germ layer teratomas in vivo. Conclusion CV‐iPSCs were successfully established under the conditions of 100 μl shock cup and EP pulse of 200 V for 300 s for two times. This may provide a novel strategy for investigating the pathogenesis of several diseases and gene therapy.
Collapse
Affiliation(s)
- Ping Long
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
- Guizhou Qiannan People's Hospital Guizhou China
| | - Yuechuan Shi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
- Hainan Medical University Haikou Hainan China
| | - Fei Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
- Department of Obstetrics and Gynecology of Nanfang Hospital Southern Medical University Guangzhou China
| | - Yunjian Wei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
| | - Bangyong Wu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
| | - Qiuling Jie
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research The First Affiliated Hospital of Hainan Medical University Haikou Haikou Hainan China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Medical University Haikou Hainan China
- Haikou Key Laboratory of Human Genetic Resources Preservation of First Affiliated Hospital Hainan Medical University Haikou Hainan China
- Hainan Medical University Haikou Hainan China
| |
Collapse
|
6
|
Characteristics of amniotic mesenchymal stromal cells derived from term and preterm labor. Taiwan J Obstet Gynecol 2022; 61:51-56. [PMID: 35181046 DOI: 10.1016/j.tjog.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Amniotic mesenchymal stromal cells (AMSCs) can be obtained from the mesoderm of human amniotic membrane. AMSCs derived from term baby show increased expression of genes associated with apoptosis and senescence. The objective of this study was to examine gene expression profiles of AMSCs derived from preterm (preterm AMSCs) and term labors (term AMSCs) and analyze common and different mechanisms. MATERIALS AND METHODS We isolated and cultured AMSCs from 43 placentas: 27 from term labor and 16 from preterm labor. Microarray analysis and gene network analysis were performed to compare gene expression profile (GEP) of preterm (n = 6) with term AMSCs (n = 10). Senescence-associated gene (CDKN2A and CDKN2B) expression was also measured by reverse transcription quantitative PCR. RESULTS GEP demonstrated that preterm AMSCs showed upregulation of nicotinamide adenine dinucleotide biosynthetic process and downregulation of extracellular matrix, cholesterol import and transport, lipid storage, and maintenance of location. CDKN2A and CDKN2B genes showed similar expression levels between term and preterm AMSCs. CDKN2A gene expression was correlated with CDKN2B expression and population doubling time. Compared to term AMSCs, preterm AMSCs showed significantly different expression of genes associated with inflammatory response which could be one of the major players in labor events. CONCLUSION Increased CDKN2A expression in AMSCs is associated with placental membrane aging which participates in both preterm and term labor. To the best of our knowledge, this is the first report to demonstrate the association of AMSCs with labor.
Collapse
|
7
|
de Kroon RR, de Baat T, Senger S, van Weissenbruch MM. Amniotic Fluid: A Perspective on Promising Advances in the Prevention and Treatment of Necrotizing Enterocolitis. Front Pediatr 2022; 10:859805. [PMID: 35359891 PMCID: PMC8964040 DOI: 10.3389/fped.2022.859805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 12/09/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a common and potentially fatal disease that typically affects preterm (PIs) and very low birth weight infants (VLBWIs). Although NEC has been extensively studied, the current therapeutic approaches are unsatisfactory. Due to the similarities in the composition between human amniotic fluid (AF) and human breast milk (BM), which plays a protective role in the development of NEC in PIs and VLBWIs, it has been postulated that AF has similar effects on the outcome of NEC and potential therapeutic implications. AF has been long used for its diagnostic purposes and is often discarded after birth as "biological waste". However, researchers have started to elucidate its therapeutic potential. Experimental studies in animal models have shown that diseases of various organ systems can possibly benefit from AF-based therapy. Hence, we have identified three approaches which show promising results for future clinical application in the prevention and/or treatment of NEC: (1) administration of processed AF (PAF) isolated from donor mothers, (2) administration of AF stem cells (AFSCs), and (3) administration of simulated AF (SAF) formulated to mimic the composition of physiological AF. We have highlighted the most important aspects that should be taken into account to guide further research on the clinical application of AF-based therapy. We hope that this review can provide a framework to identify the challenges of AF-based therapy and help to design future studies to better evaluate AF-based approaches for the treatment and/or prevention of NEC in PIs and VLBWIs.
Collapse
Affiliation(s)
- Rimke Romee de Kroon
- Department of Neonatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tessa de Baat
- Department of Neonatology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Stefania Senger
- Department of Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
8
|
Valiulienė G, Zentelytė A, Beržanskytė E, Navakauskienė R. Metabolic Profile and Neurogenic Potential of Human Amniotic Fluid Stem Cells From Normal vs. Fetus-Affected Gestations. Front Cell Dev Biol 2021; 9:700634. [PMID: 34336852 PMCID: PMC8322743 DOI: 10.3389/fcell.2021.700634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Human amniotic fluid stem cells (hAFSCs) possess some characteristics with mesenchymal stem cells (MSCs) and embryonic stem cells and have a broader differentiation potential compared to MSCs derived from other sources. Although hAFSCs are widely researched, their analysis mainly involves stem cells (SCs) obtained from normal, fetus-unaffected gestations. However, in clinical settings, knowledge about hAFSCs from normal gestations could be poorly translational, as hAFSCs from healthy and fetus-diseased gestations may differ in their differentiation and metabolic potential. Therefore, a more thorough investigation of hAFSCs derived from pathological gestations would provide researchers with the knowledge about the general characteristics of these cells that could be valuable for further scientific investigations and possible future clinical applicability. The goal of this study was to look into the neurogenic and metabolic potential of hAFSCs derived from diseased fetuses, when gestations were concomitant with polyhydramnios and compare them to hAFSCs derived from normal fetuses. Results demonstrated that these cells are similar in gene expression levels of stemness markers (SOX2, NANOG, LIN28A, etc.). However, they differ in expression of CD13, CD73, CD90, and CD105, as flow cytometry analysis revealed higher expression in hAFSCs from unaffected gestations. Furthermore, hAFSCs from “Normal” and “Pathology” groups were different in oxidative phosphorylation rate, as well as level of ATP and reactive oxygen species production. Although the secretion of neurotrophic factors BDNF and VEGF was of comparable degree, as evaluated with enzyme-linked immunosorbent assay (ELISA) test, hAFSCs from normal gestations were found to be more prone to neurogenic differentiation, compared to hAFSCs from polyhydramnios. Furthermore, hAFSCs from polyhydramnios were distinguished by higher secretion of pro-inflammatory cytokine TNFα, which was significantly downregulated in differentiated cells. Overall, these observations show that hAFSCs from pathological gestations with polyhydramnios differ in metabolic and inflammatory status and also possess lower neurogenic potential compared to hAFSCs from normal gestations. Therefore, further in vitro and in vivo studies are necessary to dissect the potential of hAFSCs from polyhydramnios in stem cell-based therapies. Future studies should also search for strategies that could improve the characteristics of hAFSCs derived from diseased fetuses in order for those cells to be successfully applied for regenerative medicine purposes.
Collapse
Affiliation(s)
- Giedrė Valiulienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aistė Zentelytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elizabet Beržanskytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
9
|
Shaw SW, Peng SY, Liang CC, Lin TY, Cheng PJ, Hsieh TT, Chuang HY, De Coppi P, David AL. Prenatal transplantation of human amniotic fluid stem cell could improve clinical outcome of type III spinal muscular atrophy in mice. Sci Rep 2021; 11:9158. [PMID: 33911155 PMCID: PMC8080644 DOI: 10.1038/s41598-021-88559-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/14/2021] [Indexed: 02/02/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a single gene disorder affecting motor function in uterus. Amniotic fluid is an alternative source of stem cell to ameliorate SMA. Therefore, this study aims to examine the therapeutic potential of Human amniotic fluid stem cell (hAFSC) for SMA. Our SMA model mice were generated by deletion of exon 7 of Smn gene and knock-in of human SMN2. A total of 16 SMA model mice were injected with 1 × 105 hAFSC in uterus, and the other 16 mice served as the negative control. Motor function was analyzed by three behavioral tests. Engraftment of hAFSC in organs were assessed by flow cytometry and RNA scope. Frequency of myocytes, neurons and innervated receptors were estimated by staining. With hAFSC transplantation, 15 fetuses survived (93.75% survival) and showed better performance in all motor function tests. Higher engraftment frequency were observed in muscle and liver. Besides, the muscle with hAFSC transplantation expressed much laminin α and PAX-7. Significantly higher frequency of myocytes, neurons and innervated receptors were observed. In our study, hAFSC engrafted on neuromuscular organs and improved cellular and behavioral outcomes of SMA model mice. This fetal therapy could preserve the time window and treat in the uterus.
Collapse
Affiliation(s)
- Steven W Shaw
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, No. 199, Dun-Hua North Road, Taipei, 105, Taiwan.
- Prenatal Cell and Gene Therapy Group, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, WC1E 6HU, UK.
| | - Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Ching-Chung Liang
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, 333, Taoyuan, Taiwan
| | - Tzu-Yi Lin
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Po-Jen Cheng
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, 333, Taoyuan, Taiwan
| | - T'sang-T'ang Hsieh
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, No. 199, Dun-Hua North Road, Taipei, 105, Taiwan
| | - Hao-Yu Chuang
- Division of Neurosurgery, Tainan Municipal An-Nan Hospital, Tainan, 709, Taiwan
- Cell Therapy Center, Tainan Municipal An-Nan Hospital, Tainan, 709, Taiwan
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, Institute of Child Health, University College London, London, WC1N 1EH, UK
- Great Ormond Street Hospital NHS Trust, London, WC1N 1EH, UK
| | - Anna L David
- Prenatal Cell and Gene Therapy Group, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, WC1E 6HU, UK
| |
Collapse
|
10
|
O'Connell AE, Guseh S, Lapteva L, Cummings CL, Wilkins-Haug L, Chan J, Peranteau WH, Almeida-Porada G, Kourembanas S. Gene and Stem Cell Therapies for Fetal Care: A Review. JAMA Pediatr 2020; 174:985-991. [PMID: 32597943 PMCID: PMC10620667 DOI: 10.1001/jamapediatrics.2020.1519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Gene and stem cell therapies have become viable therapeutic options for many postnatal disorders. For select conditions, prenatal application would provide improved outcomes. The fetal state allows for several theoretical advantages over postnatal therapy, including immune immaturity and cellular niche accessibility. Observations Advances in prenatal diagnostic accuracy and surgical precision, as well as improvements in stem cell and gene therapy methods, have made prenatal gene and stem cell therapy realistic. Studies in mouse models and early human trials demonstrate the feasibility of these approaches. Additional efforts are under way to streamline fetal applications of stem cell and gene therapy while carefully considering best ethical practice and following established regulatory pathways. Conclusions and Relevance Fetal stem cell and gene therapy bring important therapeutic opportunities for select disorders that present in the fetal and neonatal periods. While this field is in its infancy, these therapies are starting to be available clinically, and clinicians should be aware of their benefits and challenges.
Collapse
Affiliation(s)
- Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Stephanie Guseh
- Division of Maternal Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Larissa Lapteva
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Christy L Cummings
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Louise Wilkins-Haug
- Division of Maternal Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jerry Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
- Duke-NUS Medical School, Academic Program in Obstetrics and Gynaecology, Singapore
| | - William H Peranteau
- Division of General, Thoracic and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Winston Salem, North Carolina
| | - Stella Kourembanas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Borzou B, Mehrabani D, Zare S, Zamani-Pereshkaft M, Acker JP. The Effect of Age and Type of Media on Growth Kinetics of Human Amniotic Fluid Stem Cells. Biopreserv Biobank 2020; 18:389-394. [PMID: 32799559 DOI: 10.1089/bio.2019.0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: This study compared growth kinetics of human amniotic fluid stem cells (hAFSCs) in different maternal age groups and two different media of AmnioMAX and Dulbecco's modified Eagle's medium (DMEM). Materials and Methods: Three milliliters of amniotic fluid (AF) was provided from 16 pregnant women who were referred for amniocentesis from 16 to 18 weeks of gestation. Mothers were divided to 20-29 (n = 5), 30-39 (n = 5) and 40-49 (n = 6) years old age groups. AF was immediately centrifuged and the cell pellet was cultured. Cells were characterized morphologically, by flow cytometry and for osteogenic and adipogenic inductions. Population doubling time (PDT) and growth kinetics were determined. AFSCs cultured in AmnioMAX were compared in various age groups. A comparison of growth kinetics of AFSCs cultured in AmnioMAX and DMEM from 40 to 49 years old pregnant women was undertaken. Results: AFSCs were adherent to culture flasks and were spindle shape, and positive for osteogenic and adipogenic inductions and for expression of CD73, CD90 and CD105 markers, but negative for CD34 and CD45. PDT among 20-29, 30-39, and 40-49 years old women was 30.9, 38.3, and 43.9 hours, respectively showing a higher cell proliferation in younger ages. When comparing AmnioMAX and DMEM, PDT was 53 and 96.9 hours, respectively denoting to a higher cell proliferation in AmnioMAX. Conclusions: Higher proliferation and plasticity of hAFSCs were noted in AmnioMAX and in younger mothers' samples. These findings can be added to the literature and open a new avenue in regenerative medicine, when hAFSCs are targeted for cell therapy purposes.
Collapse
Affiliation(s)
- Bahareh Borzou
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Shiraz, Iran.,Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Shahrokh Zare
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.,Centre for Innovation, Canadian Blood Services, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Liang CC, Shaw SWS, Ko YS, Huang YH, Lee TH. Effect of amniotic fluid stem cell transplantation on the recovery of bladder dysfunction in spinal cord-injured rats. Sci Rep 2020; 10:10030. [PMID: 32572272 PMCID: PMC7308393 DOI: 10.1038/s41598-020-67163-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
The effects of human amniotic fluid stem cell (hAFSC) transplantation on bladder function and molecular changes in spinal cord-injured (SCI) rats were investigated. Four groups were studied: sham and SCI plus phosphate-buffered saline (SCI + PBS), human embryonic kidney 293 (HEK293) cells, and hAFSCs transplantation. In SCI + PBS rat bladders, cystometry showed increased peak voiding pressure, voiding volume, bladder capacity, residual volume, and number of non-voiding contractions, and the total elastin/collagen amount was increased but collagen concentration was decreased at days 7 and 28. Immunoreactivity and mRNA levels of IGF-1, TGF-β1, and β3-adrenoceptor were increased at days 7 and/or 28. M2 immunoreactivity and M3 mRNA levels of muscarinic receptor were increased at day 7. M2 immunoreactivity was increased, but M2/M3 mRNA and M3 immunoreactivity levels were decreased at day 28. Brain derived-neurotrophic factor mRNA was increased, but immunoreactivity was decreased at day 7. HEK293 cell transplantation caused no difference compared to SCI + PBS group. hAFSCs co-localized with neural cell markers and expressed BDNF, TGF-β1, GFAP, and IL-6. The present results showed that SCI bladders released IGF-1 and TGF-β1 to stimulate elastin and collagen for bladder wall remodelling, and hAFSC transplantation improved these changes, which involved the mechanisms of BDNF, muscarinic receptors, and β3-adrenoceptor expression.
Collapse
Affiliation(s)
- Ching-Chung Liang
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Wen Steven Shaw
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Obstetrics, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan.,Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK
| | - Yu-Shien Ko
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yung-Hsin Huang
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To review the advance of maternal--fetal surgery, the research of stem cell transplantation and tissue engineering in prenatal management of fetal meningomyelocele (fMMC). RECENT FINDINGS Advance in the imaging study provides more accurate assessment of fMMC in utero. Prenatal maternal--fetal surgery in fMMC demonstrates favourable postnatal outcome. Minimally invasive fetal surgery minimizes uterine wall disruption. Endoscopic fetal surgery is performed via laparotomy-assisted or entirely percutaneous approach. The postnatal outcome for open and endoscopic fetal surgery shares no difference. Single layer closure during repair of fMMC is preferred to reduce postnatal surgical intervention. All maternal--fetal surgeries impose anesthetic and obstetric risk to pregnant woman. Ruptured of membrane and preterm delivery are common complications. Trans-amniotic stem cell therapy (TRASCET) showed potential tissue regeneration in animal models. Fetal tissue engineering with growth factors and dura substitutes with biosynthetic materials promote spinal cord regeneration. This will overcome the challenge of closure in large fMMC. Planning of the maternal--fetal surgery should adhere to ethical framework to minimize morbidity to both fetus and mother. SUMMARY Combination of endoscopic fetal surgery with TRASCET or tissue engineering will be a new vision to achieve to improve the outcome of prenatal intervention in fMMC.
Collapse
Affiliation(s)
- Ling-Yien Hii
- Department of Obstetrics and Gynecology, Sabah Women's and Children's Hospital, Sabah, Malaysia
| | - Chen-Ai Sung
- College of Medicine, Chang Gung University, Taoyuan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Steven W Shaw
- College of Medicine, Chang Gung University, Taoyuan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health University College London, London, United Kingdom
| |
Collapse
|
14
|
Gasiūnienė M, Valatkaitė E, Navakauskienė R. Long-term cultivation of human amniotic fluid stem cells: The impact on proliferative capacity and differentiation potential. J Cell Biochem 2020; 121:3491-3501. [PMID: 31898359 DOI: 10.1002/jcb.29623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
Human amniotic fluid mesenchymal stem cells (AF-MSCs) are a valuable, easily obtainable alternative source of SCs for regenerative medicine. Usually, amounts of cells required for the translational purposes are large thus the goal of this study was to assess the potency of AF-MSCs to proliferate and differentiate during long-term cultivation in vitro. AF-MSCs were isolated from amniotic fluid of healthy women in the second trimester of pregnancy and cultivated in vitro. AF-MSCs were cultivated up to 42 passages and they still maintained pluripotency genes, such as OCT4, SOX2, and NANOG, expression at a similar level as in the initial passages as determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Fluorescence-activated cell sorting analysis demonstrated that the cell surface markers CD34 (negative), CD44, and CD105 (positive) expression was also stable, only the expression of SCs marker CD90 decreased during the cultivation. The morphology of AF-MSCs changed over passage, acridine orange/ethidium bromide staining revealed that more cells entered into apoptosis and the first signs of aging were detected only at late passages (later than p33) using SA-β-gal assay. Concomitantly, the differentiation potential towards cardiomyogenic lineage, induced with DNA methyltransferases inhibitors decitabine, zebularine, and RG108, was impaired when comparing AF-MSCs at p31/33 with p6. The expression of cardiomyocytes genes MYH6, TNNT2, DES together with ion channels genes of the heart (sodium, calcium, and potassium) decreased in p31/33 induced AF-MSCs. AF-MSCs have a great proliferative capacity and maintain most of the characteristics up to 33 passages; however, the cardiomyogenic differentiation capacity decreases to a certain extent during the long-term cultivation. These results provide useful insights for the potential use of AF-MSCs for biobanking and broad applications requiring high yield of cells or repeated infusions. Hence, it is vital to take into account the passage number of AF-MSCs, cultivated in culture, when utilizing them in vivo or in clinical experiments.
Collapse
Affiliation(s)
- Monika Gasiūnienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elvina Valatkaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
15
|
Peng SY, Shaw SWS. Prenatal transplantation of human amniotic fluid stem cells for spinal muscular atrophy. Curr Opin Obstet Gynecol 2018; 30:111-115. [PMID: 29489501 DOI: 10.1097/gco.0000000000000444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW To review the current medical and stem-cell therapy for spinal muscular atrophy (SMA) and prenatal transplantation of amniotic fluid stem cells in the future. RECENT FINDINGS SMA is an autosomal recessive inheritance of neurodegenerative disease, which is caused of the mutation in survival motor neuron. The severe-type SMA patients usually die from the respiratory failure within 2 years after birth. Recently, researchers had found that 3-methyladenine could inhibit the autophagy and had the capacity to reduce death of the neurons. The first food and drug administration-approved drug to treat SMA, Nusinersen, is a modified antisense oligonucleotide to target intronic splicing silencer N1 just recently launched. Not only medical therapy, but also stem cells including neural stem cells, embryonic stem cells, mesenchymal stem cells, and induced pluripotent stem cells could show the potential to repair the injured tissue and differentiate into neuron cells to rescue the SMA animal models. Human amniotic fluid stem cells (HAFSCs) share the potential of mesenchymal stem cells and could differentiate into tri-lineage-relative cells, which are also having the ability to restore the injured neuro-muscular function. In this review, we further demonstrate the therapeutic effect of using HAFSCs to treat type III SMA prenatally. HAFSCs, similar to other stem cells, could also help the improvement of SMA with even longer survival. SUMMARY The concept of prenatal stem-cell therapy preserves the time window to treat disease in utero with much less cell number. Stem cell alone might not be enough to correct or cure the SMA but could be applied as the additional therapy combined with antisense oligonucleotide in the future.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung
| | - Sheng-Wen S Shaw
- College of Medicine, Chang Gung University, Taoyuan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK
| |
Collapse
|