1
|
Totapally BR, Totapally A, Martinez PA. Thrombocytopenia in Critically Ill Children: A Review for Practicing Clinicians. CHILDREN (BASEL, SWITZERLAND) 2025; 12:83. [PMID: 39857914 PMCID: PMC11764412 DOI: 10.3390/children12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Thrombocytopenia frequently occurs in patients before, during, and after admission to Pediatric Intensive Care Units (PICUs). In critically ill children, it is often due to multifactorial causes and can be a sign of significant organ dysfunction. This review summarizes the potential causes/mechanisms of thrombocytopenia in acutely ill children, their identification, and treatments, with special attention paid to septic patients. The mechanisms of thrombocytopenia include decreased production and sequestration, but the most common reason is increased destruction or consumption. This review specifically reviews and compares the presentation, pathogenesis, and treatment of disseminated intravascular coagulation (DIC) and the thrombotic microangiopathic spectrum (TMA), including thrombocytopenia-associated multiorgan failure (TAMOF), hemolytic uremic syndrome, and other diagnoses. The other etiologies discussed include HLH/MAS, immune thrombocytopenia, and dilutional thrombocytopenia. Finally, this review analyzes platelet transfusions, the various thresholds, and complications.
Collapse
Affiliation(s)
- Balagangadhar R. Totapally
- Division of Critical Care Medicine, Nicklaus Children’s Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, USA; (A.T.); (P.A.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Abhinav Totapally
- Division of Critical Care Medicine, Nicklaus Children’s Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, USA; (A.T.); (P.A.M.)
| | - Paul A. Martinez
- Division of Critical Care Medicine, Nicklaus Children’s Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, USA; (A.T.); (P.A.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
2
|
He Y, Wang F, Wu Z, Zhang W, Zhu F. Establishment and Application of a Multiplex PCR NGS Method for the Genotyping of HLA-Class I and HPA. HLA 2024; 104:e15716. [PMID: 39469985 DOI: 10.1111/tan.15716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/06/2024] [Accepted: 09/17/2024] [Indexed: 10/30/2024]
Abstract
Selecting compatible HLA-Class I and/or HPA platelets based on genotyping could alleviate immune platelet transfusion refractoriness (PTR). A fast and reliable method of HLA-Class I and HPA genotyping is necessary to construct a platelet donor bank with known HLA-Class I and HPA genotypes. Ten pairs of specific primers for HLA-A, HLA-B, HLA-C, HPA-1 through HPA-6w, HPA-15 and HPA-21w were designed. The appropriate fragments were optimised for amplification in a single multiplex reaction. After a cleanup step using paramagnetic beads, the amplicon library was prepared and sequenced. To validate the accuracy of the developed method, commercial NGS kits for the genotyping of HLA-A, HLA-B and HLA-C and the TaqMan real-time PCR method in-house for the genotyping of HPA-1 through HPA-6w, HPA-15 and HPA-21w were used to detect all the specimens in parallel. A total of 386 specimens were detected and the results of genotyping HLA-A, HLA-B, HLA-C and HPA-1 through HPA-6w, HPA-15 and HPA-21w were obtained simultaneously, which is 100% consistent between the two methods. Four new HLA alleles, HLA-A*11:451, HLA-A*30:01:26, HLA-B*39:201 and HLA-B*40:538, were also reconfirmed. Two novel SNVs, c.2671C > T and c.2681T > G, in the coding region of ITGA2B were detected, all of which are heterozygous in individuals. A novel NGS method based on multiplex PCR was established to detect HLA-Class I and HPA simultaneously, which is high-throughput, rapid and accurate and could be applied to build a platelet donor bank.
Collapse
Affiliation(s)
- Yanmin He
- Blood Center of Zhejiang Province, Hangzhou, China
| | - Fang Wang
- Blood Center of Zhejiang Province, Hangzhou, China
| | - Zhipan Wu
- Blood Center of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- Blood Center of Zhejiang Province, Hangzhou, China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Liu K, Stephens L, Nedelcu E, Bakhtary S. Differentiating patient characteristics between platelet refractory patients with and without antibodies to human leukocyte antigens. Transfusion 2024; 64:210-215. [PMID: 38168737 DOI: 10.1111/trf.17609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Predicting whether a patient's platelet refractoriness (PR) is due to immune or nonimmune causes can be challenging. This study compared the demographics and clinical history of PR patients with human leukocyte antigen (HLA) antibodies (HLA-PR) versus PR patients without HLA antibodies. MATERIALS AND METHODS A retrospective review of all patients with PR consults at a single institution over a 3-year period was performed. Patient charts were reviewed for all patients with confirmed PR, and demographic information (e.g., sex, race and ethnicity, preferred language) and clinical history (e.g., pregnancy, transfusion, primary diagnosis) were collected. Patient characteristics were compared among the HLA and non-HLA cohorts. RESULTS A total of 295 patients with confirmed PR were identified, of whom approximately 70% did not have HLA antibodies and 30% did. Approximately 84% of the HLA-PR cohort was female. A history of transfusions was not associated with HLA-PR (p = .1). A history of pregnancy was strongly associated with the occurrence of HLA-PR (p < .001). Splenomegaly was associated with PR in the absence of HLA alloimmunization whereas infection, fever, bleeding, and disseminated intravascular coagulation were not. CONCLUSION In this single-institution retrospective review, a history of pregnancy was strongly associated with HLA-PR, whereas a history of transfusion was not.
Collapse
Affiliation(s)
- Kelsey Liu
- Department of Pathology and Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Laura Stephens
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Elena Nedelcu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sara Bakhtary
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Panch SR, Guo L, Vassallo R. Platelet transfusion refractoriness due to HLA alloimmunization: Evolving paradigms in mechanisms and management. Blood Rev 2023; 62:101135. [PMID: 37805287 DOI: 10.1016/j.blre.2023.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Platelet transfusion refractoriness due to HLA alloimmunization presents a significant medical problem, particularly among multiply transfused patients with hematologic malignancies and those undergoing hematopoietic stem cell transplants. HLA compatible platelet transfusions also impose significant financial burden on these patients. Recently, several novel mechanisms have been described in the development of HLA alloimmunization and platelet transfusion refractoriness. We review the history of platelet transfusions and mechanisms of HLA-sensitization and transfusion refractoriness. We also summarize advances in the diagnosis and treatment of platelet transfusion refractoriness due to HLA alloimmunization.
Collapse
Affiliation(s)
- Sandhya R Panch
- Clinical Research Division, Fred Hutchinson Cancer Center, United States of America; BloodWorks NorthWest, United States of America.
| | - Li Guo
- BloodWorks NorthWest, United States of America; Division of Hematology and Oncology, University of Washington School of Medicine, United States of America
| | | |
Collapse
|
5
|
Song X, Qi J, Fang K, Li X, Han Y. A meta-analysis of risk factors associated with platelet transfusion refractoriness. Int J Hematol 2023; 117:863-875. [PMID: 36856992 DOI: 10.1007/s12185-023-03557-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Platelet transfusion refractoriness (PTR) remains an intractable issue in clinical practice, and is common in hematological patients. At present, it is believed that both immune and non-immune factors play a role. We conducted a meta-analysis of various risk factors which may contribute to PTR. METHODS PubMed, Embase, Cochrane library, and Web of Science were selected as research database platforms. Citations included were further assessed for quality and bias using the Newcastle-Ottawa Scale. All analyses were performed using Review Manager Version 5.4 and STATA 16.0. RESULTS The preliminary search revealed 1069 publications, and 17 (5929 patients in total) were ultimately included in the quantitative analysis. The following variables were associated with the occurrence of PTR: fever (OR = 2.26, 95%CI 2.00-2.55, p < 0.00001), bleeding (OR = 2.10, 95%CI 1.36-3.24, p = 0.0008), female sex (OR = 2.06, 95%CI 1.13-3.75, p = 0.02), antibiotic use (OR = 2.94, 95%CI 1.54-5.59, p = 0.001), and infection (OR = 2.19, 95%CI 1.20-4.03, p = 0.01). Antibodies involved in immune activation were a higher risk factor (OR = 4.17, 95%CI 2.36-7.36, p < 0.00001), and splenomegaly was nearly significant (OR = 1.73, 95%CI 0.97-3.07, p = 0.06). CONCLUSIONS We identified some important risk factors for PTR, but further research is needed to identify the many other possible elements that may contribute to or mediate PTR.
Collapse
Affiliation(s)
- Xiaofei Song
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Kun Fang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China. .,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China. .,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Wang J, You X, He Y, Hong X, He J, Tao S, Zhu F. Simultaneous genotyping for human platelet antigen systems and HLA-A and HLA-B loci by targeted next-generation sequencing. Front Immunol 2022; 13:945994. [PMID: 36263028 PMCID: PMC9575554 DOI: 10.3389/fimmu.2022.945994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
In order to treat the alloimmunization platelet transfusion refractoriness (PTR), human leukocyte antigen (HLA)-type and/or human platelet antigen (HPA)-type matched platelets between donors and patients are usually used. Therefore, genotyping of HLA-A and HLA-B loci, as well as HPA systems, for donors and patients, is of great significance. However, there is a rare report of genotyping for HLA-A and HLA-B loci as well as HPA systems at the same time. In this study, a high-throughput method for simultaneous genotyping of HLA-A and HLA-B loci, as well as HPA genotyping, was developed. A RNA capture probe panel was designed covering all exon sequences of the GP1BA, GP1BB, ITGA2, CD109, ITGB3, and ITGA2B genes and HLA-A and HLA-B loci. The HLA-A, HLA-B, and 34 HPA systems were genotyped using a targeted next-generation sequencing (NGS) method. The genotypes of the HLA-A and HLA-B loci, as well as the HPA, were assigned based on the nucleotides in the polymorphism sites. Using the NGS method, 204 unrelated blood specimens were successfully genotyped for all 34 HPA systems as well as HLA-A and HLA-B loci. The accuracy of the NGS method was 100%. Only HPA-2, HPA-3, HPA-5, HPA-6w, HPA-15, and HPA-21w showed polymorphism with frequencies of 0.9412, 0.6863, 0.9853, 0.9779, 0.4314, and 0.9951 for a allele, respectively. Thirty-two single nucleotide variants (SNVs) were detected. Of them, 12 SNVs can lead to amino acid change. HLA-A*11:01 and HLA-B*46:01 are the most common alleles for HLA-A and HLA-B loci. A targeted next-generation sequencing method for simultaneously genotyping HPA systems and HLA-A and HLA-B loci was first established, which could be used to create a database of HLA-typed and/or HPA-typed unrelated donors.
Collapse
Affiliation(s)
- Jielin Wang
- Human Leukocyte Antigen Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
- Human Leukocyte Antigen Typing Laboratory, Key Laboratory of Blood Safety Research, Hangzhou, China
| | - Xuan You
- Human Leukocyte Antigen Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
- Human Leukocyte Antigen Typing Laboratory, Key Laboratory of Blood Safety Research, Hangzhou, China
| | - Yanmin He
- Human Leukocyte Antigen Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
- Human Leukocyte Antigen Typing Laboratory, Key Laboratory of Blood Safety Research, Hangzhou, China
| | - Xiaozhen Hong
- Human Leukocyte Antigen Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
- Human Leukocyte Antigen Typing Laboratory, Key Laboratory of Blood Safety Research, Hangzhou, China
| | - Ji He
- Human Leukocyte Antigen Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
- Human Leukocyte Antigen Typing Laboratory, Key Laboratory of Blood Safety Research, Hangzhou, China
| | - Sudan Tao
- Human Leukocyte Antigen Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
- Human Leukocyte Antigen Typing Laboratory, Key Laboratory of Blood Safety Research, Hangzhou, China
- *Correspondence: Faming Zhu, ; Sudan Tao,
| | - Faming Zhu
- Human Leukocyte Antigen Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
- Human Leukocyte Antigen Typing Laboratory, Key Laboratory of Blood Safety Research, Hangzhou, China
- *Correspondence: Faming Zhu, ; Sudan Tao,
| |
Collapse
|
7
|
Ansari AM, Khorasanchi A, Faghihimehr A, Toor A. Recombinant activated factor VII in a patient with intracranial hemorrhage and severe thrombocytopenia. Clin Case Rep 2021; 9:e04788. [PMID: 34659753 PMCID: PMC8502438 DOI: 10.1002/ccr3.4788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/14/2021] [Accepted: 07/04/2021] [Indexed: 11/07/2022] Open
Abstract
Hemorrhage in patients with hematologic malignancies is often difficult to manage as many of these patients also have coagulopathy and thrombocytopenia of varying severity. Recombinant factor VIIa is a FDA-approved agent for management of bleeding in hemophilia patients with inhibitors. Use of recombinant FVIIa has also been used as a last resort in various clinical settings such as trauma, alveolar hemorrhage, gastrointestinal bleeding, and intracranial hemorrhage for control of bleeding with variable outcomes. This paper presents a case of recombinant FVIIa administration in a patient with multiple myeloma and profound transfusion refractory thrombocytopenia suffering from traumatic subdural hematoma.
Collapse
Affiliation(s)
- Amir M. Ansari
- Department of Internal MedicineMassey Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUS
| | - Adam Khorasanchi
- Department of Internal MedicineMassey Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUS
| | | | - Amir Toor
- Department of Internal MedicineMassey Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUS
| |
Collapse
|
8
|
Abstract
The supply of platelets for transfusion is a logistical challenge due to the physiology of platelets and current measures of transfusion performance dictating storage at 22°C and a short product shelf-life (<7 days). Demand for platelets has increased in recent years and changes in the demographics of the population may enhance this further. Many studies have been conducted to understand what the optimal dose and trigger for transfusion should be, mainly in hematology patients who are the largest cohort that receive platelets, mostly to prevent bleeding. Emerging data suggests that for bleeding patients, where immediate hemostasis is a key consideration, the current standard product may not be optimal. Alternative platelet preparation methods/storage options that may improve the hemostatic properties of platelets are under active development. In parallel with research into alternative platelet products that might enhance hemostasis, better measures for assessing bleeding risk and platelet efficacy are needed.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW In this review, we discuss recent developments and trends in the perioperative management of thrombocytopenia. RECENT FINDINGS Large contemporary data base studies show that preoperative thrombocytopenia is present in about 8% of asymptomatic patients, and is associated with increased risks for bleeding and 30-day mortality. Traditionally specific threshold platelet counts were recommended for specific procedures. However, the risk of bleeding may not correlate well with platelet counts and varies with platelet function depending on the underlying etiology. Evidence to support prophylactic platelet transfusion is limited and refractoriness to platelet transfusion is common. A number of options exist to optimize platelet counts prior to procedures, which include steroids, intravenous immunoglobulin, thrombopoietin receptor agonists, and monoclonal antibodies. In addition, intraoperative alternatives and adjuncts to transfusion should be considered. It appears reasonable to use prophylactic desmopressin and antifibrinolytic agents, whereas activated recombinant factor VII could be considered in severe bleeding. Other options include enhancing thrombin generation with prothrombin complex concentrate or increasing fibrinogen levels with fibrinogen concentrate or cryoprecipitate. SUMMARY Given the lack of good quality evidence, much research remains to be done. However, with a multidisciplinary multimodal perioperative strategy, the risk of bleeding can be decreased effectively.
Collapse
|