1
|
Carrothers E, Appleby M, Lai V, Kozbenko T, Alomar D, Smith BJ, Hamada N, Hinton P, Ainsbury EA, Hocking R, Yauk C, Wilkins RC, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to cataracts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:31-56. [PMID: 38644659 DOI: 10.1002/em.22594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
Cataracts are one of the leading causes of blindness, with an estimated 95 million people affected worldwide. A hallmark of cataract development is lens opacification, typically associated not only with aging but also radiation exposure as encountered by interventional radiologists and astronauts during the long-term space mission. To better understand radiation-induced cataracts, the adverse outcome pathway (AOP) framework was used to structure and evaluate knowledge across biological levels of organization (e.g., macromolecular, cell, tissue, organ, organism and population). AOPs identify a sequence of key events (KEs) causally connected by key event relationships (KERs) beginning with a molecular initiating event to an adverse outcome (AO) of relevance to regulatory decision-making. To construct the cataract AO and retrieve evidence to support it, a scoping review methodology was used to filter, screen, and review studies based on the modified Bradford Hill criteria. Eight KEs were identified that were moderately supported by empirical evidence (e.g., dose-, time-, incidence-concordance) across the adjacent (directly linked) relationships using well-established endpoints. Over half of the evidence to justify the KER linkages was derived from the evidence stream of biological plausibility. Early KEs of oxidative stress and protein modifications had strong linkages to downstream KEs and could be the focus of countermeasure development. Several identified knowledge gaps and inconsistencies related to the quantitative understanding of KERs which could be the basis of future research, most notably directed to experiments in the range of low or moderate doses and dose-rates, relevant to radiation workers and other occupational exposures.
Collapse
Affiliation(s)
- Emma Carrothers
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Meghan Appleby
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vita Lai
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Dalya Alomar
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Patricia Hinton
- Defense Research & Development Canada, Canadian Forces Environmental Medicine Establishment, Toronto, Ontario, Canada
| | - Elizabeth A Ainsbury
- Radiation, Chemical and Environmental Hazards Division, UK Health Security Agency, Birmingham, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Robyn Hocking
- Learning and Knowledge and Library Services, Health Canada, Ottawa, Ontario, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Karaman EF, Abudayyak M, Ozden S. The role of chromatin-modifying enzymes and histone modifications in the modulation of p16 gene in fumonisin B 1-induced toxicity in human kidney cells. Mycotoxin Res 2023:10.1007/s12550-023-00494-2. [PMID: 37328702 DOI: 10.1007/s12550-023-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Fumonisin B1 (FB1) poses a risk to animal and human health. Although the effects of FB1 on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB1 nephrotoxicity. The present study investigates the effects of FB1 on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB1. Dose-dependent downregulation of chromatin-modifying genes was observed after FB1 exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB1 induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB1 caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB1 carcinogenesis through DNA methylation, and histone and chromatin modifications.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, 34010, Topkapi, Istanbul, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
3
|
Kašuba V, Tariba Lovaković B, Lucić Vrdoljak A, Katić A, Kopjar N, Micek V, Milić M, Pizent A, Želježić D, Žunec S. Evaluation of Toxic Effects Induced by Sub-Acute Exposure to Low Doses of α-Cypermethrin in Adult Male Rats. TOXICS 2022; 10:toxics10120717. [PMID: 36548550 PMCID: PMC9785956 DOI: 10.3390/toxics10120717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 05/14/2023]
Abstract
To contribute new information to the pyrethroid pesticide α-cypermethrin toxicity profile, we evaluated its effects after oral administration to Wistar rats at daily doses of 2.186, 0.015, 0.157, and 0.786 mg/kg bw for 28 days. Evaluations were performed using markers of oxidative stress, cholinesterase (ChE) activities, and levels of primary DNA damage in plasma/whole blood and liver, kidney, and brain tissue. Consecutive exposure to α-cypermethrin affected the kidney, liver, and brain weight of rats. A significant increase in concentration of the thiobarbituric acid reactive species was observed in the brain, accompanied by a significant increase in glutathione peroxidase (GPx) activity. An increase in GPx activity was also observed in the liver of all α-cypermethrin-treated groups, while GPx activity in the blood was significantly lower than in controls. A decrease in ChE activities was observed in the kidney and liver. Treatment with α-cypermethrin induced DNA damage in the studied cell types at almost all of the applied doses, indicating the highest susceptibility in the brain. The present study showed that, even at very low doses, exposure to α-cypermethrin exerts genotoxic effects and sets in motion the antioxidative mechanisms of cell defense, indicating the potential hazards posed by this insecticide.
Collapse
|
4
|
Miguel Alfonso RA, Yael Yvette BH, Irma Martha MD, Cyndia Azucena GA, Briscia Socorro BV, José Francisco HM, Monserrat S, Aurora Elizabeth RG. Genotoxic effects of the ochratoxin A (OTA), its main metabolite (OTα) per se and in combination with fumonisin B1 in HepG2 cells and human lymphocytes. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503482. [PMID: 35649676 DOI: 10.1016/j.mrgentox.2022.503482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA) and fumonisin B1 (FB1) are mycotoxins distributed in a wide variety of foods for human or animal consumption and are classified as possible carcinogens for humans. This study aimed to evaluate the cytotoxic, cytostatic and genotoxic effects of OTA and its main metabolite, ochratoxin α (OTα), FB1 and three combinations of OTA and FB1 at moderate and environmental doses. Cell viability was evaluated through MTT assay and the trypan blue exclusion method. The cytostatic and genotoxic effects were evaluated through the cytokinesis-block micronucleus assay. The results showed synergistic time- and concentration-dependent cytotoxic effects of one of the combinations of OTA and FB1. In contrast, significant differences were observed in the micronuclei (MN) frequency from OTA, OTα and coexposure of OTA + FB1. Some of these combinations increased the frequency of nuclear buds, nucleoplasmic bridges, donut-shaped nuclei, necrotic and apoptotic cells and MN in mononucleated cells. In conclusion, OTA and its main metabolite OTα, as well as the co-exposure of OTA and FB1, cause stable DNA damage at environmentally relevant concentrations, which was greater in metabolically competent cells. More studies are needed to understand the chemical interactions that occur due to the joint presence of mycotoxins, which occurs commonly.
Collapse
Affiliation(s)
- Ruíz-Arias Miguel Alfonso
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico; Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, Mexico
| | - Bernal-Hernández Yael Yvette
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico
| | - Medina-Díaz Irma Martha
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico
| | - González-Arias Cyndia Azucena
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico
| | - Barrón-Vivanco Briscia Socorro
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico
| | - Herrera-Moreno José Francisco
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, Mexico
| | - Sordo Monserrat
- Instituto de Investigaciones Biomédicas, UNAM, Ciudad Universitaria, P.O. Box 70228, Ciudad de México 04510, Mexico
| | - Rojas-García Aurora Elizabeth
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P, 63000 Tepic, Nayarit, Mexico.
| |
Collapse
|
5
|
Awuchi CG, Ondari EN, Nwozo S, Odongo GA, Eseoghene IJ, Twinomuhwezi H, Ogbonna CU, Upadhyay AK, Adeleye AO, Okpala COR. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins (Basel) 2022; 14:toxins14030167. [PMID: 35324664 PMCID: PMC8949390 DOI: 10.3390/toxins14030167] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Mycotoxins are well established toxic metabolic entities produced when fungi invade agricultural/farm produce, and this happens especially when the conditions are favourable. Exposure to mycotoxins can directly take place via the consumption of infected foods and feeds; humans can also be indirectly exposed from consuming animals fed with infected feeds. Among the hundreds of mycotoxins known to humans, around a handful have drawn the most concern because of their occurrence in food and severe effects on human health. The increasing public health importance of mycotoxins across human and livestock environments mandates the continued review of the relevant literature, especially with regard to understanding their toxicological mechanisms. In particular, our analysis of recently conducted reviews showed that the toxicological mechanisms of mycotoxins deserve additional attention to help provide enhanced understanding regarding this subject matter. For this reason, this current work reviewed the mycotoxins’ toxicological mechanisms involving humans, livestock, and their associated health concerns. In particular, we have deepened our understanding about how the mycotoxins’ toxicological mechanisms impact on the human cellular genome. Along with the significance of mycotoxin toxicities and their toxicological mechanisms, there are associated health concerns arising from exposures to these toxins, including DNA damage, kidney damage, DNA/RNA mutations, growth impairment in children, gene modifications, and immune impairment. More needs to be done to enhance the understanding regards the mechanisms underscoring the environmental implications of mycotoxins, which can be actualized via risk assessment studies into the conditions/factors facilitating mycotoxins’ toxicities.
Collapse
Affiliation(s)
- Chinaza Godseill Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
- Correspondence: (C.G.A.); (C.O.R.O.)
| | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Sarah Nwozo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Grace Akinyi Odongo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Ifie Josiah Eseoghene
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | | | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture, P.M.B. 2240, Abeokuta 110124, Ogun State, Nigeria;
| | - Anjani K. Upadhyay
- Heredity Healthcare & Lifesciences, 206-KIIT TBI, Patia, Bhubaneswar 751024, Odisha, India;
| | - Ademiku O. Adeleye
- Faith Heroic Generation, No. 36 Temidire Street, Azure 340251, Ondo State, Nigeria;
| | - Charles Odilichukwu R. Okpala
- Department of Functional Foods Product Development, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: (C.G.A.); (C.O.R.O.)
| |
Collapse
|
6
|
Subchronic exposure of individual and combined ochratoxin A and citrinin selectively affects the expression of rat renal organic cation transporters. Mycotoxin Res 2022; 38:61-70. [PMID: 35028911 DOI: 10.1007/s12550-022-00450-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
Ochratoxin A (OTA) and citrinin (CIT) are nephrotoxins found co-occurring in various human/animal food/feed and recognized as a health threat. However, most studies investigate individual effects and neglect their combined nephrotoxic effects in mammals. Previous studies have indicated that organic anion/cation transporters (OATs/OCTs) localized in renal proximal tubules mediate the transport of OTA and CIT. Still, little is known about the in vivo effects of individual/combined OTA and CIT on protein localization/expression of OCTs, physiologically/pharmacologically important renal transporters. Here, we used Western blot and immunofluorescence microscopy to study the effects of subchronic (21-day) exposure to individual/combined OTA (0.125 and 0.250 mg kg-1 b.w.) and CIT (20 mg kg-1 b.w.) on protein localization/expression of organic cation transporters (rOct1/Slc22a1 and rOct2/Slc22a2) in kidneys of Wistar rats. Since the antioxidant resveratrol (RSV) has shown measurable protective effects against OTA- and CIT-related oxidative stress toxicity in vitro, we investigated the effects of an OTA + CIT + RSV combination on rOct1/2 localization/expression in the same model. Individual OTA induced a dose-dependent decrease of rOct1 but not rOct2 protein expression, whereas their localization pattern remained unchanged. Individual CIT did not affect the renal rOct1/2 protein localization/expression. Combined OTA + CIT exposure induced a significant decrease of rOct1 protein expression by an OTA250 dose, whereas oral co-administration of OTA + CIT + RSV resulted in a significant decrease of rOct1/2 protein expression. Thus, we revealed an OTA-related selective effect on the rOct1/2 protein expression and a non-specific adverse effect of RSV in the OTA + CIT + RSV combination on the renal organic cation transport system in rat.
Collapse
|
7
|
Molina-Pintor I, Rojas-García A, Medina-Díaz I, Barrón-Vivanco B, Bernal-Hernández Y, Ortega-Cervantes L, Ramos A, Herrera-Moreno J, González-Arias C. An update on genotoxic and epigenetic studies of fumonisin B1. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fumonisins (FBs), a widespread group of mycotoxins produced by Fusarium spp., are natural contaminants in cereals and foodstuffs. Fumonisin B1 (FB1) is the most toxic and prevalent mycotoxin of this group, and it has been reported that FB1 accounts for 70-80% of FBs produced by the mycotoxigenic strains. The mode of action of FB1 depends on the structural similarity with sphinganine/sphingosine N-acyltransferase. This fact causes an accumulation of sphingoid bases and blocks the sphingolipid biosynthesis or the function of sphingolipids. Diverse toxic effects and diseases such as hepatocarcinogenicity, hepatotoxicity, nephrotoxicity, and cytotoxicity have been reported, and diseases like leukoencephalomalacia in horses and pulmonary oedema in horses and swine have been described. In humans, FBs have been associated with oesophageal cancer, liver cancer, neural tube defects, and infantile growth delay. However, despite the International Agency for Research on Cancer designated FB1 as a possibly carcinogenic to humans, its genotoxicity and epigenetic properties have not been clearly elucidated. This review aims to summarise the progress in research about the genotoxic and epigenetics effects of FB1.
Collapse
Affiliation(s)
- I.B. Molina-Pintor
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, Mexico
| | - A.E. Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - I.M. Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - B.S. Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - Y.Y. Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - L. Ortega-Cervantes
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| | - A.J. Ramos
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, Lleida, 25198, Spain
| | - J.F. Herrera-Moreno
- Laboratory of Precision Environmental Health Sciences, Mailman School of Public Health, Columbia University, 630 west 168th Street, P&S Building Room 16-416, New York, NY, USA
| | - C.A. González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Los fresnos s/n. Tepic, Nayarit C.P. 63155, México
| |
Collapse
|
8
|
Cordelli E, Bignami M, Pacchierotti F. Comet assay: a versatile but complex tool in genotoxicity testing. Toxicol Res (Camb) 2021; 10:68-78. [PMID: 33613974 PMCID: PMC7885189 DOI: 10.1093/toxres/tfaa093] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The comet assay is a versatile method for measuring DNA strand breaks in individual cells. It can also be applied to cells isolated from treated animals. In this review, we highlight advantages and limitations of this in vivo comet assay in a regulatory context. Modified versions of the standard protocol detect oxidized DNA bases and may be used to reveal sites of DNA base loss, DNA interstrand crosslinks, and the extent of DNA damage induced indirectly by reactive oxygen species elicited by chemical-induced oxidative stress. The assay is, however, at best semi-quantitative, and we discuss possible approaches to improving DNA damage quantitation and highlight the necessity of optimizing protocol standardization to enhance the comparability of results between laboratories. As a genotoxicity test in vivo, the in vivo comet assay has the advantage over the better established micronucleus erythrocyte test that it can be applied to any organ, including those that are specific targets of chemical carcinogens or those that are the first sites of contact of ingested or inhaled mutagens. We illustrate this by examples of its use in risk assessment for the food contaminants ochratoxin and furan. We suggest that improved quantitation is required to reveal the full potential of the comet assay and enhance its role in the battery of in vivo approaches to characterize the mechanisms of toxicity and carcinogenicity of chemicals and to aid the determination of safe human exposure limits.
Collapse
Affiliation(s)
- Eugenia Cordelli
- Territorial and Production Systems Sustainability Department, Health Protection Technology Division, ENEA, CR Casaccia, Via Anguillarese 301, Rome 00123, Italy
| | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Francesca Pacchierotti
- Territorial and Production Systems Sustainability Department, Health Protection Technology Division, ENEA, CR Casaccia, Via Anguillarese 301, Rome 00123, Italy
| |
Collapse
|
9
|
Niaz K, Shah SZA, Khan F, Bule M. Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44673-44700. [PMID: 32424756 DOI: 10.1007/s11356-020-08991-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mostly found in food items including grains and coffee beans. It induces DNA single-strand breaks and has been considered to be carcinogenic. It is recognized as a serious threat to reproductive health both in males and females. OTA is highly nephrotoxic and carcinogenic, and its potency changes evidently between species and sexes. There is a close association between OTA, mutagenicity, carcinogenicity, and genotoxicity, but the underlying mechanisms are not clear. Reports regarding genotoxic effects in relation to OTA which leads to the induction of DNA adduct formation, protein synthesis inhibition, perturbation of cellular energy production, initiation of oxidative stress, induction of apoptosis, influences on mitosis, induction of cell cycle arrest, and interference with cytokine pathways. All these mechanisms are associated with nephrotoxicity, hepatotoxicity, teratotoxicity, immunological toxicity, and neurotoxicity. OTA administration activates various mechanisms such as p38 MAPK, JNKs, and ERKs dysfunctions, BDNF disruption, TH overexpression, caspase-3 and 9 activation, and ERK-1/2 phosphorylation which ultimately lead to Alzheimer disease (AD) progression. The current review will focus on OTA in terms of recent discoveries in the field of molecular biology. The main aim is to investigate the underlying mechanisms of OTA in regard to genotoxicity and epigenetic modulations that lead to AD. Also, we will highlight the strategies for the purpose of attenuating the hazards posed by OTA exposure.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, 1417614411, Iran
| | - Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Oromia, Ethiopia
| |
Collapse
|
10
|
Shimamura Y, Sei S, Nomura S, Masuda S. Protective effects of dried mature Citrus unshiu peel (Chenpi) and hesperidin on aspirin-induced oxidative damage. J Clin Biochem Nutr 2020; 68:149-155. [PMID: 33879966 DOI: 10.3164/jcbn.20-83] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/12/2020] [Indexed: 01/18/2023] Open
Abstract
Here we investigated the inhibitory effects in rats of mature Citrus unshiu peel (Chenpi) and its component hesperidin on aspirin-induced oxidative damage. The content of hesperidin in Chenpi extract was approximately 11.4%. Wistar rats were orally administered Chenpi extract or hesperidin (20 mg/kg body weight) and then were orally administered aspirin (200 mg/kg body weight) to induce oxidative damage to the stomach, liver, and kidneys. Such damage was evaluated using the formamidopyrimidine DNA glycosylase-modified comet assay. We also measured the amount of the oxidative marker 8-oxo-7,8-dihydroguanine (8-oxodG) in the stomach. Aspirin-induced damage to the gastric mucosa was evaluated using a bleeding score. Chenpi extract and hesperidin significantly inhibited aspirin-induced oxidative DNA damage. The bleeding score of the aspirin-induced gastric mucosa was significantly reduced by treatment with Chenpi extract and hesperidin. To investigate the effects of Chenpi extract and hesperidin on the analgesic effect of aspirin on ddY mice, we employed the acetic acid-induced writhing response test. Chenpi extract and hesperidin did not significantly affect the analgesic effect of aspirin. These results suggest that Chenpi extract and hesperidin significantly inhibit aspirin-induced gastric mucosal damage.
Collapse
Affiliation(s)
- Yuko Shimamura
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shunsuke Sei
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Saori Nomura
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shuichi Masuda
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
11
|
Lactobacillus paracasei alleviates genotoxicity, oxidative stress status and histopathological damage induced by Fumonisin B1 in BALB/c mice. Toxicon 2020; 185:46-56. [DOI: 10.1016/j.toxicon.2020.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 01/17/2023]
|
12
|
Karaica D, Micek V, Rašić D, Peraica M, Šegvić Klarić M, Breljak D. Subchronic exposure to individual and combined ochratoxin A and citrinin affects the expression of rat renal organic anion transporters. Mycotoxin Res 2020; 36:339-352. [DOI: 10.1007/s12550-020-00399-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 01/03/2023]
|
13
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
14
|
Collins A, Vettorazzi A, Azqueta A. The role of the enzyme-modified comet assay in in vivo studies. Toxicol Lett 2020; 327:58-68. [PMID: 32247831 DOI: 10.1016/j.toxlet.2020.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022]
Abstract
The in vivo comet assay is an established genotoxicity test, with an OECD test guideline, but in its standard form it measures only DNA strand breaks. Including in the assay an additional step, in which the DNA is incubated with a lesion-specific enzyme, can provide important information about the nature of the DNA damage. Formamidopyrimidine DNA glycosylase, 8-oxoguanine DNA glycosylase or endonuclease III are commonly used in the in vitro genotoxicity test and in human biomonitoring to detect oxidised bases, but in vivo applications are rarer. A systematic literature search has identified a total of 60 papers that report such in vivo experiments, testing a variety of agents. In many cases, strand breaks were not seen, but significant levels of enzyme-sensitive sites were induced - indicating a mechanism of action involving oxidative stress. Compounds such as methyl methanesulfonate (MMS) or ethyl methanesulfonate (EMS) could be used as positive controls in both the standard and the enzyme-modified in vivo comet assays.
Collapse
Affiliation(s)
- Andrew Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009, Pamplona, Spain.
| |
Collapse
|
15
|
Rašić D, Želježić D, Kopjar N, Kifer D, Klarić MŠ, Peraica M. DNA damage in rat kidneys and liver upon subchronic exposure to single and combined ochratoxin A and citrinin. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The study aimed to check whether ochratoxin A (OTA) and citrinin (CIT) increase DNA damage in the kidney and liver of male Wistar rats (alkaline comet assay), clarify the oxidative nature of DNA damage (hOGG1-modified comet assay), and verify whether resveratrol (RSV) could ameliorate OTA+CIT-induced genotoxicity. Rats were treated orally with OTA (0.125 and 0.250 mg/kg bodyweight (bw)) and CIT (2 mg/kg bw), OTA+CIT combinations and OTA+CIT+RSV (0.250+2+20 mg/kg bw) for 21 days. Both alkaline and hOGG1-modified comet assay showed that DNA damage was more severe in rat kidneys than in liver following mycotoxin treatment. Alkaline comet assay revealed a higher intensity of DNA damage, particularly as measured by tail intensity in the kidneys. Both tail length and tail intensity were OTA dose-dependent, but in combined OTA+CIT treatment these values were similar to CIT alone and lower than in animals treated with single OTA, possibly due to induction of apoptosis. hOGG1-modified comet showed that OTA+CIT evoked greater oxidative DNA damage than single mycotoxins. RSV did not reduce DNA damage measured by alkaline comet assay, but hOGG1-modified comet showed that RSV ameliorated OTA+CIT genotoxicity in the kidneys. Apart from oxidative stress, other mechanisms of DNA damage are involved in OTA and CIT genotoxicity. In rat kidneys RSV can reduce but not overcome oxidative DNA damage induced by combined OTA and CIT.
Collapse
Affiliation(s)
- D. Rašić
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - D. Želježić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - N. Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - D. Kifer
- Department of Biophysics, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - M. Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia
| | - M. Peraica
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Rašić D, Micek V, Klarić MS, Peraica M. Oxidative stress as a mechanism of combined OTA and CTN toxicity in rat plasma, liver and kidney. Hum Exp Toxicol 2018; 38:434-445. [DOI: 10.1177/0960327118819049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA) and citrinin (CTN) commonly coexist in grains. Aiming to evaluate oxidative stress in OTA + CTN toxicity, male Wistar rats were orally treated with two doses of OTA (0.125 and 0.250 mg kg−1 of body weight (b.w.)), CTN (2 mg kg−1 of b.w.) and resveratrol (RSV; 20 mg kg−1 of b.w.) and combined daily during 3 weeks. Protein carbonyl concentrations were measured in kidneys and liver; catalytic activity of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) level in plasma, kidneys and liver, while malondialdehyde (MDA) concentration was measured in plasma, kidneys, liver and urine. Mycotoxin treatment significantly increased MDA concentration in plasma and kidney and decreased SOD activity in the liver. Rats treated with CTN and OTA125 + CTN had lower plasma GPx activity. Concentration of GSH in the kidney and protein carbonyls in the kidney and liver as well as GPx activity in the kidney and liver, SOD activity in the kidney and CAT activity in the liver were not affected. Protective effect of RSV was observed on GSH in the kidney and plasma and MDA in the kidney, plasma and urine. Oxidative stress is involved in OTA + CTN toxicity in vivo because such treatment affects parameters of oxidative stress, particularly in plasma. RSV can reduce but not overcome oxidative stress induced by combined OTA and CTN treatment.
Collapse
Affiliation(s)
- D Rašić
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - V Micek
- Laboratory Animals Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - MS Klarić
- Department of Microbiology, University of Zagreb, Zagreb, Croatia
| | - M Peraica
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
17
|
Jakšić D, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Jelić D, Kopjar N, Vágvölgyi C, Varga J, Šegvić Klarić M. Fumonisin production and toxic capacity in airborne black Aspergilli. Toxicol In Vitro 2018; 53:160-171. [DOI: 10.1016/j.tiv.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/11/2018] [Accepted: 08/10/2018] [Indexed: 01/25/2023]
|
18
|
Abstract
The important renal tumors that can be induced by exposure of rats to chemical carcinogens are renal tubule tumors (RTTs) derived from tubule epithelium; renal pelvic carcinoma derived from the urothelial lining of the pelvis; renal mesenchymal tumors (RMTs) derived from the interstitial connective tissue; and nephroblastoma derived from the metanephric primordia. However, almost all of our knowledge concerning mechanisms of renal carcinogenesis in the rodent pertains to the adenomas and carcinomas originating from renal tubule epithelium. Currently, nine mechanistic pathways can be identified in either the rat or mouse following chemical exposure. These include direct DNA reactivity, indirect DNA reactivity through free radical formation, multiphase bioactivation involving glutathione conjugation, mitotic disruption, sustained cell proliferation from direct cytotoxicity, sustained cell proliferation by disruption of a physiologic process (alpha 2u-globulin nephropathy), exaggerated pharmacologic response, species-dominant metabolic pathway, and chemical exacerbation of chronic progressive nephropathy. Spontaneous occurrence of RTTs in the rat will be included since one example is a confounder for interpreting kidney tumor results in chemical carcinogenicity studies in rats.
Collapse
|
19
|
Enciso JM, López de Cerain A, Pastor L, Azqueta A, Vettorazzi A. Is oxidative stress involved in the sex-dependent response to ochratoxin A renal toxicity? Food Chem Toxicol 2018; 116:379-387. [DOI: 10.1016/j.fct.2018.04.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
|
20
|
Effects of combined treatment with ochratoxin A and citrinin on oxidative damage in kidneys and liver of rats. Toxicon 2018. [DOI: 10.1016/j.toxicon.2018.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Braun MS, Wink M. Exposure, Occurrence, and Chemistry of Fumonisins and their Cryptic Derivatives. Compr Rev Food Sci Food Saf 2018; 17:769-791. [DOI: 10.1111/1541-4337.12334] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/20/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Markus Santhosh Braun
- Inst. of Pharmacy and Molecular Biotechnology; Heidelberg Univ.; INF 364 69120 Heidelberg Germany
| | - Michael Wink
- Inst. of Pharmacy and Molecular Biotechnology; Heidelberg Univ.; INF 364 69120 Heidelberg Germany
| |
Collapse
|
22
|
Lee HJ, Ryu D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-occurrence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7034-7051. [PMID: 27976878 DOI: 10.1021/acs.jafc.6b04847] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cereal grains and their processed food products are frequently contaminated with mycotoxins. Among many, five major mycotoxins of aflatoxins, ochratoxins, fumonisins, deoxynivalenol, and zearalenone are of significant public health concern as they can cause adverse effects in humans. Being airborne or soilborne, the cosmopolitan nature of mycotoxigenic fungi contribute to the worldwide occurrence of mycotoxins. On the basis of the global occurrence data reported during the past 10 years, the incidences and maximum levels in raw cereal grains were 55% and 1642 μg/kg for aflatoxins, 29% and 1164 μg/kg for ochratoxin A, 61% and 71,121 μg/kg for fumonisins, 58% and 41,157 μg/kg, for deoxynivalenol, and 46% and 3049 μg/kg for zearalenone. The concentrations of mycotoxins tend to be lower in processed food products; the incidences varied depending on the individual mycotoxins, possibly due to the varying stability during processing and distribution of mycotoxins. It should be noted that more than one mycotoxin, produced by a single or several fungal species, may occur in various combinations in a given sample or food. Most studies reported additive or synergistic effects, suggesting that these mixtures may pose a significant threat to public health, particularly to infants and young children. Therefore, information on the co-occurrence of mycotoxins and their interactive toxicity is summarized in this paper.
Collapse
Affiliation(s)
- Hyun Jung Lee
- School of Food Science, University of Idaho , 875 Perimeter Drive MS 2312, Moscow, Idaho 83844, United States
| | - Dojin Ryu
- School of Food Science, University of Idaho , 875 Perimeter Drive MS 2312, Moscow, Idaho 83844, United States
| |
Collapse
|
23
|
Pérez-Iglesias JM, Ruiz de Arcaute C, Natale GS, Soloneski S, Larramendy ML. Evaluation of imazethapyr-induced DNA oxidative damage by alkaline Endo III- and Fpg-modified single-cell gel electrophoresis assay in Hypsiboas pulchellus tadpoles (Anura, Hylidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:503-508. [PMID: 28475923 DOI: 10.1016/j.ecoenv.2017.04.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Imazethapyr (IMZT) is a selective postemergent herbicide with residual action. Available data analyzing its effects in aquatic vertebrates are scarce. In previous studies, we demonstrated that IMZT induces lesions into the DNA of Hypsiboas pulchellus tadpoles using the single-cell gel electrophoresis (SCGE) assay as a biomarker for genotoxicity. Currently, this assay can be modified by including incubation with lesion-specific endonucleases, e.g., endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), which detect oxidized pyrimidine and purine bases, respectively. The aim of this study was to evaluate the role of oxidative stress in the genotoxic damage in circulating blood cells of H. pulchellus tadpoles exposed to the IMZT-based Pivot H® formulation (10.59% IMZT) at a concentration equivalent to 25% of the LC50 (96h) value (0.39mg/L IMZT) during 48 and 96h. Our results demonstrate that the herbicide induces oxidative DNA damage on H. pulchellus tadpoles at purines bases but not at pyrimidines. Our findings represent the first evidence of oxidative damage caused by IMZT on anuran DNA using the alkaline restriction enzyme-modified SCGE assay.
Collapse
Affiliation(s)
- Juan Manuel Pérez-Iglesias
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 No 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Celeste Ruiz de Arcaute
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 No 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Guillermo S Natale
- Centro de Investigaciones del Medio Ambiente (CIMA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - S Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 No 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 No 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
24
|
Soloneski S, Ruiz de Arcaute C, Nikoloff N, Larramendy ML. Genotoxicity of the herbicide imazethapyr in mammalian cells by oxidative DNA damage evaluation using the Endo III and FPG alkaline comet assays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10292-10300. [PMID: 28271350 DOI: 10.1007/s11356-017-8666-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
We evaluated the role of oxidative stress in the genotoxic damage induced by imazethapyr (IMZT) and its formulation Pivot® in mammalian CHO-K1 cell line. Using the alkaline comet assay, we observed that a concentration of 0.1 μg/mL of IMZT or Pivot® was able to induce DNA damage by increasing the frequency of damaged nucleoids. To test whether the DNA lesions were caused by oxidative stress, the DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), which convert base damage to strand breaks, were used. Our results demonstrate that after treatment of CHO-K1 cells with the pure active ingredient as well as the commercial formulation Pivot®, an increase in DNA strand breaks was observed after incubation of both Endo III and Fpg enzymes, indicating that both compounds induce DNA damage involving both pyrimidine and purine-based oxidations, at least in CHO-K1 cells. Our findings confirm the genotoxic potential of IMZT and suggest that this herbicide formulation must be employed with great caution, especially not only for exposed occupational workers but also for other living species.
Collapse
Affiliation(s)
- Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Celeste Ruiz de Arcaute
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Noelia Nikoloff
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
25
|
Balkan Endemic Nephropathy – Still continuing enigma, risk assessment and underestimated hazard of joint mycotoxin exposure of animals or humans. Chem Biol Interact 2017; 261:63-79. [DOI: 10.1016/j.cbi.2016.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 11/23/2022]
|
26
|
Soloneski S, Nikoloff N, Larramendy ML. Analysis of possible genotoxicity of the herbicide flurochloridone and its commercial formulations: Endo III and Fpg alkaline comet assays in Chinese hamster ovary (CHO-K1) cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 797:46-52. [DOI: 10.1016/j.mrgentox.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/27/2022]
|
27
|
Wang X, Wu Q, Wan D, Liu Q, Chen D, Liu Z, Martínez-Larrañaga MR, Martínez MA, Anadón A, Yuan Z. Fumonisins: oxidative stress-mediated toxicity and metabolism in vivo and in vitro. Arch Toxicol 2015; 90:81-101. [PMID: 26419546 DOI: 10.1007/s00204-015-1604-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Fumonisins (FBs) are widespread Fusarium toxins commonly found as corn contaminants. FBs could cause a variety of diseases in animals and humans, such as hepatotoxic, nephrotoxic, hepatocarcinogenic and cytotoxic effects in mammals. To date, almost no review has addressed the toxicity of FBs in relation to oxidative stress and their metabolism. The focus of this article is primarily intended to summarize the progress in research associated with oxidative stress as a plausible mechanism for FB-induced toxicity as well as the metabolism. The present review showed that studies have been carried out over the last three decades to elucidate the production of reactive oxygen species (ROS) and oxidative stress as a result of FBs treatment and have correlated them with various types of FBs toxicity, indicating that oxidative stress plays critical roles in the toxicity of FBs. The major metabolic pathways of FBs are hydrolysis, acylation and transamination. Ceramide synthase, carboxylesterase FumD and aminotransferase FumI could degrade FB1 and FB2. The cecal microbiota of pigs and alkaline processing such as nixtamalization can also transform FB1 into metabolites. Most of the metabolites of FB1 were less toxic than FB1, except its partial (pHFB1) metabolites. Further understanding of the role of oxidative stress in FB-induced toxicity will throw new light on the use of antioxidants, scavengers of ROS, as well as on the blind spots of metabolism and the metabolizing enzymes of FBs. The present review might contribute to reveal the toxicity of FBs and help to protect against their oxidative damage.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Dan Wan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhenli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - María Rosa Martínez-Larrañaga
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María Aránzazu Martínez
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Arturo Anadón
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
28
|
Demirel G, Alpertunga B, Ozden S. Role of fumonisin B1 on DNA methylation changes in rat kidney and liver cells. PHARMACEUTICAL BIOLOGY 2015; 53:1302-1310. [PMID: 25858139 DOI: 10.3109/13880209.2014.976714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides (Sacc.) Nirenberg (Nectriaceae) mold that contaminates maize and other agricultural products. Although the effects of FB1 on sphingolipid metabolism are clear, little is known about early molecular changes associated with FB1 carcinogenicity. OBJECTIVE Alteration on DNA methylation, as an early event in non-genotoxic carcinogenesis, may play an important role in the mechanism of FB1 toxiciy. MATERIALS AND METHODS Dose-related effects of FB1 (1-50 µM for 24 h) on global DNA methylation by using high-performance liquid chromatography with UV-diode array detection (HPLC-UV/DAD) and CpG promoter methylation by methylation-specific PCR (MSP) were performed in rat liver (Clone 9) and rat kidney (NRK-52E) epithelial cells. RESULTS Cell viability reduction is 39% and 34% by the XTT test and LDH release in the growth medium is 32% and 26% at 200 µM of FB1 treatment in Clone 9 and NRK-52E cells, respectively. No significant dose-related effects of FB1 on global DNA methylation which ranged from 4 to 5% were observed in both cells compared with controls. Promoter regions of c-myc gene were methylated (>33%) at 10 and 50 µM of FB1 treatment in Clone 9 cells while it was unmethylated in NRK-52E cells. Promoter regions of p15 gene were unmethylated while VHL gene were found to be methylated (>33%) at 10, 25, and 50 µM and 10 and 50 µM of FB1 treatment in Clone 9 and NRK-52E cells, respectively. DISCUSSION AND CONCLUSION Alteration in DNA methylation might play an important role in the toxicity of FB1 in risk assessment process.
Collapse
Affiliation(s)
- Goksun Demirel
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University , Beyazit, Istanbul , Turkey
| | | | | |
Collapse
|
29
|
Xu JD, Xing WM, Yuan TJ, Chen J, Lu H. Metabolic changes in the urine of andrographolide sodium bisulfite-treated rats. Hum Exp Toxicol 2015; 35:162-9. [DOI: 10.1177/0960327115579429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, andrographolide sodium bisulfite (ASB) has been reported to cause acute renal failure frequently in clinical practice. We hypothesized that changes in metabolic profile could have occurred after administration of ASB. To investigate the metabolic changes caused by ASB-induced nephrotoxicity, metabonomics method was utilized to depict the urine metabolic characteristics and find the specific urine biomarkers associated with ASB-induced nephrotoxicity. Sprague-Dawley rats were randomly assigned into three experimental groups. They received a single daily injection of vehicle (0.9% sodium chloride solution) or ASB at a dose of 100 or 600 mg kg−1 day−1 for 7 days. Twelve-hour urine was collected after the last administration. The routine urinalysis was measured by a urine automatic analyzer while urinary metabolites were evaluated using gas chromatography/mass spectrometry. The acquired data were processed by multivariate principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal PLS-DA. After 7-day administration of ASB, the positive urine samples in protein, occult blood, and ketones were increased, presenting dose dependence. The PCA and PLS-DA models were capable of distinguishing the difference between ASB-treated group and control. Biomarkers such as 1,5-anhydroglucitol, d-erythro-sphingosine, and 2-ketoadipate were identified as the most influential factors in ASB-induced nephrotoxicity.
Collapse
Affiliation(s)
- JD Xu
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - WM Xing
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - TJ Yuan
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - J Chen
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - H Lu
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Domijan AM, Gajski G, Novak Jovanović I, Gerić M, Garaj-Vrhovac V. In vitro genotoxicity of mycotoxins ochratoxin A and fumonisin B1 could be prevented by sodium copper chlorophyllin – Implication to their genotoxic mechanism. Food Chem 2015; 170:455-62. [DOI: 10.1016/j.foodchem.2014.08.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/04/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
|
31
|
Shukla RK, Kumar A, Vallabani NVS, Pandey AK, Dhawan A. Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomedicine (Lond) 2013; 9:1423-34. [PMID: 24367968 DOI: 10.2217/nnm.13.100] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The use of metal oxide nanoparticles (titanium dioxide) in consumer and industrial products improves their quality but also underscores the possible adverse effects to human and environmental health. MATERIALS & METHODS Mice were exposed orally for 14 consecutive days and analyzed for alteration in different hepatic enzymes, histopathological changes, oxidative stress, DNA damage, tumor suppressor and proapoptotic protein expression in liver cells. RESULTS We observed a significant alteration in the level of hepatic enzymes and liver histopathology at a dose of 100 mg/kg body weight. Significant oxidative DNA damage was observed in liver cells, which could be attributed to oxidative stress. In addition, the increased expression of p53, BAX, caspase-3 and -9 proteins and decreased expression of antiapoptotic protein Bcl-2, suggest activation of the intrinsic pathway of apoptosis. CONCLUSION High accumulation of titanium dioxide nanoparticles in the liver tissue would cause DNA damage and apoptosis through the intrinsic pathway.
Collapse
Affiliation(s)
- Ritesh K Shukla
- Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, PO Box 80, Lucknow-226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
32
|
Klarić MŠ, Rašić D, Peraica M. Deleterious effects of mycotoxin combinations involving ochratoxin A. Toxins (Basel) 2013; 5:1965-87. [PMID: 24189375 PMCID: PMC3847710 DOI: 10.3390/toxins5111965] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022] Open
Abstract
Ochratoxin A (OTA) is a nephrotoxic mycotoxin with carcinogenic properties. Its presence was detected in various foodstuffs all over the world but with significantly higher frequency and concentrations in areas with endemic nephropathy (EN). Even though food is often contaminated with more than one mycotoxin, earlier studies focused on the occurrence and toxicology of only OTA. Only a limited number of surveys showed that OTA co-occurs in food with mycotoxins (citrinin-CIT, penicilic acid, fumonisin B1-FB1, aflatoxins-AF) which exert nephrotoxic, carcinogenic or carcinogen-promoting activity. This review summarises the findings on OTA and its co-occurrence with the mentioned mycotoxins in food as well as experimental data on their combined toxicity. Most of the tested mycotoxin mixtures involving OTA produced additive or synergistic effects in experimental models suggesting that these combinations represent a significant health hazard. Special attention should be given to mixtures that include carcinogenic and cancer-promoting mycotoxins.
Collapse
Affiliation(s)
- Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, HR-10000 Zagreb, Croatia
| | - Dubravka Rašić
- Unit of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10000 Zagreb, Croatia; E-Mails: (D.R.); (M.P.)
| | - Maja Peraica
- Unit of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10000 Zagreb, Croatia; E-Mails: (D.R.); (M.P.)
| |
Collapse
|
33
|
Ali R, Guo X, Lin H, Khan QM, Ismail M, Waheed U, Ali T, Bhalli JA. Mutant frequency in comparison to oxidative DNA damage induced by ochratoxin A in L5178Ytk+/−(3.7.2C) mouse lymphoma cells. Drug Chem Toxicol 2013; 37:227-32. [DOI: 10.3109/01480545.2013.838775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
The carotenoid lycopene protects rats against DNA damage induced by Ochratoxin A. Toxicon 2013; 73:96-103. [DOI: 10.1016/j.toxicon.2013.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/20/2022]
|
35
|
Stoev SD, Denev SA. Porcine/chicken or human nephropathy as the result of joint mycotoxins interaction. Toxins (Basel) 2013; 5:1503-30. [PMID: 24008340 PMCID: PMC3798870 DOI: 10.3390/toxins5091503] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/24/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022] Open
Abstract
A survey was made of the literature concerning the occurrence and incidence of mycotoxic nephropathy in pigs and chicks in different countries. Various etiological factors contributing to the development of the disease were considered. The main nephrotoxic fungi as well as the specific conditions for their growth and toxins production were briefly described. A survey was made about the most frequent nephrotoxic fungal contaminants in various feedstuffs from plant origin. In addition, their natural quantities and importance for development of mycotoxic porcine/chick nephropathy (MPN/MCN) are also explored. In addition, a survey was made of the feedstuffs representing the most favorable environment for nephrotoxic fungal growth as well as the most favorable storehouse conditions for this fungal growth were shortly described. The significance of some underestimated fungal species, which can provoke kidney damage, was studied. The importance of joint mycotoxin interaction and newly identified fungal metabolites in the complex etiology of mycotoxic nephropathy ranged in some countries is deeply investigated. The toxicity of the low contamination levels of some combinations of mycotoxins often administered by pigs and chicks in the practice was carefully studied.
Collapse
Affiliation(s)
- Stoycho D. Stoev
- Department of General and Clinical Pathology of Faculty of Veterinary Medicine, Trakia University, Students campus, 6000 Stara Zagora, Bulgaria
| | - Stefan A. Denev
- Department of Biochemistry and Microbiology of Faculty of Agriculture, Trakia University, Students campus, 6000 Stara Zagora, Bulgaria; E-Mail:
| |
Collapse
|
36
|
|
37
|
Stoev SD, Gundasheva D, Zarkov I, Mircheva T, Zapryanova D, Denev S, Mitev Y, Daskalov H, Dutton M, Mwanza M, Schneider YJ. Experimental mycotoxic nephropathy in pigs provoked by a mouldy diet containing ochratoxin A and fumonisin B1. ACTA ACUST UNITED AC 2012; 64:733-41. [DOI: 10.1016/j.etp.2011.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/02/2011] [Accepted: 01/13/2011] [Indexed: 11/29/2022]
|
38
|
Müller S, Dekant W, Mally A. Fumonisin B1 and the kidney: Modes of action for renal tumor formation by fumonisin B1 in rodents. Food Chem Toxicol 2012; 50:3833-46. [DOI: 10.1016/j.fct.2012.06.053] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/26/2022]
|
39
|
Mally A. Ochratoxin a and mitotic disruption: mode of action analysis of renal tumor formation by ochratoxin A. Toxicol Sci 2012; 127:315-30. [PMID: 22403158 DOI: 10.1093/toxsci/kfs105] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mycotoxin and food contaminant ochratoxin A (OTA) is a potent renal carcinogen in rodents, but its mode of action (MoA) is still poorly defined. In 2006, the European Food Safety Authority concluded that there is a "lack of evidence for the existence of OTA-DNA adducts" and thus insufficient evidence to establish DNA reactivity as a MoA for tumor formation by OTA. In reviewing the available database on OTA toxicity, a MoA for renal carcinogenicity of OTA is developed that involves a combination of genetic instability and increased proliferative drive as consequences of OTA-mediated disruption of mitosis, whereby the organ- and site-specificity of tumor formation by OTA is determined by selective renal uptake of OTA into the proximal tubule epithelium. The proposed MoA is critically assessed with respect to concordance of dose-response of the suggested key events and tumor formation, their temporal association, consistency, and biological plausibility. Uncertainties, data gaps and needs for further research are highlighted.
Collapse
Affiliation(s)
- Angela Mally
- Department of Toxicology, University of Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
40
|
Toyoizumi T, Ohta R, Nakagawa Y, Tazura Y, Kuwagata M, Noguchi S, Yamakage K. Use of the in vivo skin comet assay to evaluate the DNA-damaging potential of chemicals applied to the skin. Mutat Res 2011; 726:175-80. [PMID: 21944904 DOI: 10.1016/j.mrgentox.2011.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/05/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
The aim of the present study was to evaluate both sensitivity and specificity of an in vivo skin comet assay using chemically treated, hairless mouse dorsal skin as a model. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.0125-0.2%), 4-nitroquinoline-1-oxide (4NQO, 0.01-0.25%), mitomycin C (MMC, 0.0125-0.05%), benzo[a]pyrene (B[a]P, 0.25-2%), and 7,12-dimethylbenz[a]anthracene (DMBA, 0.25-1%) were each applied once to the dorsal skin of hairless male mice; after 3h, epidermal skin cells were isolated, and the alkaline comet assay was performed. The assay was performed after 24h for only the B[a]P and DMBA. Furthermore, B[a]P and DMBA were evaluated by alkaline comet assay using liver cells after both 3 and 24h. The mean percent of DNA (%DNA) in tail in the 0.05-0.2% MNNG and 0.1-0.25% 4NQO treatment groups was markedly higher than in the control group at 3h post-application. Although the mean %DNA values in the tail in the B[a]P and DMBA groups were the same as the controls at 3h post-application, the 2% B[a]P and 1% DMBA groups showed significantly higher values versus controls 24h after application. No significant increases in the mean %DNA in the tail were observed in the MMC group. No clear increases in %DNA in the tail were observed in the B[a]P and DMBA groups at 3 or 24h after application in the liver. These results suggest that the in vivo skin comet assay is able to accurately identify DNA-damaging potential with a skin-specific response and is a useful method to detect the DNA-damaging potential of genotoxic chemicals on the skin.
Collapse
|
41
|
Comparative analysis of micronuclei and DNA damage induced by Ochratoxin A in two mammalian cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 723:58-64. [DOI: 10.1016/j.mrgentox.2011.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 02/02/2023]
|
42
|
Marin-Kuan M, Ehrlich V, Delatour T, Cavin C, Schilter B. Evidence for a role of oxidative stress in the carcinogenicity of ochratoxin a. J Toxicol 2011; 2011:645361. [PMID: 21776264 PMCID: PMC3135259 DOI: 10.1155/2011/645361] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 04/20/2011] [Indexed: 12/15/2022] Open
Abstract
The in vitro and in vivo evidence compatible with a role for oxidative stress in OTA carcinogenicity has been collected and described. Several potential oxido-reduction mechanisms have been identified in the past. More recently, the possibility of a reduction of cellular antioxidant defense has been raised as an indirect source of oxidative stress. Consequences resulting from the production of oxidative stress are observed at different levels. First, OTA exposure has been associated with increased levels of oxidative DNA, lipid, and protein damage. Second, various biological processes known to be mobilized under oxidative stress were shown to be altered by OTA. These effects have been observed in both in vitro and in vivo test systems. In vivo, active doses were often within doses documented to induce renal tumors in rats. In conclusion, the evidence for the induction of an oxidative stress response resulting from OTA exposure can be considered strong. Because the contribution of the oxidative stress response in the development of cancers is well established, a role in OTA carcinogenicity is plausible. Altogether, the data reviewed above support the application of a threshold-based approach to establish safe level of dietary human exposure to OTA.
Collapse
Affiliation(s)
- M. Marin-Kuan
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - V. Ehrlich
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - T. Delatour
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - C. Cavin
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | - B. Schilter
- Chemical Food Safety Group, Quality & Safety Department, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| |
Collapse
|
43
|
Ochratoxin A contamination of food from Croatia. Toxins (Basel) 2010; 2:2098-105. [PMID: 22069674 PMCID: PMC3153288 DOI: 10.3390/toxins2082098] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/03/2010] [Accepted: 08/09/2010] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin with nephrotoxic, genotoxic and carcinogenic properties produced by Penicillium and Aspergillus moulds under different climatic conditions. Humans and animals are exposed to this compound mainly via ingestion of contaminated food. In Croatia, research on mycotoxins focused on OTA when the mycotoxin theory of endemic nephropathy (EN) was postulated. Ochratoxin A was more frequent and at higher concentration in foods from EN than those from the control regions. Subsequently, OTA concentrations were determined in some commodities intended for human consumption such as maize, wheat, beans and wine. Samples from all parts of Croatia were analyzed and OTA was found in all types of commodities. It was frequently found together with other mycotoxins (fumonisin B1, fumonisin B2 and zearalenone). In general, OTA concentration in foods from Croatia is low, but the frequency of positive samples shows considerable variations from year to year depending also on sampling location. Although low levels of OTA were found in a large proportion of analyzed food samples, its persistent co-occurrence with other significant mycotoxins should raise serious public health concerns as there interactions may be synergistic or additive in causing toxicity in humans and animals. There is need to establish control measures through which such contaminations in foods can be managed.
Collapse
|
44
|
Pepeljnjak S, Klarić MŠ. «Suspects» in etiology of endemic nephropathy: aristolochic acid versus mycotoxins. Toxins (Basel) 2010; 2:1414-27. [PMID: 22069645 PMCID: PMC3153240 DOI: 10.3390/toxins2061414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/07/2010] [Accepted: 06/10/2010] [Indexed: 11/23/2022] Open
Abstract
Despite many hypotheses that have been challenged, the etiology of endemic nephropathy (EN) is still unknown. At present, the implications of aristolochic acid (AA) and mycotoxins (ochratoxin A-OTA and citrinin-CIT) are under debate. AA-theory is based on renal pathohistological similarities between Chinese herbs nephropathy (CHN) and EN, findings of AA-DNA adducts in EN and in patients with urinary tract tumors (UTT), as well as the domination of A:T®T:A transversions in the p53 mutational spectrum of UTT patients, which corresponds with findings of such mutations in AA-treated rats. However, exposure pathways of EN residents to AA are unclear. Experimental studies attempting to deduce whether nephrotoxins OTA and CIT appear at higher frequencies or levels (or both) in the food and blood or urine of EN residents support the mycotoxin theory. Also, some molecular studies revealed the presence of OTA-DNA adducts in the renal tissue of EN and UTT patients. In this review, data supporting or arguing against AA and mycotoxin theory are presented and discussed.
Collapse
Affiliation(s)
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, HR-10000 Zagreb, Croatia
| |
Collapse
|
45
|
Klarić MS, Darabos D, Rozgaj R, Kasuba V, Pepeljnjak S. Beauvericin and ochratoxin A genotoxicity evaluated using the alkaline comet assay: single and combined genotoxic action. Arch Toxicol 2010; 84:641-50. [PMID: 20352195 DOI: 10.1007/s00204-010-0535-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 03/09/2010] [Indexed: 11/30/2022]
Abstract
This study was aimed at investigating the genotoxic potential of single beauvericin (BEA) and ochratoxin A (OTA) as well as their interaction in porcine kidney epithelial PK15 cells and human leukocytes using the alkaline comet assay. IC(50) of BEA (5.0 +/- 0.6) and OTA (15.8 +/- 1.5) estimated by MTT reduction assay shows that BEA is three times more toxic than OTA. BEA (0.1 and 0.5 microM) and OTA (1 and 5 microM) were applied alone or in combination of these concentrations for 1 and 24 h in PK15 cells and human leukocytes. Genotoxicity of these toxins to PK15 cells was time- and concentration dependent. After 1 h, significant increase in tail length, tail intensity, tail moment, and abnormal sized tails (AST) was noted upon exposure to 1 muM of OTA alone and BEA + OTA combinations. Single BEA (0.5 microM) and OTA (1 and 5 microM) and their combinations evoked significant DNA damage in PK15 cells, considering all comet tail parameters measured after 24 h of treatment. Human leukocytes were slightly concentration but not time dependent. After 1 h of exposure, there were no significant changes in the tail length. Tail intensity, tail moment, and/or incidence of AST were significantly higher in cells treated with single OTA or BEA and their combinations than in control cells. DNA damage in leukocytes was significantly higher after 24 h of exposure to single toxins and their combinations, considering all comet tail parameters, but these changes were less pronounced than in PK15 cells. Combined toxins showed additive and synergistic effects in PK15 cells, while only additive effects were observed in human leukocytes. Combined prolonged exposure to BEA and OTA in subcytotoxic concentrations through food consumption could induce DNA damage contributing to the carcinogenicity in animals and humans.
Collapse
Affiliation(s)
- Maja Segvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
46
|
Ochratoxin A and aristolochic acid involvement in nephropathies and associated urothelial tract tumours. Arh Hig Rada Toksikol 2010; 60:465-83. [PMID: 20061248 DOI: 10.2478/10004-1254-60-2009-2000] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This review addresses the unresolved aetiology of several nephropathies and associated upper tract tumours diagnosed all over the world, but especially in the Balkan regions. Studies conducted over the last 35 years point to mycotoxins, mainly ochratoxin A (OTA) as the main culprit. Recent theories however have implicated aristolochic acids (AA). The aim of this review is to put forward arguments in favour of the mycotoxin theory and to show the incoherence of the AA theory. It discusses the differences between the epidemiology of Balkan endemic nephropathy (BEN) and aristolochic acid nephropathy (AAN); OTA and AA carcinogenicity; clinical and pathological effects induced by OTA and AA; sources of OTA contamination (food, air, drinking water); OTA- and AA-DNA adduct formation; the role of genetic polymorphisms; and the risk for young children.
Collapse
|
47
|
Urine ochratoxin a and sphinganine/sphingosine ratio in residents of the endemic nephropathy area in Croatia. Arh Hig Rada Toksikol 2010; 60:387-93. [PMID: 20061238 DOI: 10.2478/10004-1254-60-2009-1938] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The most plausible theory of the aetiology of endemic nephropathy links it with exposure to nephrotoxic mycotoxin ochratoxin A (OTA). In this study, the concentration of OTA and sphinganine/sphingosine (Sa/So) ratio, the biomarker of another nephrotoxic mycotoxin fumonisin B1 exposure, were analysed in 45 human urine samples collected in the endemic village of Kaniza in Croatia and in 18 samples from control village. Samples were collected twice from the same persons in 2000 and 2005. In both years the frequency of OTA-positive samples was higher in Kaniza (43 % and 18 %, respectively) than in the control village (28 % and 6 %, respectively). OTA concentrations in samples collected in Kaniza were higher in 2000 than in 2005 (p<0.005). Although in both years Sa/So ratio was higher in Kaniza, the difference from the control group was not statistically significant. No control sample contained OTA and had the Sa/So ratio >1 at the same time, while in Kaniza four such samples were collected in 2000 and one in 2005.
Collapse
|
48
|
Stoev S, Dutton M, Njobeh P, Mosonik J, Steenkamp P. Mycotoxic nephropathy in Bulgarian pigs and chickens: complex aetiology and similarity to Balkan Endemic Nephropathy. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:72-88. [DOI: 10.1080/02652030903207227] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Wild CP, Gong YY. Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 2010; 31:71-82. [PMID: 19875698 PMCID: PMC2802673 DOI: 10.1093/carcin/bgp264] [Citation(s) in RCA: 558] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 10/18/2009] [Accepted: 10/22/2009] [Indexed: 11/12/2022] Open
Abstract
Aflatoxins and fumonisins (FB) are mycotoxins contaminating a large fraction of the world's food, including maize, cereals, groundnuts and tree nuts. The toxins frequently co-occur in maize. Where these commodities are dietary staples, for example, in parts of Africa, Asia and Latin America, the contamination translates to high-level chronic exposure. This is particularly true in subsistence farming communities where regulations to control exposure are either non-existent or practically unenforceable. Aflatoxins are hepatocarcinogenic in humans, particularly in conjunction with chronic hepatitis B virus infection, and cause aflatoxicosis in episodic poisoning outbreaks. In animals, these toxins also impair growth and are immunosuppressive; the latter effects are of increasing interest in human populations. FB have been reported to induce liver and kidney tumours in rodents and are classified as Group 2B 'possibly carcinogenic to humans', with ecological studies implying a possible link to increased oesophageal cancer. Recent studies also suggest that the FB may cause neural tube defects in some maize-consuming populations. There is a plausible mechanism for this effect via a disruption of ceramide synthase and sphingolipid biosynthesis. Notwithstanding the need for a better evidence-base on mycotoxins and human health, supported by better biomarkers of exposure and effect in epidemiological studies, the existing data are sufficient to prioritize exposure reduction in vulnerable populations. For both toxins, there are a number of practical primary and secondary prevention strategies which could be beneficial if the political will and financial investment can be applied to what remains a largely and rather shamefully ignored global health issue.
Collapse
Affiliation(s)
- Christopher P Wild
- International Agency for Research on Cancer, 69372 Lyon Cedex 08, France.
| | | |
Collapse
|
50
|
Stoev SD, Denev S, Dutton MF, Njobeh PB, Mosonik JS, Steenkamp PA, Petkov I. Complex etiology and pathology of mycotoxic nephropathy in South African pigs. Mycotoxin Res 2009; 26:31-46. [PMID: 23605239 DOI: 10.1007/s12550-009-0038-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
Spontaneous nephropathy in pigs seen in South Africa was found to have multi-mycotoxic etiology involving several mycotoxins such as ochratoxin A (OTA), penicillic acid (PA) and fumonisin B1 (FB1) in addition to a not yet identified mycotoxin. Contamination levels of OTA were comparatively low (67-75 μg/kg) in contrast to high contamination levels of FB1 (5,289-5,021 μg/kg) and PA (149-251 μg/kg). A heavy contamination with Gibberella fujikuroi var. moniliformis and Penicillium aurantiogriseum complex (mainly P. polonicum) was observed in the fed forages in contrast to the light contamination with Aspergillus ochraceus, P. verrucosum and P. citrinum. The pathomorphological picture of this nephropathy was found to differ from the classical description of mycotoxic porcine nephropathy as originally made in Scandinavia by the extensive vascular changes.
Collapse
Affiliation(s)
- Stoycho D Stoev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000, Stara Zagora, Bulgaria,
| | | | | | | | | | | | | |
Collapse
|