1
|
Napolitano T, Avolio F, Silvano S, Forcisi S, Pfeifer A, Vieira A, Navarro-Sanz S, Friano ME, Ayachi C, Garrido-Utrilla A, Atlija J, Hadzic B, Becam J, Sousa-De-Veiga A, Plaisant MD, Balaji S, Pisani DF, Mondin M, Schmitt-Kopplin P, Amri EZ, Collombat P. Gfi1 Loss Protects against Two Models of Induced Diabetes. Cells 2021; 10:cells10112805. [PMID: 34831029 PMCID: PMC8616283 DOI: 10.3390/cells10112805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Although several approaches have revealed much about individual factors that regulate pancreatic development, we have yet to fully understand their complicated interplay during pancreas morphogenesis. Gfi1 is transcription factor specifically expressed in pancreatic acinar cells, whose role in pancreas cells fate identity and specification is still elusive. Methods: In order to gain further insight into the function of this factor in the pancreas, we generated animals deficient for Gfi1 specifically in the pancreas. Gfi1 conditional knockout animals were phenotypically characterized by immunohistochemistry, RT-qPCR, and RNA scope. To assess the role of Gfi1 in the pathogenesis of diabetes, we challenged Gfi1-deficient mice with two models of induced hyperglycemia: long-term high-fat/high-sugar feeding and streptozotocin injections. Results: Interestingly, mutant mice did not show any obvious deleterious phenotype. However, in depth analyses demonstrated a significant decrease in pancreatic amylase expression, leading to a diminution in intestinal carbohydrates processing and thus glucose absorption. In fact, Gfi1-deficient mice were found resistant to diet-induced hyperglycemia, appearing normoglycemic even after long-term high-fat/high-sugar diet. Another feature observed in mutant acinar cells was the misexpression of ghrelin, a hormone previously suggested to exhibit anti-apoptotic effects on β-cells in vitro. Impressively, Gfi1 mutant mice were found to be resistant to the cytotoxic and diabetogenic effects of high-dose streptozotocin administrations, displaying a negligible loss of β-cells and an imperturbable normoglycemia. Conclusions: Together, these results demonstrate that Gfi1 could turn to be extremely valuable for the development of new therapies and could thus open new research avenues in the context of diabetes research.
Collapse
Affiliation(s)
- Tiziana Napolitano
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Fabio Avolio
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark;
| | - Serena Silvano
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Sara Forcisi
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environment Health, 85764 Neuherberg, Germany; (S.F.); (P.S.-K.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anja Pfeifer
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Andhira Vieira
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | | | - Marika Elsa Friano
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Chaïma Ayachi
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Anna Garrido-Utrilla
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | | | - Biljana Hadzic
- Pediatric Oncology & Hematology Department, Centre Hospitalier Universitaire de Nice, Hopital Archet 2, 06202 Nice, France;
| | - Jérôme Becam
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Anette Sousa-De-Veiga
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Magali Dodille Plaisant
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | | | - Didier F. Pisani
- Medicine Faculty, Université Côte d’Azur, CNRS, LP2M, 06003 Nice, France;
| | - Magali Mondin
- Pôle Imagerie Photonique, Bordeaux Imaging Center, Université de Bordeaux, UMS 3420 CNRS-US4 Inserm, 33076 Bordeaux, France;
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environment Health, 85764 Neuherberg, Germany; (S.F.); (P.S.-K.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ez-Zoubir Amri
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Patrick Collombat
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
- Correspondence:
| |
Collapse
|
2
|
Alrashid MH, Al-Serri A, Alshemmari SH, Geo JA, Al-Bustan SA. Association analysis of genetic variants in the ghrelin and tumor necrosis factor α genes and the risk for non-Hodgkin's lymphoma in Kuwaitis. Cancer Biomark 2021; 32:11-18. [PMID: 34024815 PMCID: PMC8461683 DOI: 10.3233/cbm-200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Non-Hodgkin’s lymphoma (NHL) is the most common hematological malignancy in the world. Many etiologic factors have been implicated in the risk of developing NHL, including genetic susceptibility and obesity. Single-nucleotide polymorphisms (SNPs) in Ghrelin (GHRL), an anti-inflammatory hormone, and tumor necrosis factor α (TNF-α), an inflammatory cytokine, have been independently associated with the risk for obesity and NHL. OBJECTIVE: To investigate the association between SNPs in GHRL and TNF-α and the risk for NHL and obesity in Kuwaitis. METHODS: We recruited 154 Kuwaiti NHL patients and 217 controls. Genotyping was performed for rs1629816 (GHRL promoter region), rs35684 (GHRL 3’ untranslated region), and rs1800629 (TNF-α promoter region). Logistic regression analysis was performed to assess the association of the investigated SNPs with NHL and the relationship between the selected SNPs with BMI in each group separately. RESULTS: We show that rs1629816 GG was associated with an increased risk for NHL in our sample (p= 0.0003, OR 1.82; CI: 1.31–2.54). None of the investigated SNPs were associated with obesity, nor was obesity found to be associated with the risk for NHL. CONCLUSIONS: Our study demonstrates an association between rs1629816, a SNP in the GHRL regulatory region, and NHL in Kuwaitis.
Collapse
Affiliation(s)
- Maryam H Alrashid
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Ahmad Al-Serri
- Department of Pathology, Unit of Human Genetics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Salem H Alshemmari
- Department of Medicine, Faculty of Medicine, Kuwait University, Safat, Kuwait.,Kuwait Cancer Control Center, Kuwait City, Kuwait
| | - Jeethu Anu Geo
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Suzanne A Al-Bustan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| |
Collapse
|
3
|
Mathur N, Mehdi SF, Anipindi M, Aziz M, Khan SA, Kondakindi H, Lowell B, Wang P, Roth J. Ghrelin as an Anti-Sepsis Peptide: Review. Front Immunol 2021; 11:610363. [PMID: 33584688 PMCID: PMC7876230 DOI: 10.3389/fimmu.2020.610363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Sepsis continues to produce widespread inflammation, illness, and death, prompting intensive research aimed at uncovering causes and therapies. In this article, we focus on ghrelin, an endogenous peptide with promise as a potent anti-inflammatory agent. Ghrelin was discovered, tracked, and isolated from stomach cells based on its ability to stimulate release of growth hormone. It also stimulates appetite and is shown to be anti-inflammatory in a wide range of tissues. The anti-inflammatory effects mediated by ghrelin are a result of both the stimulation of anti-inflammatory processes and an inhibition of pro-inflammatory forces. Anti-inflammatory processes are promoted in a broad range of tissues including the hypothalamus and vagus nerve as well as in a broad range of immune cells. Aged rodents have reduced levels of growth hormone (GH) and diminished immune responses; ghrelin administration boosts GH levels and immune response. The anti-inflammatory functions of ghrelin, well displayed in preclinical animal models of sepsis, are just being charted in patients, with expectations that ghrelin and growth hormone might improve outcomes in patients with sepsis.
Collapse
Affiliation(s)
- Nimisha Mathur
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Syed F. Mehdi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Manasa Anipindi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Sawleha A. Khan
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Hema Kondakindi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Barbara Lowell
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Jesse Roth
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
4
|
de Paula Silva F, da Costa CMB, Pereira LM, Lessa DFS, Pitol DL, Issa JPM, do Prado Júnior JC, Abrahão AAC. Effects of ghrelin supplementation on the acute phase of Chagas disease in rats. Parasit Vectors 2019; 12:532. [PMID: 31706334 PMCID: PMC6842500 DOI: 10.1186/s13071-019-3787-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Trypanosoma cruzi is the causative agent of Chagas disease, which is endemic to subtropical and tropical Americas. The disease treatment remains partially ineffective, involving therapies directed to the parasite as well as palliative strategies for the clinical manifestations. Therefore, novel candidates for disease control are necessary. Additionally, strategies based on parasite inhibition via specific targets and application of compounds which improve the immune response against the disease is welcomed. Ghrelin is a peptide hormone pointed as a substance with important cardioprotective, vasodilatory, anti-apoptotic, anti-oxidative and immune modulatory functions. The aims of this study were to evaluate the immunomodulatory effects of ghrelin in male Wistar rats infected with the Y strain of T. cruzi. Methods In order to delineate an immune response against T. cruzi mediated by ghrelin, we evaluated the following parameters: quantification of blood and cardiac parasites; analysis of cell markers (CD3+, CD8+, NK, NKT, CD45RA+, macrophage and RT1B+); nitric oxide (NO) production; lymphoproliferation assays; splenocyte apoptosis; and INF-γ, IL-12 and IL-6 quantification in sera. Results The animals infected with T. cruzi and supplemented with ghrelin demonstrated an upregulated pattern in macrophage and NO production, whereas an anti-inflammatory response was observed in T cells and cytokines. The low response against T. cruzi mediated by T cells probably contributed to a higher colonization of the cardiac tissue, when compared to infected groups. On the other side, the peptide decreased the inflammatory infiltration in cardiac tissue infected with T. cruzi. Conclusions Ghrelin demonstrated a dual function in animals infected with T. cruzi. Further studies, especially related to the decrease of cardiac tissue inflammation, are needed in order to determine the advantages of ghrelin supplementation in Chagas disease, mostly for populations from endemic areas.
Collapse
Affiliation(s)
- Ferdinando de Paula Silva
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Cássia Mariana Bronzon da Costa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Luiz Miguel Pereira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Diego Fernando Silva Lessa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Dimitrius Leonardo Pitol
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto USP, University of São Paulo, Ribeirão Preto, 14040-904, Brazil
| | - João Paulo Mardegan Issa
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto USP, University of São Paulo, Ribeirão Preto, 14040-904, Brazil
| | - José Clóvis do Prado Júnior
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Ana Amélia Carraro Abrahão
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, Brazil.
| |
Collapse
|
5
|
Wang Y, Cao L, Liu X. Ghrelin alleviates endoplasmic reticulum stress and inflammation-mediated reproductive dysfunction induced by stress. J Assist Reprod Genet 2019; 36:2357-2366. [PMID: 31650454 DOI: 10.1007/s10815-019-01589-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Psychological stress exists widely in modern society and results in the disruption of testicular tight junctions, germ cell apoptosis, and the disorder of fertility hormones and even causes infertility. Ghrelin (GHRL), a 28-amino acid peptide secreted mainly by the stomach and pancreas, has been reported to alleviate male reproductive injury through inhibiting apoptosis. However, whether GHRL has a beneficial effect on psychological stress-induced testicular injury and the possible mechanisms remain poorly understood. METHODS Male mice were immobilized in Decapicone bags for 3 h daily for 14 days treated with or without GHRL (i.p. 100 mg/kg body weight). Body weight and testicular weight were measured. Histological alterations and apoptosis were examined by H.E. staining and TUNEL staining, respectively. The expression of endoplasmic reticulum (ER) stress markers, inflammatory cytokines, Toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB) in the testes was investigated. RESULTS Exposure to stress caused testicular histological alterations, an elevation of the Johnsen score, and germ cell apoptosis, while GHRL partially alleviated the adverse effects. The expression of ER stress marker proteins, including GRP78, CHOP, ATF6, p-JNK, and XBP-1, was upregulated in the stress group; however, GHRL treatment significantly suppressed the activation of ER stress in the testes. GHRL also inhibited the expression of TNF-α, IL-1β, IL-6, IL-10, TLR4, and NF-κB. CONCLUSIONS GHRL alleviated testicular injury induced by ER stress and inflammation which is associated with the TLR4/NF-κB signaling pathway, and these findings may provide a novel strategy for preventing and treating reproductive dysfunction.
Collapse
Affiliation(s)
- Yueying Wang
- Department of Reproductive Medicine, Jining First People's Hospital, No. 6, Jiankang Road, Rencheng District, 272000, Jining, People's Republic of China
| | - Longqiao Cao
- Department of Reproductive Medicine, Jining First People's Hospital, No. 6, Jiankang Road, Rencheng District, 272000, Jining, People's Republic of China
| | - Xiaoran Liu
- Institute of Precision and Medicine, Jining Medical University, No. 133, Hehua Road, Rencheng District, 272067, Jining, People's Republic of China.
| |
Collapse
|
6
|
Gray SM, Page LC, Tong J. Ghrelin regulation of glucose metabolism. J Neuroendocrinol 2019; 31:e12705. [PMID: 30849212 PMCID: PMC6688917 DOI: 10.1111/jne.12705] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Ghrelin and its receptor, the growth hormone secretagogue receptor 1a (GHSR1a), are implicated in the regulation of glucose metabolism via direct actions in the pancreatic islet, as well as peripheral insulin-sensitive tissues and the brain. Although many studies have explored the role of ghrelin in glucose tolerance and insulin secretion, a complete mechanistic understanding remains to be clarified. This review highlights the local expression and function of ghrelin and GHSR1a in pancreatic islets and how this axis may modulate insulin secretion from pancreatic β-cells. Additionally, we discuss the effect of ghrelin on in vivo glucose metabolism in rodents and humans, as well as the metabolic circumstances under which the action of ghrelin may predominate.
Collapse
Affiliation(s)
- Sarah. M. Gray
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701
| | - Laura C. Page
- Division of Endocrinology, Department of Pediatrics, Duke University, Durham, NC 27701
| | - Jenny Tong
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701
- Division of Endocrinology, Department of Pediatrics, Duke University, Durham, NC 27701
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University, Durham, NC 27701
| |
Collapse
|
7
|
Napolitano T, Silvano S, Vieira A, Balaji S, Garrido-Utrilla A, Friano ME, Atlija J, Collombat P. Role of ghrelin in pancreatic development and function. Diabetes Obes Metab 2018; 20 Suppl 2:3-10. [PMID: 30230184 DOI: 10.1111/dom.13385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 11/28/2022]
Abstract
Ghrelin is a gastric peptide with anabolic functions. It acutely stimulates growth hormone (GH) secretion from the anterior pituitary glands and modulates hypothalamic circuits that control food intake and energy expenditure. Besides its central activity, ghrelin is also involved in the regulation of pancreatic development and physiology. Particularly, several studies highlighted the ability of ghrelin to sustain β-cell viability and proliferation. Furthermore, ghrelin seems to exert inhibitory effects on pancreatic acinar and endocrine secretory functions. Due to its pleiotropic activity on energy metabolism, ghrelin has become a topic of great interest for experimental research focused on type II diabetes and obesity. The aim of this review is to illustrate the complex and not fully understood interplay between ghrelin, pancreas and glucose homeostasis.
Collapse
Affiliation(s)
- Tiziana Napolitano
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Serena Silvano
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Andhira Vieira
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Shruti Balaji
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Anna Garrido-Utrilla
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Marika E Friano
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Josipa Atlija
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Patrick Collombat
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| |
Collapse
|
8
|
Abdanipour A, Dadkhah M, Alipour M, Feizi H. Effect of Ghrelin on Caspase 3 and Bcl2 Gene Expression in H2O2 Treated Rat's Bone Marrow Stromal Cells. Adv Pharm Bull 2018; 8:429-435. [PMID: 30276139 PMCID: PMC6156489 DOI: 10.15171/apb.2018.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Purpose: The antiapoptotic effect of ghrelin in various cell lines including bone marrow stromal cells (BMSCs) has been proved. However, the real mechanism of this effect is not clear. Caspase3 and Bcl2 are well-known pro- and antiapoptotic regulatory genes in eukaryotes. The aim of the study was to find out the effect of ghrelin on Caspase 3 and Bcl2 change in BMSCs. Methods: Rat BMSCs were cultivated in DMEM. Passage 3 BMSCs were treated with ghrelin 100 μM for 48 h. Real-time PCR for Caspase 3 and Bcl2 was carried out from B (untreated BMSCs), BH (BMSCs treated with 125 µM H2O2), BGH (BMSCs treated with 100 µM ghrelin then 125 µM H2O2) and BG (BMSCs treated with 100 µM ghrelin) groups. For immunofluorescence, cells were incubated with anti Caspase 3 and Bcl2monoclonal antibodies. Primary antibodies were visualized using the FITC method. All data are presented as means ± SEM. Values of P<0.05 were considered statistically significant. Results: Ghrelin decreased mRNA expressions of Caspase-3 significantly as compared to the BH group (P<0.05). Also, Bcl-2 gene expression showed an increment in BG group as compare with BH and BGH groups (P<0.05). A high present of Bcl-2 positive cells were observed in the BGH group while Caspase-3 positive cells were significantly decreased in the BGH group compared with the BH group (P<0.05). Conclusion: Ghrelin probably enhances BMSCs viability through regulation of pro- and antiapoptotic genes Caspase 3 and Bcl2. However the signaling pathway of this effect should be elucidated in the future.
Collapse
Affiliation(s)
- Alireza Abdanipour
- Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoud Dadkhah
- Department of Physiology and Pharmacology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohsen Alipour
- Department of Physiology and Pharmacology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hadi Feizi
- Department of Physiology and Pharmacology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
9
|
Muscogiuri G, Balercia G, Barrea L, Cignarelli A, Giorgino F, Holst JJ, Laudisio D, Orio F, Tirabassi G, Colao A. Gut: A key player in the pathogenesis of type 2 diabetes? Crit Rev Food Sci Nutr 2017; 58:1294-1309. [PMID: 27892685 DOI: 10.1080/10408398.2016.1252712] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gut regulates glucose and energy homeostasis; thus, the presence of ingested nutrients into the gut activates sensing mechanisms that affect both glucose homeostasis and regulate food intake. Increasing evidence suggest that gut may also play a key role in the pathogenesis of type 2 diabetes which may be related to both the intestinal microbiological profile and patterns of gut hormones secretion. Intestinal microbiota includes trillions of microorganisms but its composition and function may be adversely affected in type 2 diabetes. The intestinal microbiota may be responsible of the secretion of molecules that may impair insulin secretion/action. At the same time, intestinal milieu regulates the secretion of hormones such as GLP-1, GIP, ghrelin, gastrin, somatostatin, CCK, serotonin, peptide YY, GLP-2, all of which importantly influence metabolism in general and in particular glucose metabolism. Thus, the aim of this paper is to review the current evidence on the role of the gut in the pathogenesis of type 2 diabetes, taking into account both hormonal and microbiological aspects.
Collapse
Affiliation(s)
| | - Giancarlo Balercia
- b Division of Endocrinology, Department of Clinical and Molecular Sciences , Umberto I Hospital, Polytechnic University of Marche , Ancona , Italy
| | | | - Angelo Cignarelli
- c Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases , University of Bari Aldo Moro , Bari , Italy
| | - Francesco Giorgino
- c Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases , University of Bari Aldo Moro , Bari , Italy
| | - Jens J Holst
- d NNF Center for Basic Metabolic Research and Department of Biomedical Sciences , Panum Institute, University of Copenhagen, Copenhagen , Denmark
| | | | - Francesco Orio
- e Endocrinology, Department of Sports Science and Wellness , "Parthenope" University Naples , Naples , Italy
| | - Giacomo Tirabassi
- b Division of Endocrinology, Department of Clinical and Molecular Sciences , Umberto I Hospital, Polytechnic University of Marche , Ancona , Italy
| | - Annamaria Colao
- f Department of Clinical Medicine and Surgery , "Federico II" University of Naples , Naples , Italy
| |
Collapse
|
10
|
Baena-Nieto G, Lomas-Romero IM, Mateos RM, Leal-Cosme N, Perez-Arana G, Aguilar-Diosdado M, Segundo C, Lechuga-Sancho AM. Ghrelin mitigates β-cell mass loss during insulitis in an animal model of autoimmune diabetes mellitus, the BioBreeding/Worcester rat. Diabetes Metab Res Rev 2017; 33. [PMID: 27103341 DOI: 10.1002/dmrr.2813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/06/2016] [Accepted: 04/07/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ghrelin is a peptide hormone with pleiotropic effects. It stimulates cell proliferation and inhibits apoptosis-mediated cell death. It prevents diabetes mellitus in several models of chemical, surgical and biological toxic insults to pancreas in both in vivo and in vitro models and promotes glucose-stimulated insulin secretion under cytotoxic conditions. It has not yet been tested in vivo in an autoimmune model of diabetes with a persistent insult to the β-cell. Given the immunomodulating effects of ghrelin and its trophic effects on β-cells, we hypothesized that ghrelin treatment during the early stages of insulitis would delay diabetes onset. METHODS BioBreeding/Worcester male rats received ghrelin (10 ng/kg/day) before insulitis development. Glucose metabolism was characterized by glucose and insulin tolerance tests. β-cell mass, islet area, islet number, β-cell clusters, proliferation and apoptosis and degree of insulitis were analysed by histomorphometry. A Kaplan-Meier survival curve was plotted and analysed applying the log-rank (Mantel-Cox) test. RESULTS Ghrelin treatment significantly reduced the probability of developing diabetes in our model (p < 0.0001). It decreased islet infiltration and partially prevented β-cell mass loss, enabling the maintenance of β-cell neogenesis and proliferation rates. Furthermore, ghrelin treatment did not induce any metabolic perturbations. CONCLUSIONS These findings support the hypothesis that ghrelin delays the development of autoimmune diabetes by attenuating insulitis and supporting β-cell mass. GENERAL SIGNIFICANCE Ghrelin promotes β-cell viability and function through diverse mechanisms that may have significant implications for diabetes prevention, therapy and also transplant success of both islets and complete pancreas. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gloria Baena-Nieto
- Department of Endocrinology and Nutrition, Puerta del Mar University Hospital, Cadiz, Spain
- Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Isabel M Lomas-Romero
- Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
- Andalusian Cellular Reprogramming Laboratory, Sevilla, Spain
| | - Rosa M Mateos
- Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
- Department of Biotechnology, Biomedicine and Public Health, Cadiz University Medical School, Cadiz, Spain
| | - Noelia Leal-Cosme
- Department of Child and Mother Health and Radiology, Cadiz University Medical School, Cadiz, Spain
| | | | | | - Carmen Segundo
- "Salus Infirmorum" Faculty of Nursing, Cadiz University, Cadiz, Spain
| | - Alfonso M Lechuga-Sancho
- Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
- Department of Child and Mother Health and Radiology, Cadiz University Medical School, Cadiz, Spain
| |
Collapse
|
11
|
Aliparasti MR, Alipour MR, Almasi S, Feizi H. Ghrelin Administration Increases the Bax/Bcl-2 Gene Expression Ratio in the Heart of Chronic Hypoxic Rats. Adv Pharm Bull 2015; 5:195-9. [PMID: 26236657 DOI: 10.15171/apb.2015.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/22/2014] [Accepted: 07/02/2014] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Programmed cell death or apoptosis, is a biochemical procedure that initiates due to some conditions, including hypoxia. Bax and Bcl-2 are among the agents that regulate apoptosis. The amplification of the first one triggers the initiation of apoptosis, and the second one prevents it. Ghrelin is an endogenous peptide that antiapoptosis is its new effect. The aim of this study is to examine the effect of ghrelin on the Bax/Bcl-2 ratio. METHODS Twenty four wistar rats were divided randomly in three groups; control, hypoxic + saline and hypoxic + ghrelin. Hypoxic animals lived in O2 11% for 2 weeks and received either saline or ghrelin subcutaneously daily. The bax and Bcl-2 gene expression were measured by Real-Time RT-PCR. RESULTS Chronic hypoxia increased the Bax gene expression significantly compared with normal animals (P = 0.008), but the Bcl-2 was not affected by hypoxia. The Bax/Bcl-2 ratio also amplified significantly (P=0.005). Ghrelin administration significantly increased the Bax/Bcl-2 ratio in the hypoxic animals compared to the hypoxic + saline and normal groups (p=0.042 and P= 0.001, respectively). CONCLUSION In the present study, animals' treatment with ghrelin leads to an increment of Bax/Bcl-2 ratio, which indicates a controversy related to cardioprotection of ghrelin.
Collapse
Affiliation(s)
| | | | - Shohreh Almasi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Physiology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
12
|
Mosa RMH, Zhang Z, Shao R, Deng C, Chen J, Chen C. Implications of ghrelin and hexarelin in diabetes and diabetes-associated heart diseases. Endocrine 2015; 49:307-23. [PMID: 25645463 DOI: 10.1007/s12020-015-0531-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/12/2015] [Indexed: 02/07/2023]
Abstract
Ghrelin and its synthetic analog hexarelin are specific ligands of growth hormone secretagogue (GHS) receptor. GHS have strong growth hormone-releasing effect and other neuroendocrine activities such as stimulatory effects on prolactin and adrenocorticotropic hormone secretion. Recently, several studies have reported other beneficial functions of GHS that are independent of GH. Ghrelin and hexarelin, for examples, have been shown to exert GH-independent cardiovascular activity. Hexarelin has been reported to regulate peroxisome proliferator-activated receptor gamma (PPAR-γ) in macrophages and adipocytes. PPAR-γ is an important regulator of adipogenesis, lipid metabolism, and insulin sensitization. Ghrelin also shows protective effects on beta cells against lipotoxicity through activation of phosphatidylinositol-3 kinase/protein kinase B, c-Jun N-terminal kinase (JNK) inhibition, and nuclear exclusion of forkhead box protein O1. Acylated ghrelin (AG) and unacylated ghrelin (UAG) administration reduces glucose levels and increases insulin-producing beta cell number, and insulin secretion in pancreatectomized rats and in newborn rats treated with streptozotocin, suggesting a possible role of GHS in pancreatic regeneration. Therefore, the discovery of GHS has opened many new perspectives in endocrine, metabolic, and cardiovascular research areas, suggesting the possible therapeutic application in diabetes and diabetic complications especially diabetic cardiomyopathy. Here, we review the physiological roles of ghrelin and hexarelin in the protection and regeneration of beta cells and their roles in the regulation of insulin release, glucose, and fat metabolism and present their potential therapeutic effects in the treatment of diabetes and diabetic-associated heart diseases.
Collapse
|
13
|
Diaz-Ganete A, Baena-Nieto G, Lomas-Romero IM, Lopez-Acosta JF, Cozar-Castellano I, Medina F, Segundo C, Lechuga-Sancho AM. Ghrelin's Effects on Proinflammatory Cytokine Mediated Apoptosis and Their Impact on β-Cell Functionality. Int J Endocrinol 2015; 2015:235727. [PMID: 26257781 PMCID: PMC4519548 DOI: 10.1155/2015/235727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023] Open
Abstract
Ghrelin is a peptidic hormone, which stimulates cell proliferation and inhibits apoptosis in several tissues, including pancreas. In preclinical stage of type 1 diabetes, proinflammatory cytokines generate a destructive environment for β-cells known as insulitis, which results in loss of β-cell mass and impaired insulin secretion, leading to diabetes. Our aim was to demonstrate that ghrelin could preserve β-cell viability, turnover rate, and insulin secretion acting as a counter balance of cytokines. In the present work we reproduced proinflammatory milieu found in insulitis stage by treating murine cell line INS-1E and rat islets with a cytokine cocktail including IL-1β, IFNγ, and TNFα and/or ghrelin. Several proteins involved in survival pathways (ERK 1/2 and Akt/PKB) and apoptosis (caspases and Bcl-2 protein family and endoplasmic reticulum stress markers) as well as insulin secretion were analyzed. Our results show that ghrelin alone has no remarkable effects on β-cells in basal conditions, but interestingly it activates cell survival pathways, downregulates apoptotic mediators and endoplasmic reticulum stress, and restores insulin secretion in response to glucose when beta-cells are cytokine-exposed. These data suggest a potential role of ghrelin in preventing or slowing down the transition from a preclinical to clinically established diabetes by ameliorating the effects of insulitis on β-cells.
Collapse
Affiliation(s)
| | - Gloria Baena-Nieto
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Department of Endocrinology and Nutrition, Jerez de la Frontera General Hospital, 11407 Jerez de la Frontera, Spain
| | - Isabel M. Lomas-Romero
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Andalusian Cellular Reprogramming Laboratory, 41092 Sevilla, Spain
| | - Jose Francisco Lopez-Acosta
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Genetics and Molecular Biology Research Institute, University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Irene Cozar-Castellano
- Genetics and Molecular Biology Research Institute, University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Francisco Medina
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Salus Infirmorum Faculty of Nursing, Cadiz University, 11001 Cadiz, Spain
| | - Carmen Segundo
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Salus Infirmorum Faculty of Nursing, Cadiz University, 11001 Cadiz, Spain
- *Carmen Segundo: and
| | - Alfonso M. Lechuga-Sancho
- Research Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Department of Maternal and Pediatric Medicine and Radiology, Pediatrics Unit, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- *Alfonso M. Lechuga-Sancho:
| |
Collapse
|
14
|
Shao S, Yang Y, Yuan G, Zhang M, Yu X. Signaling molecules involved in lipid-induced pancreatic beta-cell dysfunction. DNA Cell Biol 2013; 32:41-9. [PMID: 23347443 DOI: 10.1089/dna.2012.1874] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The increasing incidence of type 2 diabetes mellitus is partially due to the rising obesity rates and the elevated levels of free fatty acids (FFAs). It is known that FFAs are putative mediators of beta-cell dysfunction, which is characterized with impaired glucose-stimulated insulin secretion and increased apoptosis, being defined as lipotoxicity. To date, many factors and their related signal pathways have been reported to be involved in FFA-induced beta-cell dysfunction. However, the entire blueprint is still not obtained. Some essential and newfound effectors, including the sterol regulatory element-binding protein (SREBP)-1c, farnesoid X receptor (FXR), forkhead box-containing protein O (FoxO) 1, ubiquitin C-terminal hydrolase L (UCHL) 1, N-myc downstream-regulated gene (NDRG) 2, perilipin family proteins, silent information regulator 2 protein 1 (Sirt1), pituitary adenylate cyclase-activating polypeptide (PACAP), and ghrelin are described in this review, which may help to further understand the molecular network for lipotoxicity.
Collapse
Affiliation(s)
- Shiying Shao
- Division of Endocrinology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Chopin LK, Seim I, Walpole CM, Herington AC. The ghrelin axis--does it have an appetite for cancer progression? Endocr Rev 2012; 33:849-91. [PMID: 22826465 DOI: 10.1210/er.2011-1007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHSR), is a peptide hormone with diverse physiological roles. Ghrelin regulates GH release, appetite and feeding, gut motility, and energy balance and also has roles in the cardiovascular, immune, and reproductive systems. Ghrelin and the GHSR are expressed in a wide range of normal and tumor tissues, and a fluorescein-labeled, truncated form of ghrelin is showing promise as a biomarker for prostate cancer. Plasma ghrelin levels are generally inversely related to body mass index and are unlikely to be useful as a biomarker for cancer, but may be useful as a marker for cancer cachexia. Some single nucleotide polymorphisms in the ghrelin and GHSR genes have shown associations with cancer risk; however, larger studies are required. Ghrelin regulates processes associated with cancer, including cell proliferation, apoptosis, cell migration, cell invasion, inflammation, and angiogenesis; however, the role of ghrelin in cancer is currently unclear. Ghrelin has predominantly antiinflammatory effects and may play a role in protecting against cancer-related inflammation. Ghrelin and its analogs show promise as treatments for cancer-related cachexia. Further studies using in vivo models are required to determine whether ghrelin has a role in cancer progression.
Collapse
Affiliation(s)
- Lisa K Chopin
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Queensland University of Technology and Australian Prostate Cancer Research Centre-Queensland, Brisbane, Queensland 4001, Australia.
| | | | | | | |
Collapse
|
16
|
Liu ZB, Fei SJ, Zhu SP, Zhu JZ, Han HX, Dong QJ, Zhang JF. Protection of ghrelin postconditioning on hypoxia/reoxygenation in gastric epithelial cells. World J Gastroenterol 2012; 18:5377-88. [PMID: 23082054 PMCID: PMC3471106 DOI: 10.3748/wjg.v18.i38.5377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/16/2012] [Accepted: 04/13/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protective effect and mechanisms of ghrelin postconditioning against hypoxia/reoxygenation (H/R)-induced injury in human gastric epithelial cells.
METHODS: The model of H/R injury was established in gastric epithelial cell line (GES-1) human gastric epithelial cells. Cells were divided into seven groups: normal control group (N); H/R postconditioning group; DMSO postconditioning group (DM); ghrelin postconditioning group (GH); D-Lys3-GHRP-6 + ghrelin postconditioning group (D + GH); capsazepine + ghrelin postconditioning group (C + GH); and LY294002 + ghrelin postconditioning group (L + GH). 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to detect GES-1 cell viability. Hoechst 33258 fluorochrome staining and flow cytometry were conducted to determine apoptosis of GES-1 cells. Spectrophotometry was performed to determine release of lactate dehydrogenate (LDH). Protein expression of Bcl-2, Bax, Akt, and glycogen synthase kinase (GSK)-3β was determined by western blotting. Expression of vanilloid receptor subtype 1 (VR1), Akt and GSK-3β was observed by immunocytochemistry.
RESULTS: Compared with the H/R group, cell viability of the GH group was significantly increased in a dose-dependent manner (55.9% ± 10.0% vs 69.6% ± 9.6%, 71.9% ± 17.4%, and 76.3% ± 13.3%). Compared with the H/R group, the percentage of apoptotic cells in the GH group significantly decreased (12.38% ± 1.51% vs 6.88% ± 0.87%). Compared with the GH group, the percentage of apoptotic cells in the D + GH group, C + GH group and L + GH groups significantly increased (11.70% ± 0.88%, 11.93% ± 0.96%, 10.20% ± 1.05% vs 6.88% ± 0.87%). There were no significant differences in the percentage of apoptotic cells between the H/R and DM groups (12.38% ± 1.51% vs13.00% ± 1.13%). There was a significant decrease in LDH release following ghrelin postconditioning compared with the H/R group (561.58 ± 64.01 U/L vs 1062.45 ± 105.29 U/L). There was a significant increase in LDH release in the D + GH, C + GH and L + GH groups compared with the GH group (816.89 ± 94.87 U/L, 870.95 ± 64.06 U/L, 838.62 ± 118.45 U/L vs 561.58 ± 64.01 U/L). There were no significant differences in LDH release between the H/R and DM groups (1062.45 ± 105.29 U/L vs 1017.65 ± 68.90 U/L). Compared with the H/R group, expression of Bcl-2 and Akt increased in the GH group, whereas expression of Bax and GSK-3β decreased. Compared with the GH group, expression of Bcl-2 decreased and Bax increased in the D + GH, C + GH and L + GH groups, and Akt decreased and GSK-3β increased in the L + GH group. The H/R group also upregulated expression of VR1 and GSK-3β and downregulated Akt. The number of VR1-positive and Akt-positive cells in the GH group significantly increased, whereas the number of GSK-3β-positive cells significantly decreased. These effects of ghrelin were reversed by capsazepine and LY294002.
CONCLUSION: Ghrelin postconditioning protected against H/R-induced injury in human gastric epithelial cells, which indicated that this protection might be associated with GHS-R, VR1 and the PI3K/Akt signaling pathway.
Collapse
|
17
|
Fung JNT, Seim I, Wang D, Obermair A, Chopin LK, Chen C. Expression and in vitro functions of the ghrelin axis in endometrial cancer. Discov Oncol 2011; 1:245-55. [PMID: 21761369 DOI: 10.1007/s12672-010-0047-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ghrelin is a peptide hormone produced in the stomach and a range of other tissues, where it has endocrine, paracrine and autocrine roles in both normal and disease states. Ghrelin has been shown to be an important growth factor for a number of tumours, including prostate and breast cancers. In this study, we examined the expression of the ghrelin axis (ghrelin and its receptor, the growth hormone secretagogue receptor, GHSR) in endometrial cancer. Ghrelin is expressed in a range of endometrial cancer tissues, while its cognate receptor, GHSR1a, is expressed in a small subset of normal and cancer tissues. Low to moderately invasive endometrial cancer cell lines were examined by RT-PCR and immunoblotting, demonstrating that ghrelin axis mRNA and protein expression correlate with differentiation status of Ishikawa, HEC1B and KLE endometrial cancer cell lines. Moreover, treatment with ghrelin potently stimulated cell proliferation and inhibited cell death. Taken together, these data indicate that ghrelin promotes the progression of endometrial cancer cells in vitro, and may contribute to endometrial cancer pathogenesis and represent a novel treatment target.
Collapse
Affiliation(s)
- Jenny N T Fung
- Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
BACKGROUND AND AIM The aim of the present study was to investigate if ghrelin inhibits apoptosis in colonic cancer cells. METHODS Cell viability in HT-29 cells was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was measured using 4',6-diamidino-2-phenylindole staining and flow cytometry. The protein expression of Bcl-2, Bax, and caspase-3 activation was examined using Western blotting. RESULTS Ghrelin dose dependently decreased the growth inhibition of HT-29 cells induced by 5-fluorouracil (5-FU). Cells treated with 5-FU displayed chromatin condensation and nuclear fragmentation, which are typical changes of apoptosis. However, co-treatment with ghrelin reduced these changes. Flow cytometry after staining with Annexin V and propidium iodide showed that ghrelin decreased the apoptotic rate of HT-29 cells induced by 5-FU. Caspase-3 activation was significantly lower in the co-treated group than in the group treated with 5-FU alone. In addition, ghrelin reversed the 5-FU-induced Bcl-2/Bax protein ratio. CONCLUSION Ghrelin inhibits 5-FU-induced apoptosis in colon cancer cells through the regulation of the Bcl-2/Bax protein ratio.
Collapse
Affiliation(s)
- Xiao-Tong He
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China
| | | | | |
Collapse
|
19
|
Chopin L, Walpole C, Seim I, Cunningham P, Murray R, Whiteside E, Josh P, Herington A. Ghrelin and cancer. Mol Cell Endocrinol 2011; 340:65-9. [PMID: 21616120 DOI: 10.1016/j.mce.2011.04.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/18/2011] [Accepted: 04/21/2011] [Indexed: 01/30/2023]
Abstract
Ghrelin is a peptide hormone that was originally isolated from the stomach as the endogenous ligand for the growth hormone secretagogue receptor (GHSR). Ghrelin has many functions, including the regulation of appetite and gut motility, growth hormone release from the anterior pituitary and roles in the cardiovascular and immune systems. Ghrelin and its receptor are expressed in a number of cancers and cancer cell lines and may play a role in processes associated with cancer progression, including cell proliferation, apoptosis, and cell invasion and migration.
Collapse
Affiliation(s)
- Lisa Chopin
- Queensland University of Technology, Brisbane, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chung H, Chung HY, Bae CW, Kim CJ, Park S. Ghrelin suppresses tunicamycin- or thapsigargin-triggered endoplasmic reticulum stress-mediated apoptosis in primary cultured rat cortical neuronal cells. Endocr J 2011; 58:409-20. [PMID: 21490406 DOI: 10.1507/endocrj.k10e-396] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ghrelin functions as a neuroprotective agent and rescues neurons from various insults. However, the molecular mechanisms underlying ghrelin neuroprotection remains to be elucidated. An accumulation of unfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and then induces ER stress-mediated cell death. Here, we report that acylated ghrelin inhibited tunicamycin- or thapsigargin-triggered ER stress-induced apoptotic cell death in primary rat cortical neurons. An analysis using a specific inhibitor of phosphatidylinositol-3-kinase (PI3K), LY294002, showed that ghrelin prevented apoptosis via the activation of PI3K signaling pathway. Ghrelin suppressed tunicamycin- or thapsigargin-induced upregulation and nuclear translocation of C/EBP homologous protein (CHOP). Ghrelin also inhibited tunicamycin or thapsigargin induction of PRK-like ER kinase (PERK), eukaryotic translation initiation factor-2α (eIF2α) and activating transcription factor (ATF) 4. Exposure of cells to tunicamycin or thapsigargin resulted in nuclear translocation of forkhead box protein O1 (Foxo1), which was reduced by pretreatment with ghrelin. The protective effect of ghrelin was accompanied by an increased phosphorylation of Akt and glycogen synthase kinase (GSK)-3β. Furthermore, ghrelin phosphorylated and inactivated pro-apoptotic BAD and Foxo1. In addition, phospho-Akt was translocated to the nucleus in response to ghrelin and PI3K inhibition by LY294002 prevented ghrelin-induced effect on phospho-Akt localization. Our study suggests that suppression of CHOP activation via the inhibition of PERK/eIF2α/ATF4 pathway and prevention of Foxo1 activation and nuclear translocation may contribute to ghrelin-mediated neuroprotection during ER stress responses. Our data also suggest that PI3K/Akt-mediated inactivation of GSK-3β, BAD and Foxo1 may be associated with the anti-apoptotic effect of ghrelin.
Collapse
Affiliation(s)
- Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, The East-West Neo Medical Center, School of Medicine, Kyung Hee University, Gangdong-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
21
|
Kheradmand A, Dezfoulian O, Tarrahi MJ. Ghrelin attenuates heat-induced degenerative effects in the rat testis. ACTA ACUST UNITED AC 2010; 167:97-104. [PMID: 21167869 DOI: 10.1016/j.regpep.2010.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
This study was conducted to examine the efficacy of ghrelin in prevention of deleterious effects of heat stress in rat testicular tissue. Forty five adult male rats were scheduled for this study and were divided equally into three groups: heat-saline, heat-ghrelin and control-saline. The scrota of heated-designed rats were immersed once in water bath at 43 °C for 15 min. Immediately upon heating, 2 nmol of ghrelin were given subcutaneously to heat-ghrelin animals every other day up to day 60 and physiological saline to the other two groups using the same method. The animals were sacrificed at 10, 30 and 60 days after heat treatment and their testes were taken for later photomicrograph and immunohistochemical analysis. Testicular histopathology revealed a significant reduction in the means of seminiferous tubules and Sertoli cell nucleus diameters as well as germinal epithelium height on day 10 in both heated groups. Furthermore, other testicular components including miotic index, spermatogenesis rate, presence of spermatocytes and volume densities were dramatically decreased following heat exposure. Notably, ghrelin caused a partial recovery in all of the above-mentioned parameters and accelerated testicular regeneration process by day 30 compared to the heat-saline group (P<0.05). Because of testicular progressive recovery, these indices were similar among groups on day 60 (P>0.05). However, immunohistochemistry evaluation for in situ detection of Bcl-2 protein did not exhibit any germ cells-positive of this factor among groups at different experimental days. In conclusion, the results of the present study indicate for the first time the novel evidences of ghrelin ability in attenuation of heat-induced testicular damage and also that ghrelin therapy may be useful as a suppressor of degenerative effects following testicular hyperthermia.
Collapse
Affiliation(s)
- Arash Kheradmand
- Department of Clinical Sciences, School of Veterinary Medicine, Lorestan University, P. O. Box: 465, Khorram Abad, Iran.
| | | | | |
Collapse
|
22
|
Ferrini F, Salio C, Lossi L, Merighi A. Ghrelin in central neurons. Curr Neuropharmacol 2010; 7:37-49. [PMID: 19721816 PMCID: PMC2724662 DOI: 10.2174/157015909787602779] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/15/2008] [Accepted: 09/01/2008] [Indexed: 12/20/2022] Open
Abstract
Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, is released in the bloodstream in response to a negative energetic status. Since discovery, the hypothalamus was identified as the main source of ghrelin in the CNS, and effects of the peptide have been mainly observed in this area of the brain. In recent years, an increasing number of studies have reported ghrelin synthesis and effects in specific populations of neurons also outside the hypothalamus. Thus, ghrelin activity has been described in midbrain, hindbrain, hippocampus, and spinal cord. The spectrum of functions and biological effects produced by the peptide on central neurons is remarkably wide and complex. It ranges from modulation of membrane excitability, to control of neurotransmitter release, neuronal gene expression, and neuronal survival and proliferation. There is not at present a general consensus concerning the source of ghrelin acting on central neurons. Whereas it is widely accepted that the hypothalamus represents the most important endogenous source of the hormone in CNS, the existence of extra-hypothalamic ghrelin-synthesizing neurons is still controversial. In addition, circulating ghrelin can theoretically be another natural ligand for central ghrelin receptors. This paper gives an overview on the distribution of ghrelin and its receptor across the CNS and critically analyses the data available so far as regarding the effects of ghrelin on central neurotransmission.
Collapse
Affiliation(s)
- F Ferrini
- Dipartimento di Morfofisiologia Veterinaria, Università di Torino, Via Leonardo da Vinci 44, 10095, Grugliasco, Italy
| | | | | | | |
Collapse
|
23
|
Wang W, Zhang D, Zhao H, Chen Y, Liu Y, Cao C, Han L, Liu G. Ghrelin inhibits cell apoptosis induced by lipotoxicity in pancreatic beta-cell line. REGULATORY PEPTIDES 2010; 161:43-50. [PMID: 20079380 DOI: 10.1016/j.regpep.2009.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/20/2009] [Accepted: 12/30/2009] [Indexed: 02/08/2023]
Abstract
Lipotoxicity plays an important role in underlying mechanism of type 2 diabetes. Prolonged exposure of pancreatic beta-cells to elevated levels of fatty acid is associated with beta-cell apoptosis. Ghrelin is a 28-amino acid peptide, mainly secreted from X/A like cells of gastric fungus. The effects of ghrelin are considered to be broadly including cell protection. However, the mechanism of ghrelin protecting pancreatic beta-cells against lipotoxicity is unknown. Our study showed that ghrelin promoted cell survival and attenuated palmitate-induced apoptosis in pancreatic beta-cells (MIN6). Exposure of MIN6 cells to palmitate (0.4mM) for 24h caused a significant increase in cell apoptosis, which could be protected by ghrelin. Exposure of MIN6 cells to ghrelin caused a rapid activation of protein kinase B (PKB) and inhibition of c-Jun N-terminal kinase (JNK) under lipotoxic state. Furthermore, LY294002, a PI3K inhibitor, abolished the anti-lipotoxic effect of ghrelin, as well as ghrelin-induced inhibition of JNK, while JNK inhibitor, SP600125 enhanced protective effect of ghrelin on MIN6 cells. Ghrelin also inhibited the mitochondrial pathway of apoptosis and it down-regulated Bax in MIN6 cells. For secretion experiment, ghrelin suppressed insulin release under palmitate-incubated state. Our findings suggest that ghrelin may prevent lipotoxicity-induced apoptosis in MIN6 cells through activation of PKB, inhibition of JNK and mitochondrial pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of Endocrinology, First Hospital of China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang W, Liu Y, Chen Y, Cao C, Xiang Y, Zhang D, Han L, Zhao H, Liu G. Inhibition of Foxo1 mediates protective effects of ghrelin against lipotoxicity in MIN6 pancreatic beta-cells. Peptides 2010; 31:307-14. [PMID: 19944124 DOI: 10.1016/j.peptides.2009.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 02/08/2023]
Abstract
Ghrelin is a 28-amino-acid peptide secreted predominantly by X/A-like cells of the gastric fundus. Ghrelin increases pancreatic beta-cell proliferation and survival via sequential activation of phosphatidylinositol-3 kinase (PI3K) and Akt. The transcription regulator Foxo1 is a prominent effector of PI3K/Akt; when it is inhibited, pancreatic beta-cells are protected against fatty-acid-induced apoptosis. We investigated the role of Foxo1 in the protective effect of ghrelin under lipotoxic conditions in the MIN6 pancreatic beta-cell line. Results showed that ghrelin promoted cell proliferation and attenuated palmitate-induced apoptosis in cultured MIN6 cells. Nuclear exclusion of Foxo1 was necessary for the function of ghrelin. Treatment of MIN6 cells with palmitate and ghrelin-induced rapid nuclear exclusion and phosphorylation of Foxo1. Unlike the JNK inhibitor SP600125, Akt inhibitor IV blocked the anti-lipotoxic effect of ghrelin and stimulated Foxo1 nuclear translocation. In addition, treatment with ghrelin combined with SP600125 showed a synergistic antiapoptotic effect in palmitate-treated MIN6 cells. Ghrelin also inhibited the endoplasmic reticulum stress pathway of apoptosis in MIN6 cells, decreased expression of cytoplasmic triglyceride, and downregulated gene expression of Bcl-2-associated X (BAX), sterol-response element-binding protein 1c (SREBP1c), and C/EBP homologous protein (CHOP-10). These findings suggest that ghrelin protects pancreatic beta-cells from lipotoxicity by inhibiting the nuclear translocation of Foxo1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Endocrinology, First Hospital of China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang 110001, Liaoning, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xu Q, Bian H, Han N, Hou R, Zhang Z, Zhu M. cDNA cloning and expression of ghrelin in giant panda (Ailuropoda melanoleuca). Mol Biol Rep 2009; 37:2903-7. [PMID: 19821057 DOI: 10.1007/s11033-009-9850-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 09/28/2009] [Indexed: 12/17/2022]
Abstract
Ghrelin is an endogenous ligand for the growth hormone secretagogue receptor. It plays an important role in stimulating growth hormone secretion, food intake, body weight gain and gastric motility. cDNA sequences coding for ghrelin precursor protein (prepro-ghrelin) were isolated from the stomach of a giant panda. Two different mRNA sequences of ghrelin were obtained. The long open reading frame of ghrelin (354 bp) encodes a precursor protein of 117 amino acids with a 23 amino acid signal peptide. The short one (351 bp) encodes a precursor protein of 116 amino acids with the same 23 amino acid signal peptide. The presumed giant panda mature ghrelin proteins also had two forms. Comparative analysis showed that the first and the fourth amino acids (Gly and Phe) were completely conserved and the third amino acid (Ser) was also highly conserved in the mature ghrelin. RT-PCR analysis of giant panda ghrelin mRNA in various tissues revealed high level of expression in stomach, relative lower levels of expression in small intestine, liver and kidney, and no expression in thymus, spleen and heart.
Collapse
Affiliation(s)
- Qinggang Xu
- College of Life Sciences, Zijingang Campus, Zhejiang University, 388 Yuhangtang Road, 310058 Hangzhou, China
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Ghrelin is a peptide hormone that possesses unique orexigenic properties. By acting on the growth-hormone secretagogue receptor 1a, ghrelin induces a short-term increase in food consumption, which ultimately induces a positive energy balance and increases fat deposition. Reduced ghrelin levels have been observed in obese patients and after bariatric surgery. In particular, bariatric procedures that involve gastric resection or bypass lead to reduced ghrelin levels. Administration of physiological doses of exogenous ghrelin to humans does not significantly alter gastric motility; however, administration of high doses stimulates gastric motility, with increased gastric tone and emptying, and increased activity of migrating motor complexes in the small bowel. The potential of ghrelin agonists to be used as prokinetics is being tested in patients with gastroparesis and postoperative ileus. Ghrelin acts directly on pancreatic islet cells to reduce insulin production. Findings from studies in animals have revealed that small-molecule ghrelin antagonists favorably influence glucose tolerance, appetite suppression and weight loss. Other studies have demonstrated that ghrelin antagonists retard gastric emptying only at very high doses, which suggests that these agents will probably not induce upper gastrointestinal symptoms. The potential of this new class of therapeutic agents to influence appetite and glycemic control strongly indicates that they should be tested in clinical trials.
Collapse
|
27
|
Xu J, Wang S, Lin Y, Cao L, Wang R, Chi Z. Ghrelin protects against cell death of hippocampal neurons in pilocarpine-induced seizures in rats. Neurosci Lett 2009; 453:58-61. [DOI: 10.1016/j.neulet.2009.01.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/25/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
|