1
|
Khandayataray P, Murthy MK. Dietary interventions in mitigating the impact of environmental pollutants on Alzheimer's disease - A review. Neuroscience 2024; 563:148-166. [PMID: 39542342 DOI: 10.1016/j.neuroscience.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Numerous studies linking environmental pollutants to oxidative stress, inflammation, and neurotoxicity have assigned pollutants to several neurodegenerative disorders, including Alzheimer's disease (AD). Heavy metals, pesticides, air pollutants, and endocrine disruptor chemicals have been shown to play important roles in AD development, with some traditional functions in amyloid-β formation, tau kinase action, and neuronal degeneration. However, pharmacological management and supplementation have resulted in limited improvement. This raises the interesting possibility that activities usually considered preventive, including diet, exercise, or mental activity, might be more similar to treatment or therapy for AD. This review focuses on the effects of diet on the effects of environmental pollutants on AD. One of the primary issues addressed in this review is a group of specific diets, including the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH intervention for Neurodegenerative Delay (MIND), which prevent exposure to these toxins. Such diets have been proven to decrease oxidative stress and inflammation, which are unfavorable for neuronal growth. Furthermore, they contribute to positive changes in the composition of the human gut microbiota and thus encourage interactions in the Gut-Brain Axis, reducing inflammation caused by pollutants. This review emphasizes a multi-professional approach with reference to nutritional activities that would lower the neurotoxic load in populations with a high level of exposure to pollutants. Future studies focusing on diet and environment association plans may help identify preventive measures aimed at enhancing current disease deceleration.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
2
|
Cholico GN, Fling RR, Sink WJ, Nault R, Zacharewski T. Inhibition of the urea cycle by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin increases serum ammonia levels in mice. J Biol Chem 2024; 300:105500. [PMID: 38013089 PMCID: PMC10731612 DOI: 10.1016/j.jbc.2023.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
The aryl hydrocarbon receptor is a ligand-activated transcription factor known for mediating the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. TCDD induces nonalcoholic fatty liver disease (NAFLD)-like pathologies including simple steatosis that can progress to steatohepatitis with fibrosis and bile duct proliferation in male mice. Dose-dependent progression of steatosis to steatohepatitis with fibrosis by TCDD has been associated with metabolic reprogramming, including the disruption of amino acid metabolism. Here, we used targeted metabolomic analysis to reveal dose-dependent changes in the level of ten serum and eleven hepatic amino acids in mice upon treatment with TCDD. Bulk RNA-seq and protein analysis showed TCDD repressed CPS1, OTS, ASS1, ASL, and GLUL, all of which are associated with the urea cycle and glutamine biosynthesis. Urea and glutamine are end products of the detoxification and excretion of ammonia, a toxic byproduct of amino acid catabolism. Furthermore, we found that the catalytic activity of OTC, a rate-limiting step in the urea cycle was also dose dependently repressed. These results are consistent with an increase in circulating ammonia. Collectively, the repression of the urea and glutamate-glutamine cycles increased circulating ammonia levels and the toxicity of TCDD.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Russell R Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA; Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Warren J Sink
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Rance Nault
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
3
|
Tsamou M, Pistollato F, Roggen EL. A Tau-Driven Adverse Outcome Pathway Blueprint Toward Memory Loss in Sporadic (Late-Onset) Alzheimer's Disease with Plausible Molecular Initiating Event Plug-Ins for Environmental Neurotoxicants. J Alzheimers Dis 2021; 81:459-485. [PMID: 33843671 DOI: 10.3233/jad-201418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The worldwide prevalence of sporadic (late-onset) Alzheimer's disease (sAD) is dramatically increasing. Aging and genetics are important risk factors, but systemic and environmental factors contribute to this risk in a still poorly understood way. Within the frame of BioMed21, the Adverse Outcome Pathway (AOP) concept for toxicology was recommended as a tool for enhancing human disease research and accelerating translation of data into human applications. Its potential to capture biological knowledge and to increase mechanistic understanding about human diseases has been substantiated since. In pursuit of the tau-cascade hypothesis, a tau-driven AOP blueprint toward the adverse outcome of memory loss is proposed. Sequences of key events and plausible key event relationships, triggered by the bidirectional relationship between brain cholesterol and glucose dysmetabolism, and contributing to memory loss are captured. To portray how environmental factors may contribute to sAD progression, information on chemicals and drugs, that experimentally or epidemiologically associate with the risk of AD and mechanistically link to sAD progression, are mapped on this AOP. The evidence suggests that chemicals may accelerate disease progression by plugging into sAD relevant processes. The proposed AOP is a simplified framework of key events and plausible key event relationships representing one specific aspect of sAD pathology, and an attempt to portray chemical interference. Other sAD-related AOPs (e.g., Aβ-driven AOP) and a better understanding of the impact of aging and genetic polymorphism are needed to further expand our mechanistic understanding of early AD pathology and the potential impact of environmental and systemic risk factors.
Collapse
|
4
|
Mir RH, Sawhney G, Pottoo FH, Mohi-Ud-Din R, Madishetti S, Jachak SM, Ahmed Z, Masoodi MH. Role of environmental pollutants in Alzheimer's disease: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44724-44742. [PMID: 32715424 DOI: 10.1007/s11356-020-09964-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Neurodegenerative disorders are commonly erratic influenced by various factors including lifestyle, environmental, and genetic factors. In recent observations, it has been hypothesized that exposure to various environmental factors enhances the risk of Alzheimer's disease (AD). The exact etiology of Alzheimer's disease is still unclear; however, the contribution of environmental factors in the pathology of AD is widely acknowledged. Based on the available literature, the review aims to culminate in the prospective correlation between the various environmental factors and AD. The prolonged exposure to the various well-known environmental factors including heavy metals, air pollutants (particulate matter), pesticides, nanoparticles containing metals, industrial chemicals results in accelerating the progression of AD. Common mechanisms have been documented in the field of environmental contaminants for enhancing amyloid-β (Aβ) peptide along with tau phosphorylation, resulting in the initiation of senile plaques and neurofibrillary tangles, which results in the death of neurons. This review offers a compilation of available data to support the long-suspected correlation between environmental risk factors and AD pathology. Graphical abstract .
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India
| | - Sreedhar Madishetti
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Sanjay M Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
5
|
Batista-Silva H, Dambrós BF, Rodrigues K, Cesconetto PA, Zamoner A, Sousa de Moura KR, Gomes Castro AJ, Van Der Kraak G, Mena Barreto Silva FR. Acute exposure to bis(2-ethylhexyl)phthalate disrupts calcium homeostasis, energy metabolism and induces oxidative stress in the testis of Danio rerio. Biochimie 2020; 175:23-33. [PMID: 32417457 DOI: 10.1016/j.biochi.2020.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
Bis(2-ethylhexyl)phthalate (BEHP) negatively affects testicular functions in different animal species, disturbing reproductive physiology and male fertility. The present study investigated the in vitro acute effect of BEHP on the mechanism of action of ionic calcium (Ca2+) homeostasis and energy metabolism. In addition, the effect of BEHP on oxidative stress was studied in vitro and in vivo in the testis of Danio rerio (D. rerio). Testes were treated in vitro for 30 min with 1 μM BEHP for 45Ca2+ influx measurements. Testes were also incubated with 1 μM BEHP for 1 h (in vitro) or 12 h (in vivo) for the measurements of lactate content, 14C-deoxy-d-glucose uptake, lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GGT) activity, total reactive oxygen species (ROS) production and lipid peroxidation. In addition, the effect of BEHP (1 μM) on GGT, glutamic oxaloacetic transferase (GOT) and glutamic pyruvic transferase (GPT) activity in the liver was evaluated after in vivo treatment for 12 h. BEHP disturbs the Ca2+ balance in the testis when given acutely in vitro. BEHP stimulated Ca2+ influx occurs through L-type voltage-dependent Ca2+ channels (L-VDCC), transitory receptor potential vaniloid (TRPV1) channels, reverse-mode Na+/Ca2+ exchanger (NCX) activation and inhibition of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). BEHP affected energy metabolism in the testis by decreasing the lactate content and LDH activity. In vitro and in vivo acute effects of BEHP promoted oxidative stress by increasing ROS production, lipid peroxidation and GGT activity in the testis. Additionally, BEHP caused liver damage by increasing GPT activity.
Collapse
Affiliation(s)
- Hemily Batista-Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Betina Fernanda Dambrós
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Keyla Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Patrícia Acordi Cesconetto
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | | | - Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
6
|
Ku CC, Wuputra K, Kato K, Lin WH, Pan JB, Tsai SC, Kuo CJ, Lee KH, Lee YL, Lin YC, Saito S, Noguchi M, Nakamura Y, Miyoshi H, Eckner R, Nagata K, Wu DC, Lin CS, Yokoyama KK. Jdp2-deficient granule cell progenitors in the cerebellum are resistant to ROS-mediated apoptosis through xCT/Slc7a11 activation. Sci Rep 2020; 10:4933. [PMID: 32188872 PMCID: PMC7080836 DOI: 10.1038/s41598-020-61692-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
The Jun dimerization protein 2 (Jdp2) is expressed predominantly in granule cell progenitors (GCPs) in the cerebellum, as was shown in Jdp2-promoter-Cre transgenic mice. Cerebellum of Jdp2-knockout (KO) mice contains lower number of Atoh-1 positive GCPs than WT. Primary cultures of GCPs from Jdp2-KO mice at postnatal day 5 were more resistant to apoptosis than GCPs from wild-type mice. In Jdp2-KO GCPs, the levels of both the glutamate‒cystine exchanger Sc7a11 and glutathione were increased; by contrast, the activity of reactive oxygen species (ROS) was decreased; these changes confer resistance to ROS-mediated apoptosis. In the absence of Jdp2, a complex of the cyclin-dependent kinase inhibitor 1 (p21Cip1) and Nrf2 bound to antioxidant response elements of the Slc7a11 promoter and provide redox control to block ROS-mediated apoptosis. These findings suggest that an interplay between Jdp2, Nrf2, and p21Cip1 regulates the GCP apoptosis, which is one of critical events for normal development of the cerebellum.
Collapse
Affiliation(s)
- Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.).,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.)
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.).,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.)
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, The University of Tsukuba, 305-8577, Tsukuba, Ibaraki, Japan
| | - Wen-Hsin Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.).,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.)
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.).,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.)
| | - Shih-Chieh Tsai
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Xinshi Dist., 74147, Tainan, Taiwan (R.O.C.).,Founder of Gecoll Biomedicine Co. Ltd., Xinshi Dist., 744, Tainan, Taiwan (R.O.C.)
| | - Che-Jung Kuo
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Xinshi Dist., 74147, Tainan, Taiwan (R.O.C.)
| | - Kan-Hung Lee
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Nangang Dist., 11599, Taipei, Taiwan (R.O.C.)
| | - Yan-Liang Lee
- Welgene Biotech., Inc., 11503, Taipei, Taiwan (R.O.C.)
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan
| | - Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita, 329-2192, Tochigi, Japan.,Waseda Research Institute for Science & Engineering, Waseda University, 169-0051, Tokyo, Japan
| | - Michiya Noguchi
- Cell Engineering Division, RIKEN BioResource Research Center, 305-0074, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, 305-0074, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Miyoshi
- Graduate Institute of Medicine, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.).,Department of Physiology, Keio University School of Medicine, Shinanaomachi, 168-8582, Tokyo, Japan
| | - Richard Eckner
- Departent of. Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, The State University of New Jersey, 07-103, Newark, NJ, USA
| | - Kyosuke Nagata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, The University of Tsukuba, 305-8577, Tsukuba, Ibaraki, Japan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.).,Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 80708, Kaohsiung, Taiwan (R.O.C.)
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.). .,Department of Biological Sciences, National Sun Yat-sen University, 80424, Kaohsiung, Taiwan (R.O.C.).
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.). .,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan (R.O.C.). .,Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-8655, Tokyo, Japan.
| |
Collapse
|
7
|
Comet assay in neural cells as a tool to monitor DNA damage induced by chemical or physical factors relevant to environmental and occupational exposure. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:402990. [DOI: 10.1016/j.mrgentox.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
|
8
|
Zhang Z, He J, Shi T, Tang N, Zhang S, Wen S, Liu X, Zhao M, Wang D, Chen W. Associations between polychlorinated dibenzo-dioxins and polychlorinated dibenzo-furans exposure and oxidatively generated damage to DNA and lipid. CHEMOSPHERE 2019; 227:237-246. [PMID: 30991198 DOI: 10.1016/j.chemosphere.2019.04.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Polychlorinated dibenzo-dioxins and polychlorinated dibenzo-furans (PCDD/Fs) have been reported to induce reactive oxygen species and oxidative stress, but the dose-response relationships have not been explored in molecular epidemiological studies. In this study, a total of 602 participants were recruited, comprising of 215 foundry workers, 171 incineration workers and 216 residents living more than 5 km away from the plants as the reference group. Individual PCDD/Fs exposures were estimated according to PCDD/Fs levels of working and living ambient air and daily foods. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-iso-prostaglandin-F2α (8-isoPGF2α) were determined to reflect oxidatively generated damage to DNA and lipid. Generalized linear models were used to access the associations between PCDD/Fs exposure and oxidative stress biomarkers. We found that PCDD/Fs exposure and urinary oxidative stress biomarkers of workers were all higher than those of the reference group. Significantly positive exposure-response relationships between individual PCDD/Fs exposures and urinary 8-oxodG and 8-iso-PGF2α were found. Each 1-unit increase in ln-transformed levels of PCDD/Fs exposure generated a 0.78 nmol/mmol creatinine increase in ln-transformed 8-oxodG and a 0.50 ng/mmol creatinine increase in ln-transformed 8-isoPGF2α in foundry workers, a 0.49 nmol/mmol creatinine increase in ln-transformed 8-oxodG and a 0.26 ng/mmol creatinine increase in ln-transformed 8-isoPGF2α in incineration workers, compared with the reference group. And such associations were not modified by tobacco use. Our findings could help to understand the dose-response relationships between PCDD/Fs and oxidatively generated damage to DNA and lipid, and provide an epidemiologic basis for conducting research on the carcinogenesis and other toxicity mechanisms of PCDD/Fs.
Collapse
Affiliation(s)
- Zhuang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jintong He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Zhuhai Center for Chronic Disease Control, Zhuhai, Guangdong, 519060, China
| | - Tingming Shi
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Sukun Zhang
- South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection (MEP), Guangzhou, 510655, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Xiao Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Ming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
9
|
Rasinger J, Carroll T, Maranghi F, Tassinari R, Moracci G, Altieri I, Mantovani A, Lundebye AK, Hogstrand C. Low dose exposure to HBCD, CB-153 or TCDD induces histopathological and hormonal effects and changes in brain protein and gene expression in juvenile female BALB/c mice. Reprod Toxicol 2018; 80:105-116. [DOI: 10.1016/j.reprotox.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
|
10
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
11
|
Chen Y, Xu L, Xie HQH, Xu T, Fu H, Zhang S, Sha R, Xia Y, Zhao B. Identification of differentially expressed genes response to TCDD in rat brain after long-term low-dose exposure. J Environ Sci (China) 2017; 62:92-99. [PMID: 29289296 DOI: 10.1016/j.jes.2017.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Several cohort studies have reported that dioxin and dioxin-like polychlorinated biphenyls might impair the nervous system and lead to neurological or neurodegenerative diseases in the elder people, but there is limited research on the involved mechanism. By using microarray analysis, we figured out the differentially expressed genes between brain samples from SD rats after low-dose (0.1μg/(kg▪bw)) dioxin exposure for six months and controls. To investigate the function changes in the course of dioxin exposure, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the differentially expressed genes. And the changes of several picked genes have been verified by real-time PCR. A total of 145 up-regulated and 64 down-regulated genes were identified. The metabolic processes, interleukin-1 secretion and production were significantly associated with the differentially expressed genes. And the genes regulated by dioxin also clustered to cholinergic synapse and long-term potentiation. Candidate biomarker genes such as egr1, gad2, gabrb3, abca1, ccr5 and pycard may be toxicological targets for dioxin. Furthermore, synaptic plasticity and neuro-immune system may be two principal affected areas by dioxin.
Collapse
Affiliation(s)
- Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Q H Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Han M, Liu X, Liu S, Su G, Fan X, Chen J, Yuan Q, Xu G. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces hepatic stellate cell (HSC) activation and liver fibrosis in C57BL6 mouse via activating Akt and NF-κB signaling pathways. Toxicol Lett 2017; 273:10-19. [PMID: 28302560 DOI: 10.1016/j.toxlet.2017.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/18/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental pollutant that could induce serious toxic effects in both humans and rodents. Some studies suggested that TCDD exposure may facilitate the activation of hepatic stellate cells (HSCs) and liver injury. However, the underlying molecular mechanism by which environmental pollutants promote liver injury remains poorly understood. In the present study, we established an animal model of TCDD exposure by intraperitoneal injection of TCDD in male C57BL/6J mice. As revealed by Sirius red staining and hematoxylin-eosin (H&E) staining evaluation, we found that TCDD-exposed mice showed extensive disruption of liver architecture, including hepatocellular necrosis, inflammatory cell infiltration, and fibrosis. Furthermore, we showed that TCDD up-regulated the expression and secretion of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in a dose-dependent manner in cultured HSCs. The effects of TCDD on cytokine secretion were very likely mediated by protein kinase B/Akt and Nuclear Factor kappa B (NF-κB) pathways, as indicated by the fact that TCDD markedly increased Akt phosphorylation and nuclear translocation of NF-κB p65 in HSCs. Furthermore, LY294002, an Akt inhibitor, significantly attenuated TCDD-triggered HSC activation through blocking Akt phosphorylation and NF-κB activation. These results indicate that HSCs are susceptible to the cytotoxic effects of TCDD and chronic TCDD exposure may contribute to liver fibrosis by activating HSC Akt and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Ming Han
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226001, Jiangsu, PR China; Chuzhou Center for Disease Control and Prevention, Chuzhou, 239499 Anhui, PR China
| | - Xipeng Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226001, Jiangsu, PR China; Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Huangpu, 200011 Shanghai, PR China
| | - Suyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226001, Jiangsu, PR China
| | - Guanglei Su
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226001, Jiangsu, PR China
| | - Xikang Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226001, Jiangsu, PR China
| | - Jie Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226001, Jiangsu, PR China
| | - Qianting Yuan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226001, Jiangsu, PR China
| | - Guangfei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226001, Jiangsu, PR China.
| |
Collapse
|
13
|
Kalaiselvan I, Senthamarai M, Kasi PD. 2,3,7,8-TCDD-mediated toxicity in peripheral blood mononuclear cells is alleviated by the antioxidants present in Gelidiella acerosa: an in vitro study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5111-5121. [PMID: 25388558 DOI: 10.1007/s11356-014-3799-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Seaweeds have been used as a source of traditional medicine worldwide for the treatment of various ailments, mainly due to their ability to quench the free radicals. The present study aims at evaluating the protective effect of methanolic extract of Gelidiella acerosa, an edible red seaweed against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced toxicity in peripheral blood mononuclear cells (PBMC). For evaluating the protective effect of G. acerosa, PBMC were divided into four groups: vehicle control, TCDD (10 nM), TCDD + G. acerosa (300 μg/ml), and G. acerosa alone treated. Scavenging of intracellular reactive oxygen species (ROS) induced by TCDD was assessed by the dichloro-dihydro-fluorescein diacetate (DCFH-DA) method. Alterations at macromolecular level were quantified through lipid peroxidation (LPO) level, protein carbonyl content (PCC) level, and comet assay. The cellular morphology upon TCDD toxicity and G. acerosa treatment was obtained by light microscopy and histopathological studies. The chemical composition present in the methanolic extract of G. acerosa was determined by gas chromatography-mass spectrometry (GC-MS) analysis. The results reveal that 10 nM TCDD caused significant (P < 0.05) reduction in cell viability (94.10 ± 0.99), and treatment with 300 μg/ml extract increased the cell viability (99.24 ± 0.69). TCDD treatment resulted in a significant increase in the production of ROS, LPO (114 ± 0.09), and PCC (15.13 ± 1.53) compared to the control, whereas co-treatment with G. acerosa significantly (P < 0.05) mitigated the effects. Further, G. acerosa significantly (P < 0.05) prevented TCDD-induced genotoxicity and cell damage. GC-MS analysis showed the presence of n-hexadecanoic acid (retention time (RT) 13.15), cholesterol (RT 28.80), α-D-glucopyranose, 4-O-α-D-galactopyranosyl (RT 20.01), and azulene (RT 4.20). The findings suggest that G. acerosa has a strong protective ability against TCDD-induced cytotoxicity, oxidative stress, and DNA damage.
Collapse
Affiliation(s)
- Ilavarasi Kalaiselvan
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | | | - Pandima Devi Kasi
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
14
|
Palanisamy K, Krishnaswamy R, Paramasivan P, Chih-Yang H, Vishwanadha VP. Eicosapentaenoic acid prevents TCDD-induced oxidative stress and inflammatory response by modulating MAP kinases and redox-sensitive transcription factors. Br J Pharmacol 2015; 172:4726-40. [PMID: 26177858 DOI: 10.1111/bph.13247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/01/2015] [Accepted: 07/01/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxidative stress and subsequent activation of inflammatory responses is a widely accepted consequence of exposure to environmental toxins. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a well-known environmental toxin, exerts its toxicity through many signalling mechanisms, with liver being the principal organ affected. However, an effective antidote to TCDD-induced toxicity is unknown. The present study evaluated the effect of eicosapentaenoic acid (EPA), an n3 fatty acid, on TCDD-induced toxicity. EXPERIMENTAL APPROACH In cultures of HepG2 cells, the EPA/AA ratio was determined using gas chromatography, oxidative stress and inflammatory responses through reactive oxygen species (ROS) levels, antioxidant status, [Ca(2+) ]i , nuclear migration of two redox-sensitive transcription factors, NF-κB p65 and Nrf-2, expression of MAP kinase (p-Erk, p-p38), NF-κB p65, COX-2 and Nrf-2. Cellular changes in ΔΨm, acidic vesicular organelle formation, cell cycle analysis and scanning electron microscopy analysis were performed. KEY RESULTS EPA offered significant cytoprotection by increasing EPA/AA ratios in cell membranes, inhibiting ROS generation, enhancing antioxidant status and modulating nuclear translocation of redox-sensitive transcription factors (NF-κB p65 and Nrf-2) and expression of NF-κB p65, COX-2 and Nrf-2. Furthermore, TCDD-induced upstream events of MAPK phosphorylation, the increase in [Ca(2+) ]i levels and cell surface changes in microvilli were significantly inhibited by EPA. EPA treatment maintained ΔΨm and prevented formation of acidic vesicular organelles. CONCLUSION AND IMPLICATIONS The present study demonstrates for the first time some underlying molecular mechanisms of cytoprotection exerted by EPA against TCDD-induced oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Kalaiselvi Palanisamy
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Rajashree Krishnaswamy
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Poornima Paramasivan
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Huang Chih-Yang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Vijaya Padma Vishwanadha
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Liu H, Gooneratne R, Huang X, Lai R, Wei J, Wang W. A rapid in vivo zebrafish model to elucidate oxidative stress-mediated PCB126-induced apoptosis and developmental toxicity. Free Radic Biol Med 2015; 84:91-102. [PMID: 25770664 DOI: 10.1016/j.freeradbiomed.2015.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 01/10/2015] [Accepted: 03/02/2015] [Indexed: 01/16/2023]
Abstract
Dioxin-like 3,3',4,4',5-pentachlorobiphenyl (PCB126) is one of the most potent and widespread environmental pollutants. Although PCB126-induced toxicity is related to the aryl hydrocarbon receptor pathway, there is still no study that has constructed an in vivo visual model to clarify the role of the Nrf2/ARE signaling pathway in the oxidative stress mechanism of PCB126-induced toxicity. In the present study, an in vivo zebrafish model of nrf2a fused to enhanced green fluorescent protein (nrf2a-eGFP) was constructed. The zebrafish embryos microinjected with nrf2a-eGFP (72h postfertilization) were exposed to various concentrations of PCB126 (0, 25, 50, 100, 200μg/L) or 30mMN-acetylcysteine (NAC)+200μg/L PCB126. After 72h exposure, PCB126 significantly increased the malformation rates and induced eGFP expression in a dose-dependent manner in several zebrafish tissue types. The distribution of eGFP fluorescence coincided with developmental deformity sites. NAC pretreatment effectively counteracted PCB126-induced developmental toxicity including heart rate, pericardial edema, and body length. The highest PCB126 dose, 200μg/L, produced marked apoptosis in the eye, gill, and trunk detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. At 48 and 72h exposure, 200μg/L PCB126 affected glutathione metabolism as evidenced by decreased glutathione and increased glutathione disulfide concentrations, indicative of oxidative stress. These effects were also counteracted by NAC pretreatment. Furthermore, the Nrf2-regulated genes gclc, gpx, gstp1, and hmox1 were significantly induced at 24, 48, and 72h at the highest PCB126 exposures but not in the NAC-pretreated group. In addition, a significant increase in ROS generation was detected in zebrafish larvae at 72h PCB126 exposure, which might offer a link for future mechanistic studies. Collectively, these data suggest that PCB126-induced developmental toxicity and apoptosis in the nrf2a-eGFP-injected zebrafish model are due to oxidative stress mediated by disruption to glutathione metabolism and changes in Nrf2-regulated gene expression.
Collapse
Affiliation(s)
- Han Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People׳s Republic of China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Xin Huang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People׳s Republic of China
| | - Ruifang Lai
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People׳s Republic of China
| | - Jin Wei
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People׳s Republic of China
| | - Weimin Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, People׳s Republic of China.
| |
Collapse
|
16
|
Wan C, Zhang Y, Jiang J, Jiang S, Nie X, Li A, Guo A, Wu Q. Critical Role of TAK1-Dependent Nuclear Factor-κB Signaling in 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced Astrocyte Activation and Subsequent Neuronal Death. Neurochem Res 2015; 40:1220-31. [PMID: 25998883 DOI: 10.1007/s11064-015-1585-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 02/02/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been recently shown to elicit inflammatory response in a number of cell-types. However, whether TCDD could provoke inflammation in astrocytes, the most abundant glial cells in central nervous system (CNS), remains virtually unknown. In the present study, we showed that TCDD exposure could induce evident astrocyte activation both in vivo and in vitro. Further, we found that TGF-β-activated kinase 1 (TAK1), a critical regulator of NF-κB signaling, was rapidly phosphorylated in the process of TCDD-induced reactive astroglia. Exposure to TCDD led to rapid TAK1 and NF-κB p65 phosphorylation, as well as IKBα degradation. Moreover, blockage of TAK1 using siRNA oligos or TAK1 inhibitor 5Z-7-oxozeaenol significantly attenuated TCDD-induced astrocyte activation as well as the release of TNF-α. Finally, we showed that the conditioned medium of TCDD-treated astrocytes promoted the apoptosis of PC12 neuronal cells, which could be blocked with the pre-treatment of TAK1 inhibitor. Taken together, these findings suggested that TCDD could promote the inflammatory activation of astrocytes through modulating TAK1-NF-κB cascade, implicating that reactive astrocytes might contribute to TCDD-induced adverse effects on CNS system.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygieney, School of Public Health, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee YH, Lin CH, Hsu PC, Sun YY, Huang YJ, Zhuo JH, Wang CY, Gan YL, Hung CC, Kuan CY, Shie FS. Aryl hydrocarbon receptor mediates both proinflammatory and anti-inflammatory effects in lipopolysaccharide-activated microglia. Glia 2015; 63:1138-54. [PMID: 25690886 DOI: 10.1002/glia.22805] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 01/21/2015] [Indexed: 12/27/2022]
Abstract
The aryl hydrocarbon receptor (AhR) regulates peripheral immunity; but its role in microglia-mediated neuroinflammation in the brain remains unknown. Here, we demonstrate that AhR mediates both anti-inflammatory and proinflammatory effects in lipopolysaccharide (LPS)-activated microglia. Activation of AhR by its ligands, formylindolo[3,2-b]carbazole (FICZ) or 3-methylcholanthrene (3MC), attenuated LPS-induced microglial immune responses. AhR also showed proinflammatory effects, as evidenced by the findings that genetic silence of AhR ameliorated the LPS-induced microglial immune responses and LPS-activated microglia-mediated neurotoxicity. Similarly, LPS-induced expressions of tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) were reduced in the cerebral cortex of AhR-deficient mice. Intriguingly, LPS upregulated and activated AhR in the absence of AhR ligands via the MEK1/2 signaling pathway, which effects were associated with a transient inhibition of cytochrome P450 1A1 (CYP1A1). Although AhR ligands synergistically enhance LPS-induced AhR activation, leading to suppression of LPS-induced microglial immune responses, they cannot do so on their own in microglia. Chromatin immunoprecipitation results further revealed that LPS-FICZ co-treatment, but not LPS alone, not only resulted in co-recruitment of both AhR and NFκB onto the κB site of TNFα gene promoter but also reduced LPS-induced AhR binding to the DRE site of iNOS gene promoter. Together, we provide evidence showing that microglial AhR, which can be activated by LPS, exerts bi-directional effects on the regulation of LPS-induced neuroinflammation, depending on the availability of external AhR ligands. These findings confer further insights into the potential link between environmental factors and the inflammatory brain disorders.
Collapse
Affiliation(s)
- Yi-Hsuan Lee
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of environmental contaminants in the etiology of Alzheimer's disease: a review. Curr Alzheimer Res 2015; 12:116-46. [PMID: 25654508 PMCID: PMC4428475 DOI: 10.2174/1567205012666150204121719] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Alzheimer's dis ease (AD) is a leading cause of mortality in the developed world with 70% risk attributable to genetics. The remaining 30% of AD risk is hypothesized to include environmental factors and human lifestyle patterns. Environmental factors possibly include inorganic and organic hazards, exposure to toxic metals (aluminium, copper), pesticides (organochlorine and organophosphate insecticides), industrial chemicals (flame retardants) and air pollutants (particulate matter). Long term exposures to these environmental contaminants together with bioaccumulation over an individual's life-time are speculated to induce neuroinflammation and neuropathology paving the way for developing AD. Epidemiologic associations between environmental contaminant exposures and AD are still limited. However, many in vitro and animal studies have identified toxic effects of environmental contaminants at the cellular level, revealing alterations of pathways and metabolisms associated with AD that warrant further investigations. This review provides an overview of in vitro, animal and epidemiological studies on the etiology of AD, highlighting available data supportive of the long hypothesized link between toxic environmental exposures and development of AD pathology.
Collapse
Affiliation(s)
| | | | | | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Arizona State University, PO Box 875904 Tempe, AZ 85287, USA.
| |
Collapse
|
19
|
Nie X, Liang L, Xi H, Jiang S, Jiang J, Tang C, Liu X, Liu S, Wan C, Zhao J, Yang J. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin induces premature senescence of astrocytes via WNT/β-catenin signaling and ROS production. J Appl Toxicol 2014; 35:851-60. [PMID: 25382668 DOI: 10.1002/jat.3084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental contaminant that could exert significant neurotoxicity in the human nervous system. Nevertheless, the molecular mechanism underlying TCDD-mediated neurotoxicity has not been clarified clearly. Herein, we investigated the potential role of TCDD in facilitating premature senescence in astrocytes and the underlying molecular mechanisms. Using the senescence-associated β-galactosidase (SA-β-Gal) assay, we demonstrated that TCDD exposure triggered significant premature senescence of astrocyte cells, which was accompanied by a marked activation of the Wingless and int (WNT)/β-catenin signaling pathway. In addition, TCDD altered the expression of senescence marker proteins, such as p16, p21 and GFAP, which together have been reported to be upregulated in aging astrocytes, in both dose- and time-dependent manners. Further, TCDD led to cell-cycle arrest, F-actin reorganization and the accumulation of cellular reactive oxygen species (ROS). Moreover, the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and astrocyte senescence. Notably, the application of XAV939, an inhibitor of WNT/β-catenin signaling pathway, ameliorated the effect of TCDD on cellular β-catenin level, ROS production, cellular oxidative damage and premature senescence in astrocytes. In summary, our findings indicated that TCDD might induce astrocyte senescence via WNT/β-catenin and ROS-dependent mechanisms.
Collapse
Affiliation(s)
- Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Lingwei Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Hanqing Xi
- Department of Disease Prevention, Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China
| | - Shengyang Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Junkang Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Cuiying Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Xipeng Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Suyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianbin Yang
- Department of Disease Prevention, Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China
| |
Collapse
|
20
|
Mangiferin induces cell death against rhabdomyosarcoma through sustained oxidative stress. Integr Med Res 2014; 4:66-75. [PMID: 28664112 PMCID: PMC5481771 DOI: 10.1016/j.imr.2014.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Embryonic rhabdomyosarcoma (RD) is the most prevalent type of cancer among children. The present study aimed to investigate cell death induced by mangiferin in RD cells. METHODS The Inhibitory concentration (IC50) value of mangiferin was determined by an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Cell death induced by mangiferin against RD cells was determined through lactate dehydrogenase and nitric oxide release, intracellular calcium levels, reactive oxygen species generation, antioxidant status, mitochondrial calcium level, and mitochondrial membrane potential. Furthermore, acridine orange/ethidium bromide staining was performed to determine early/late apoptotic event. RESULTS Mangiferin induced cell death in RD cells with an IC50 value of 70 μM. The cytotoxic effect was reflected in a dose-dependent increase in lactate dehydrogenase leakage and nitric oxide release during mangiferin treatment. Mangiferin caused dose dependent increase in reactive oxygen species generation, intracellular calcium levels with subsequent decrease in antioxidant status (catalase, superoxide dismutase, glutathione-S-transferase, and glutathione) and loss of mitochondrial membrane potential in RD cells. Further data from fluorescence microscopy suggest that mangiferin caused cell shrinkage and nuclear condensation along with the occurrence of a late event of apoptosis. CONCLUSION Results of the present study shows that mangiferin can act as a promising chemopreventive agent against RD by inducing sustained oxidative stress.
Collapse
|
21
|
Jiang J, Duan Z, Nie X, Xi H, Li A, Guo A, Wu Q, Jiang S, Zhao J, Chen G. Activation of neuronal nitric oxide synthase (nNOS) signaling pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced neurotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:119-130. [PMID: 24930124 DOI: 10.1016/j.etap.2014.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 06/03/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been reported to cause alterations in cognitive and motor behavior during both development and adulthood. In this study, the neuronal nitric oxide synthase (nNOS) signaling pathway was investigated in differentiated pheochromocytoma (PC12) cells to better understand the mechanisms of TCDD-induced neurotoxicity. TCDD exposure induced a time- and dose-dependent increase in nNOS expression. High levels of nitric oxide (NO) production by nNOS activation induced mitochondrial cytochrome c (Cyt-c) release and down-regulation of Bcl-2. Additionally, TCDD increased the expression of active caspase-3 and significantly led to apoptosis in PC12 cells. However, these effects above could be effectively inhibited by the addition of 7-nitroindazole (7-NI), a highly selective nNOS inhibitor. Moreover, in the brain cortex of Sprague-Dawley (SD) rats, nNOS was also found to have certain relationship with TCDD-induced neuronal apoptosis. Together, our findings establish a role for nNOS as an enhancer of TCDD-induced apoptosis in PC12 cells.
Collapse
Affiliation(s)
- Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Zhiqing Duan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Hanqing Xi
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Aihong Li
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Aisong Guo
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Qiyun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Shengyang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Rasinger J, Carroll T, Lundebye A, Hogstrand C. Cross-omics gene and protein expression profiling in juvenile female mice highlights disruption of calcium and zinc signalling in the brain following dietary exposure to CB-153, BDE-47, HBCD or TCDD. Toxicology 2014; 321:1-12. [DOI: 10.1016/j.tox.2014.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
|
23
|
Duan Z, Zhao J, Fan X, Tang C, Liang L, Nie X, Liu J, Wu Q, Xu G. The PERK-eIF2α signaling pathway is involved in TCDD-induced ER stress in PC12 cells. Neurotoxicology 2014; 44:149-59. [PMID: 24932542 DOI: 10.1016/j.neuro.2014.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 06/04/2014] [Accepted: 06/07/2014] [Indexed: 11/19/2022]
Abstract
Studies have shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces apoptotic cell death in neuronal cells. However, whether this is the result of endoplasmic reticulum (ER) stress-mediated apoptosis remains unknown. In this study, we determined whether ER stress plays a role in the TCDD-induced apoptosis of pheochromocytoma (PC12) cells and primary neurons. PC12 cells were exposed to different TCDD concentrations (1, 10, 100, 200, or 500nM) for varying lengths of time (1, 3, 6, 12, or 24h). TCDD concentrations much higher than 10nM (100, 200, or 500nM) markedly increased glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) levels, which are hallmarks of ER stress. We also evaluated the effects of TCDD on ER morphology in PC12 cells and primary neurons that were treated with different TCDD concentrations (1, 10, 50, or 200nM) for 24h. Ultrastructural ER alterations were observed with transmission electron microscopy in PC12 cells and primary neurons treated with high concentrations of TCDD. Furthermore, TCDD-induced ER stress significantly promoted the activation of the PKR-like ER kinase (PERK), a sensor for the unfolded protein response (UPR), and its downstream target eukaryotic translation initiation factor 2 α (eIF2α); in contrast, TCDD did not appear to affect inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), two other UPR sensors. Importantly, TCDD significantly inhibited eIF2α phosphorylation and triggered apoptosis in PC12 cells after 6-24h of treatment. Salubrinal, which activates the PERK-eIF2α pathway, significantly enhanced eIF2α phosphorylation in PC12 cells and attenuated the TCDD-induced cell death. In contrast, knocking down eIF2α using small interfering RNA markedly enhanced TCDD-induced cell death. Together, these results indicate that the PERK-eIF2α pathway plays an important role in TCDD-induced ER stress and apoptosis in PC12 cells.
Collapse
Affiliation(s)
- Zhiqing Duan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Xikang Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Cuiying Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Lingwei Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China; Xinglin College, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Jiao Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China
| | - Qiyun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China.
| | - Guangfei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
De Tata V. Association of dioxin and other persistent organic pollutants (POPs) with diabetes: epidemiological evidence and new mechanisms of beta cell dysfunction. Int J Mol Sci 2014; 15:7787-811. [PMID: 24802877 PMCID: PMC4057704 DOI: 10.3390/ijms15057787] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 12/23/2022] Open
Abstract
The worldwide explosion of the rates of diabetes and other metabolic diseases in the last few decades cannot be fully explained only by changes in the prevalence of classical lifestyle-related risk factors, such as physical inactivity and poor diet. For this reason, it has been recently proposed that other "nontraditional" risk factors could contribute to the diabetes epidemics. In particular, an increasing number of reports indicate that chronic exposure to and accumulation of a low concentration of environmental pollutants (especially the so-called persistent organic pollutants (POPs)) within the body might be associated with diabetogenesis. In this review, the epidemiological evidence suggesting a relationship between dioxin and other POPs exposure and diabetes incidence will be summarized, and some recent developments on the possible underlying mechanisms, with particular reference to dioxin, will be presented and discussed.
Collapse
Affiliation(s)
- Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, Scuola Medica, 56126 Pisa, Italy.
| |
Collapse
|
25
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces expression of p27kip1 and FoxO3a in female rat cerebral cortex and PC12 cells. Toxicol Lett 2014; 226:294-302. [DOI: 10.1016/j.toxlet.2014.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/15/2014] [Accepted: 02/22/2014] [Indexed: 12/17/2022]
|
26
|
Zhang Y, Nie X, Tao T, Qian W, Jiang S, Jiang J, Li A, Guo A, Xu G, Wu Q. 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes astrocyte activation and the secretion of tumor necrosis factor-α via PKC/SSeCKS-dependent mechanisms. J Neurochem 2014; 129:839-49. [PMID: 24673440 DOI: 10.1111/jnc.12696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 12/30/2022]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental pollutant that could induce significant toxic effects in the human nervous system. However, the underlying molecular mechanism has not been entirely elucidated. Reactive astrogliosis has implicated in various neurological diseases via the production of a variety of pro-inflammatory mediators. Herein, we investigated the potential role of TCDD in facilitating astrocyte activation and the underlying molecular mechanisms. We showed that TCDD induced rapid astrocyte activation following TCDD exposure, which was accompanied by significantly elevated expression of Src-Suppressed-C Kinase Substrate (SSeCKS), a protein involved in protein kinase C (PKC)-mediated Nuclear Factor kappa B signaling, suggesting a possible involvement of PKC-induced SSeCKS activation in TCDD-triggered reactive astroglia. In keeping with the finding, we found that the level of phosphorylated Nuclear Factor kappa B p65 was remarkably increased after TCDD treatment. Furthermore, interference of SSeCKS attenuated TCDD-induced inducible nitric oxide synthase, glial fibrillary acidic protein, phospho-p65 expression, and tumor necrosis factor-α secretion in astrocytes. In addition, pre-treatment with PKC inhibitor also attenuated TCDD-induced astrocyte activation, as well as SSeCKS expression. Interestingly, we found that TCDD treatment could lead to SSeCKS perinuclear localization, which could be abolished after treatment with PKC inhibitor. Finally, we showed that inhibition of PKC activity or SSeCKS expression would impair TCDD-triggered tumor necrosis factor-α secretion. Our results suggested that TCDD exposure could lead to astrocyte activation through PKC/SSeCKS-dependent mechanisms, highlighting that astrocytes might be important target of TCDD-induced neurotoxicity. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elicits neurotoxic effects. Here, we show TCDD induces pro-inflammatory responses in astrocytes. TCDD initiates an increase of [Ca2+]i, followed by the activation of PKC, which then induces the activation of Src-suppressed C-kinase substrate (SSeCKS). SSeCKS promotes NF-κB activation and the secretion of TNF-α and nitric oxide in astrocytes.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Nutrition and Food Hygieney, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Protective effect of ellagic acid against TCDD-induced renal oxidative stress: Modulation of CYP1A1 activity and antioxidant defense mechanisms. Mol Biol Rep 2014; 41:4223-32. [DOI: 10.1007/s11033-014-3292-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
|
28
|
Wan C, Liu J, Nie X, Zhao J, Zhou S, Duan Z, Tang C, Liang L, Xu G. 2, 3, 7, 8-Tetrachlorodibenzo-P-dioxin (TCDD) induces premature senescence in human and rodent neuronal cells via ROS-dependent mechanisms. PLoS One 2014; 9:e89811. [PMID: 24587053 PMCID: PMC3933666 DOI: 10.1371/journal.pone.0089811] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/27/2014] [Indexed: 11/30/2022] Open
Abstract
The widespread environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent toxicant that causes significant neurotoxicity. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that TCDD exposure triggered apparent premature senescence in rat pheochromocytoma (PC12) and human neuroblastoma SH-SY5Y cells. Senescence-associated β-galactosidase (SA-β-Gal) assay revealed that TCDD induced senescence in PC12 neuronal cells at doses as low as 10 nM. TCDD led to F-actin reorganization and the appearance of an alternative senescence marker, γ-H2AX foci, both of which are important features of cellular senescence. In addition, TCDD exposure altered the expression of senescence marker proteins, such as p16, p21 and p-Rb, in both dose- and time-dependent manners. Furthermore, we demonstrated that TCDD promotes mitochondrial dysfunction and the accumulation of cellular reactive oxygen species (ROS) in PC12 cells, leading to the activation of signaling pathways that are involved in ROS metabolism and senescence. TCDD-induced ROS generation promoted significant oxidative DNA damage and lipid peroxidation. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and neuronal senescence. Moreover, we found that TCDD induced a similar ROS-mediated senescence response in human neuroblastoma SH-SY5Y cells. In sum, these results demonstrate for the first time that TCDD induces premature senescence in neuronal cells by promoting intracellular ROS production, supporting the idea that accelerating the onset of neuronal senescence may be an important mechanism underlying TCDD-induced neurotoxic effects.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jiao Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Songlin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zhiqing Duan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Cuiying Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Lingwei Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Guangfei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
- * E-mail: .
| |
Collapse
|
29
|
Solak KA, Wijnolts FMJ, Pralong FP, Blaauboer BJ, van den Berg M, Westerink RH, van Duursen MBM. In vitro neuroendocrine effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the AhR-expressing hypothalamic rat GnV-3 cell line. Toxicology 2013; 311:124-34. [PMID: 23871856 DOI: 10.1016/j.tox.2013.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/27/2013] [Accepted: 07/09/2013] [Indexed: 01/07/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is involved in a wide variety of biological and toxicological responses, including neuroendocrine signaling. Due to the complexity of neuroendocrine pathways in e.g. the hypothalamus and pituitary, there are limited in vitro models available despite the strong demand for such systems to study and predict neuroendocrine effects of chemicals. In this study, the applicability of the AhR-expressing rat hypothalamic GnV-3 cell line was investigated as a novel model to screen for neuroendocrine effects of AhR ligands using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as reference compound. The qRT-PCR analyses demonstrated the presence of several sets of neurotransmitter receptors in the GnV-3 cells. TCDD (10nM) altered neurotransmitter signaling by up-regulation of glutamate (Grik2), gamma-amino butyric acid (Gabra2) and serotonin (Ht2C) receptor mRNA levels. However, no significant changes in basal and serotonin-evoked intracellular Ca(2+) concentration ([Ca(2+)]i) or serotonin release were observed. On the other hand, TCDD de-regulated period circadian protein homolog 1 (Per1) and gonadotropin releasing hormone (Gnrh) mRNA levels within a 24-h time period. Both Per1 and Gnrh genes displayed a similar mRNA expression pattern in GnV-3 cells. Moreover, the involvement of AhR in TCDD-induced alteration of Neuropeptide Y (Npy) gene expression was found and confirmed by using siRNA targeted against Ahr in GnV-3 cells. Overall, the combined results demonstrate that GnV-3 cells may be a suitable model to predict some mechanisms of action and effects of AhR ligands in the hypothalamus.
Collapse
Affiliation(s)
- K A Solak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
Xu G, Duan Z, Chen G, Nie X, Liu J, Zhang Y, Li Y, Wan C, Jiang J. Role of mitogen-activated protein kinase cascades in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced apoptosis in neuronal pheochromocytoma cells. Hum Exp Toxicol 2013; 32:1278-91. [PMID: 23584357 DOI: 10.1177/0960327113482595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are involved in neuronal death caused by many cytotoxins. Conventional MAPKs consist of three family members: extracellular signal-regulated kinase-1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38. It has been originally shown that ERK1/2 is important for cell survival, whereas JNK and p38 are deemed stress responsive and thus involved in apoptosis. However, information describing the role of MAPKs in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced neurotoxicity is insufficient. The aim of this study was to identify the role of MAPK cascades in TCDD-induced neurotoxicity using differentiated pheochromocytoma (PC12) cells as a model for neuronal cells. Cell viability assay, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and flow cytometry analysis showed that TCDD attenuated cell viability with a dose- and time-dependent manner and significantly induced apoptosis in primary cortical neurons and PC12 cells. Western blot analysis indicated that TCDD markedly activated the expression of ERK1/2, JNK and p38 in TCDD-treated PC12 cells. Furthermore, PD98059 (ERK1/2 inhibitor), SP600125 (JNK inhibitor) and SB202190 (p38 inhibitor) notably blocked the effect of TCDD on cell apoptosis. Based on the findings above, it is concluded that the activation of MAPK signaling pathways may be associated with TCDD-mediated neuronal apoptosis.
Collapse
Affiliation(s)
- G Xu
- 1Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Xu G, Li Y, Yoshimoto K, Chen G, Wan C, Iwata T, Mizusawa N, Duan Z, Liu J, Jiang J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced inflammatory activation is mediated by intracellular free calcium in microglial cells. Toxicology 2013; 308:158-67. [PMID: 23583884 DOI: 10.1016/j.tox.2013.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/23/2013] [Accepted: 04/04/2013] [Indexed: 12/27/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been known to induce inflammatory signaling in a number of cell types and tissues. However, the adverse effects of TCDD on the central nervous system (CNS) have not been entirely elucidated. In this study, using reverse transcriptase PCR (RT-PCR) and ELISA, we showed that TCDD up-regulated the expression and secretion of tumor necrosis factor-alpha (TNF-α) in a time-dependent manner in cultured HAPI microglial cells. TCDD also caused a fast (within 30min as judged by the increase in its mRNA level) activation of cytosolic phospholipase A2 (cPLA2). This initial action was accompanied by up-regulation of cyclooxygenase-2 (COX-2), an important inflammation marker within 1h after TCDD treatment. These pro-inflammatory responses were inhibited by two types of Ca(2+) blockers, bis-(o-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid acetoxymethyl ester (BAPTA-AM) and nifedipine, thus, indicating that the effects are triggered by initial increase in the intracellular concentration of free Ca(2+) ([Ca(2+)]i). Further, TCDD exposure could induce phosphorylation- and ubiquitination-dependent degradation of IкBα, and the translocation of NF-κB p65 from the cytosol to the nucleus in this microglial cell line. Thus, the NF-κB signaling pathway can be activated after TCDD treatment. However, Ca(2+) blockers also obviously attenuated NF-κB activation and transnuclear transport induced by TCDD. In concert with these results, we highlighted that the secretion of pro-inflammatory cytokine and NF-κB activation induced by TCDD can be mediated by elevation of [Ca(2+)]i in HAPI microglial cells.
Collapse
Affiliation(s)
- Guangfei Xu
- Department of Nutrition and Food Hygieney, School of Public Health, Nantong University, Nantong 226001, Jiangsu, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
3,3′-Diindolymethane ameliorates adriamycin-induced cardiac fibrosis via activation of a BRCA1-dependent anti-oxidant pathway. Pharmacol Res 2013; 70:139-46. [DOI: 10.1016/j.phrs.2013.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/29/2012] [Accepted: 01/13/2013] [Indexed: 11/18/2022]
|
33
|
Turkez H, Geyikoglu F, Yousef MI, Celik K, Bakir TO. Ameliorative effect of supplementation with L-glutamine on oxidative stress, DNA damage, cell viability and hepatotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat hepatocyte cultures. Cytotechnology 2012; 64:687-99. [PMID: 22453904 PMCID: PMC3488374 DOI: 10.1007/s10616-012-9449-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022] Open
Abstract
The most potent of the dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is a persistent and ubiquitous environmental contaminant. And the health impact of exposure to TCDD is of great concern to the general public. Recent data indicate that L-glutamine (Gln) has antioxidant properties and may influence hepatotoxicity. The objective of the present study was undertaken to explore the effectiveness of Gln in alleviating the hepatotoxicity of TCDD on primary cultured rat hepatocytes. Gln (0.5, 1 and 2 mM) was added to cultures alone or simultaneously with TCDD (0.005 and 0.01 mM). The hepatocytes were treated with TCDD and Gln for 48 h. Then cell viability was detected by [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT) assay and lactate dehydrogenase (LDH) release, while total antioxidant capacity (TAC), total glutathione (TGSH) and total oxidative stress (TOS) levels were determined to evaluate the oxidative injury. The DNA damage was also analyzed by liver micronucleus assay (MN) and 8-oxo-2-deoxyguanosine (8-OH-dG). The results of MTT and LDH assays showed that TCDD decreased cell viability but not L-glutamine. TCDD also increased TOS level in rat hepatocytes and significantly decreased TAC and TGSH levels. On the basis of increasing doses, the dioxin in a dose-dependent manner caused significant increases of micronucleated hepatocytes (MNHEPs) and 8-OH-dG as compared to control culture. Whereas, in cultures exposured with Gln alone, TOS levels were not changed and TAC and TGSH together were significantly increased in dose-dependent fashion. The presence of Gln with TCDD modulated the hepatotoxic effects of TCDD on primary hepatocytes cultures. Noteworthy, Gln has a protective effect against TCDD-mediated DNA damages. As conclusion, we reported here an increased potential therapeutic significance of L-glutamine in TCDD-mediated hepatic injury for the first time.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Mokhtar I. Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526 Egypt
| | - Kubra Celik
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| | - Tulay O. Bakir
- Department of Biology, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
34
|
Ilavarasi K, Kiruthiga PV, Pandian SK, Devi KP. Hydroxytyrosol, the phenolic compound of olive oil protects human PBMC against oxidative stress and DNA damage mediated by 2,3,7,8-TCDD. CHEMOSPHERE 2011; 84:888-893. [PMID: 21741071 DOI: 10.1016/j.chemosphere.2011.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/07/2011] [Accepted: 06/01/2011] [Indexed: 05/31/2023]
Abstract
The protective effect of hydroxytyrosol (HT), a strong antioxidant compound from extra virgin olive oil, against TCDD induced toxicity was investigated in human peripheral blood mononuclear cells (PBMC). PBMC (1 × 10(6)cellsmL(-1)) were divided into four groups and were incubated in a CO(2) incubator (5% CO(2)) for 12h with vehicle, TCDD (10 nM), TCDD+HT (10 nM+100 μM) and HT alone (100 μM) respectively. To clarify the role of HT against TCDD induced cytotoxicity, oxidative stress and the levels of antioxidant enzymes were assessed. Incubation of PBMC with TCDD significantly decreased cell viability, catalase (CAT) and glutathione peroxidase (GPx) and increased the levels of superoxide dismutase (SOD), glutathione reductase (GR) and oxidative stress markers such as lipid peroxidation products (LPO), protein carbonyl content (PCC) and reactive oxygen species (ROS). Whereas, HT had an effective antioxidant property as observed by the increased cell viability, normalization of antioxidant enzymes and decreased levels of LPO, PCC and ROS in PBMC co-treated with HT and TCDD. Apoptosis detection and comet assay results shows that HT, by acting as an antioxidant, prevents the damage to DNA induced by TCDD. In addition light microscopic and histopathological observations revealed that the cells are apoptotic and degenerated during TCDD treatment, whereas cells showed intact morphology during co-treatment with HT. On the whole, the results reveal that HT exerts a promising antioxidant potential in protecting the PBMC against TCDD induced oxidative stress, which might be due to the presence of catechol moiety in its structure.
Collapse
Affiliation(s)
- Kalaiselvan Ilavarasi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | | | | | |
Collapse
|
35
|
Ahmed R. Perinatal TCDD exposure alters developmental neuroendocrine system. Food Chem Toxicol 2011; 49:1276-84. [DOI: 10.1016/j.fct.2011.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/26/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
36
|
Sánchez-Martín FJ, Fernández-Salguero PM, Merino JM. Aryl hydrocarbon receptor-dependent induction of apoptosis by 2,3,7,8-tetrachlorodibenzo-p-dioxin in cerebellar granule cells from mouse. J Neurochem 2011; 118:153-62. [PMID: 21534955 DOI: 10.1111/j.1471-4159.2011.07291.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a prototypical environmental contaminant with neurotoxic properties that alters neurodevelopment and behavior. TCDD is a ligand of the aryl hydrocarbon receptor (AhR), which is a key signaling molecule to fully understand the toxic and carcinogenic properties of dioxin. Much effort is underway to unravel the molecular mechanisms and the signaling pathways involved in TCDD-induced neurotoxicity, and to define its molecular targets in neurons. We have used cerebellar granule cells (CGC) from wild-type (AhR+/+) and AhR-null (AhR-/-) mice to characterize the cell death that takes place in neurons after TCDD toxicity. TCDD induced cell death in CGC cultures from wild-type mice with an EC(50) of 127±21 nM. On the contrary, when CGC neurons from AhR-null mice were treated with TCDD no significant cell death was observed. The role of AhR in TCDD-induced death was further assessed by using the antagonists resveratrol and α-naphtoflavone, which readily protected against TCDD toxicity in AhR+/+ CGC cultures. AhR+/+ CGC cultures treated with TCDD showed nuclear fragmentation, DNA laddering, and increased caspase 3 activity, similarly to what was found by the use of staurosporine, a well-established inducer of apoptosis. Finally, the AhR pathway was active in CGC because TCDD could induce the expression of the target gene cytochrome P450 1A2 in AhR+/+ CGC cultures. All together these results support the hypothesis that TCDD toxicity in CGC neurons involves the AhR and that it takes place mainly through an apoptotic process. AhR could be then considered a novel target in neurotoxicity and neurodegeneration whose down-modulation could block certain xenobiotic-related adverse effects in CNS.
Collapse
Affiliation(s)
- Francisco J Sánchez-Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | |
Collapse
|
37
|
Lin S, Yang Z, Zhang X, Bian Z, Cai Z. Hippocampal metabolomics reveals 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity associated with ageing in Sprague-Dawley rats. Talanta 2011; 85:1007-12. [PMID: 21726731 DOI: 10.1016/j.talanta.2011.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/01/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Metabolomics, the exponentially developing technique, could provide a systemic mapping in toxicology by directly measuring small molecular metabolites. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was found to be neurotoxic in mammalian animals. In this study, we employed liquid chromatography/quadrupole time-of-flight mass spectrometry for non-targeted analysis of metabolic profiling in hippocampal sample sets of the rats exposed to TCDD. Hippocampal metabolome from different ages of the healthy rats (4-week, 12-week and 20-week) was also deciphered. The relationship between the two tested cases was unlocked to delineate TCDD toxicity associated with ageing. Tandem mass spectrometry fragmentation in conjunction with metabolic database searching and compared to authentic standards was utilized for metabolite identification. As a consequence, the reduced levels of phenylalanine and leucine/isoleucine as well as the up-regulation of inosine and hypoxanthine were highlighted for understanding of TCDD toxicity related to age in rats and the trajectory was depicted by principal components analysis.
Collapse
Affiliation(s)
- Shuhai Lin
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | | | | | | | | |
Collapse
|
38
|
Cai T, Che H, Yao T, Chen Y, Huang C, Zhang W, Du K, Zhang J, Cao Y, Chen J, Luo W. Manganese induces tau hyperphosphorylation through the activation of ERK MAPK pathway in PC12 cells. Toxicol Sci 2010; 119:169-77. [PMID: 20937724 DOI: 10.1093/toxsci/kfq308] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Manganese has long been known to induce neurological degenerative disorders. Emerging evidence indicates that hyperphosphorylated tau is associated with neurodegenerative diseases, but whether such hyperphosphorylation plays a role in manganese-induced neurotoxicity remains unclear. To fill this gap, we investigated the effects of manganese on tau phosphorylation in PC12 cells. In our present research, treatment of cells with manganese increased the phosphorylation of tau at Ser199, Ser202, Ser396, and Ser404 as detected by Western blot. Moreover, this manganese-induced tau phosphorylation paralleled the activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK). The mitogen-activated protein kinase kinase-1 (MEK1) inhibitor PD98059, which inhibits the activation of ERK MAPK, partially attenuated manganese-induced tau hyperphosphorylation and cytotoxicity. Moreover, the activation of ERK MAPK was involved in the activation of glycogen synthase kinase-3β (GSK-3β) kinase, which also contributed to the hyperphosphorylation of tau and the cytotoxicity in PC12 cells induced by manganese. Taken together, we found for the first time that the exposure to manganese can cause the hyperphosphorylation of tau, which may be connected with the activation of ERK MAPK.
Collapse
Affiliation(s)
- Tongjian Cai
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim SM, Han DH, Lyoo HS, Min KJ, Kim KH, Renshaw P. Exposure to environmental toxins in mothers of children with autism spectrum disorder. Psychiatry Investig 2010; 7:122-7. [PMID: 20577621 PMCID: PMC2890866 DOI: 10.4306/pi.2010.7.2.122] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/20/2010] [Accepted: 04/30/2010] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Environmental pollutants, especially environmental toxins (ET), may have the potential to disrupt neurodevelopmental pathways during early brain development. This study was designed to test our hypothesis that mothers with autism spectrum disorder (ASD) children would have less knowledge about ET and more chance to be exposed to ET than mothers with healthy children (MHC). METHODS One hundred and six biologic mothers with ASD children (MASD) and three hundred twenty four biologic mothers with healthy children MHC were assessed using two questionnaires asking about ET. RESULTS The total score in response to questions related to knowledge about ET in MHC was higher than that in MASD. The possibility of exposure to ET was higher in MASD than MHC. MASD showed higher sub-scale scores in terms of exposures to canned food, plastics, waste incinerators, old electronics, microwavable food, and textiles. CONCLUSION The current results show that reduced knowledge about ET and greater exposure to ET may be associated with autism spectrum disorder.
Collapse
Affiliation(s)
- Sun Mi Kim
- Department of Psychiatry, Chung Ang University College of Medicine, Seoul, Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung Ang University College of Medicine, Seoul, Korea
| | | | - Kyung Joon Min
- Department of Psychiatry, Chung Ang University College of Medicine, Seoul, Korea
| | - Kyung Ho Kim
- Department of Molecular Biosciences in the School of Veterinary Medicine, University of California, Davis, USA
| | - Perry Renshaw
- Brain Institute, University of Utah, Salt lake City, Utah, USA
| |
Collapse
|
40
|
Alexeyenko A, Wassenberg DM, Lobenhofer EK, Yen J, Linney E, Sonnhammer ELL, Meyer JN. Dynamic zebrafish interactome reveals transcriptional mechanisms of dioxin toxicity. PLoS One 2010; 5:e10465. [PMID: 20463971 PMCID: PMC2864754 DOI: 10.1371/journal.pone.0010465] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 03/17/2010] [Indexed: 01/09/2023] Open
Abstract
Background In order to generate hypotheses regarding the mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) causes toxicity, we analyzed global gene expression changes in developing zebrafish embryos exposed to this potent toxicant in the context of a dynamic gene network. For this purpose, we also computationally inferred a zebrafish (Danio rerio) interactome based on orthologs and interaction data from other eukaryotes. Methodology/Principal Findings Using novel computational tools to analyze this interactome, we distinguished between dioxin-dependent and dioxin-independent interactions between proteins, and tracked the temporal propagation of dioxin-dependent transcriptional changes from a few genes that were altered initially, to large groups of biologically coherent genes at later times. The most notable processes altered at later developmental stages were calcium and iron metabolism, embryonic morphogenesis including neuronal and retinal development, a variety of mitochondria-related functions, and generalized stress response (not including induction of antioxidant genes). Within the interactome, many of these responses were connected to cytochrome P4501A (cyp1a) as well as other genes that were dioxin-regulated one day after exposure. This suggests that cyp1a may play a key role initiating the toxic dysregulation of those processes, rather than serving simply as a passive marker of dioxin exposure, as suggested by earlier research. Conclusions/Significance Thus, a powerful microarray experiment coupled with a flexible interactome and multi-pronged interactome tools (which are now made publicly available for microarray analysis and related work) suggest the hypothesis that dioxin, best known in fish as a potent cardioteratogen, has many other targets. Many of these types of toxicity have been observed in mammalian species and are potentially caused by alterations to cyp1a.
Collapse
Affiliation(s)
- Andrey Alexeyenko
- Stockholm Bioinformatics Centre, Stockholm University, Stockholm, Sweden
| | - Deena M. Wassenberg
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | - Jerry Yen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Elwood Linney
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
41
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptosis in neural growth factor (NGF)-differentiated pheochromocytoma PC12 cells. Neurotoxicology 2010; 31:267-76. [PMID: 20302886 DOI: 10.1016/j.neuro.2010.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 01/01/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent toxicant that alters normal brain development and produces cognitive disability and motor dysfunction. However, after decades of intense study, the molecular mechanisms of TCDD-induced neurotoxicity, the signaling pathways involved and its molecular targets in neurons still remain unknown. TCDD acts as an exogenous ligand of the aryl hydrocarbon receptor (AhR) that becomes a key signaling molecule in the regulation of the toxic and carcinogenic properties of TCDD. We have used NGF-differentiated pheochromocytoma (dPC12) cells to determine the type of cell death that takes place by TCDD toxicity. TCDD induced cell death in dPC12 cultures with an EC(50) of 218+/-24 nM, similar to that obtained in undifferentiated PC12 cells, 171+/-31 nM. Nuclear fragmentation was observed after TCDD incubation in parallel to an increase in caspase-3 activity. Staurosporine, which readily induced apoptosis in dPC12 cells, showed a similar increase in caspase-3 activity and the characteristic pattern of nuclear fragmentation. Flow cytometry measurements showed that dPC12 cells in the presence of TCDD were positive for annexin V labeling but negative for propidium iodide staining. In addition, TCDD increased the area of the peak corresponding to hypodiploid (apoptotic) DNA content. All together these results support the hypothesis that TCDD toxicity in dPC12 cells takes place mainly through an apoptotic process.
Collapse
|
42
|
Zordoky BNM, El-Kadi AOS. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and beta-naphthoflavone induce cellular hypertrophy in H9c2 cells by an aryl hydrocarbon receptor-dependant mechanism. Toxicol In Vitro 2009; 24:863-71. [PMID: 19969063 DOI: 10.1016/j.tiv.2009.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 11/11/2009] [Accepted: 12/01/2009] [Indexed: 11/30/2022]
Abstract
Cigarette smoke is a major risk factor for cardiovascular diseases. It contains thousands of compounds that activate the aryl hydrocarbon receptor (AhR). In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent AhR ligand, has been shown to cause cardiotoxic effects in several in vivo models. Although induction of CYP1 family is the most important effect of AhR activation, the role of CYP1 induction in mediating the cardiotoxic effect of TCDD is usually overlooked. Therefore, we investigated whether AhR activation causes a hypertrophic effect in H9c2 cells and we related this effect to changes in CYP gene expression. In the current study, the cardiac derived H9c2 cells were treated with two AhR ligands, TCDD and beta-naphthoflavone (BNF), for 24 and 48h. The expression of the hypertrophic markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), and several CYP genes were measured by real-time PCR. Treatment of H9c2 cells with TCDD or BNF for 24h caused a significant induction of CYP1A1, CYP1B1, and CYP4A1; however, there was no change in the expression of other genes. On the other hand, treatment of the cells with TCDD or BNF for 48h caused a significant induction of the hypertrophic markers, ANP and BNP, and several CYP genes such as CYP1A1, CYP1B1, CYP2E1, CYP2J3, and CYP4F4 parallel to a significant increase in the cell surface area. Neither TCDD nor BNF increased the oxidative stress in H9c2 cells at all concentrations tested. Interestingly, resveratrol, an AhR antagonist, protected the cells from TCDD-induced hypertrophy. In conclusion, AhR ligands caused a hypertrophic effect in H9c2 cells which was associated with induction of several CYP genes which can be prevented by resveratrol.
Collapse
Affiliation(s)
- Beshay N M Zordoky
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | | |
Collapse
|