1
|
Diallyl Sulfide Attenuation of Carcinogenesis in Mammary Epithelial Cells through the Inhibition of ROS Formation, and DNA Strand Breaks. Biomolecules 2021; 11:biom11091313. [PMID: 34572526 PMCID: PMC8470778 DOI: 10.3390/biom11091313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Garlic has long been used medicinally for many diseases, including cancer. One of the active garlic components is diallyl sulfide (DAS), which prevents carcinogenesis and reduces the incidence rate of several cancers. In this study, non-cancerous MCF-10A cells were used as a model to investigate the effect of DAS on Benzo (a)pyrene (BaP)-induced cellular carcinogenesis. The cells were evaluated based on changes in proliferation, cell cycle arrest, the formation of peroxides, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, the generation of DNA strand breaks, and DNA Polymerase β (Pol β) expression. The results obtained indicate that when co-treated with BaP, DAS inhibited BaP-induced cell proliferation (p < 0.05) to levels similar to the negative control. BaP treatment results in a two-fold increase in the accumulation of cells in the G2/M-phase of the cell cycle, which is restored to baseline levels, similar to untreated cells and vehicle-treated cells, when pretreated with 6 μM and 60 μM DAS, respectively. Co-treatment with DAS (60 μM and 600 μM) inhibited BaP-induced reactive oxygen species (ROS) formation by 132% and 133%, respectively, as determined by the accumulation of H2O2 in the extracellular medium and an increase in 8-OHdG levels of treated cells. All DAS concentrations inhibited BaP-induced DNA strand breaks through co-treatment and pre-treatment methods at all time points evaluated. Co-Treatment with 60 μM DAS increased DNA Pol β expression in response to BaP-induced lipid peroxidation and oxidative DNA damage. These results indicate that DAS effectively inhibited BaP-induced cell proliferation, cell cycle transitions, ROS, and DNA damage in an MCF-10A cell line. These results provide more experimental evidence for garlic's antitumor abilities and corroborate many epidemiological studies regarding the association between the increased intake of garlic and the reduced risk of several types of cancer.
Collapse
|
2
|
Gao M, Zheng A, Chen L, Dang F, Liu X, Gao J. Benzo(a)pyrene affects proliferation with reference to metabolic genes and ROS/HIF-1α/HO-1 signaling in A549 and MCF-7 cancer cells. Drug Chem Toxicol 2020; 45:741-749. [PMID: 32506967 DOI: 10.1080/01480545.2020.1774602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Benzo(a)pyrene (BaP) is a representative polycyclic aromatic hydrocarbon (PAH) compound, which has been implicated in cancer initiation and promotion. Although BaP is one of the most extensively studied pollutants, the underlying mechanisms through which BaP affects reactive oxygen species (ROS)/hypoxia-inducible factor 1α (HIF-1α)/heme oxygenase 1(HO-1) signaling during lung or breast carcinogenesis are not yet fully understood. In this study, we analyzed the effects of 0 (control), 1, 5, or 25 µM BaP exposure on A549 and MCF-7 cancer cells, by evaluating cell viability, cell cycle, and regulatory protein expression, metabolic gene expression, and ROS/HIF-1α/HO-1 signaling. Cell viability increased following exposure to 1 and 5 µM BaP in A549 cells but decreased following exposure to all concentrations of BaP in MCF-7 cells. BaP significantly increased the proportions of cells in S and G2/M phases, with concomitant reductions in the proportions of cells in G0/G1 phase, following 5 and 25 µM exposure, which was accompanied by the upregulation of the regulatory proteins cyclin A, cyclin B, cyclin-dependent kinase (CDK)1, and CDK2. The subsequent upregulation of cytochrome p450 (CYP)1A1, CYP1B1, CYP3A4, epoxide hydrolase (EH), aldo-keto reductase (AKRC1) expression, and the attenuation of multi-drug resistance protein 4 (MRP4), glutathione-S-transferase (GST)1A1, and GST1B1 were also observed in both cell lines. Moreover, the induction of ROS and the modulation of HIF-1α and HO-1 were observed after BaP exposure. Taken together, these findings suggest that BaP affects proliferation with reference to metabolic genes and ROS/HIF-1α/HO-1 signaling in A549 and MCF-7 cancer cells.
Collapse
Affiliation(s)
- Meili Gao
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Aqun Zheng
- School of Science, Xi'an Jiaotong University, Xi'an, PR China
| | - Lan Chen
- Center of Shared Experimental Facilities, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fan Dang
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiaojing Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jianghong Gao
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
3
|
Chen H, Wang P, Du Z, Wang G, Gao S. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish (Danio rerio) induced by tris(1,3-dichloro-2-propyl) phosphate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:37-45. [PMID: 29149642 DOI: 10.1016/j.aquatox.2017.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Tris(1,3-dichloro-2-propyl)phosphate (TDCPP) is an additive flame retardant of high production volume, and frequently detected in biota and environment. However, knowledge on its potential risk and toxicological mechanism still remains limited. In this study, DNA damage, transcriptomic responses and biochemical changes in the liver of zebrafish (Danio rerio) induced by TDCPP were investigated. Zebrafish was exposed to 45.81μg/L (1/100 (96h-LC50)) and 229.05μg/L (1/20 (96h-LC50)) TDCPP for 7 d. The reactive oxygen species (ROS) and GSH contents, in addition to antioxidant enzyme activities in the liver changed significantly, and the mRNA levels of genes related to oxidative stress were alerted in a dose-dependent and/or sex-dependent manner after exposure to TDCPP. Significant DNA damage in zebrafish liver was found, and olive tail moment increased in a concentration-dependent manner. Moreover, exposure of TDCPP at 45.81μg/L level activated the cell cycle arrest, DNA repair system and apoptosis pathway in male zebrafish, and 229.05μg/L TDCPP exposure inhibited those pathways in both male and female zebrafish. The cell apoptosis was confirmed in TUNEL assay as higher incidence of TUNEL-positive cells were observed in zebrafish exposed to 229.05μg/L TDCPP. Our results also indicated that males were more sensitive to TDCPP exposure compared with females. Taken together, our results showed that TDCPP could induce oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish liver in sex- and concentration-dependent manners.
Collapse
Affiliation(s)
- Hanyan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Pingping Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zhongkun Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Guowei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
4
|
Günay E, Celik S, Sarinc-Ulasli S, Özyürek A, Hazman Ö, Günay S, Özdemir M, Ünlü M. Comparison of the Anti-inflammatory Effects of Proanthocyanidin, Quercetin, and Damnacanthal on Benzo(a)pyrene Exposed A549 Alveolar Cell Line. Inflammation 2016; 39:744-51. [DOI: 10.1007/s10753-015-0301-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Jiping Z, Ming F, Lixiang W, Xiuming L, Yuqun S, Han Y, Zhifang L, Yundong S, Shili L, Chunyan C, Jihui J. MicroRNA-212 inhibits proliferation of gastric cancer by directly repressing retinoblastoma binding protein 2. J Cell Biochem 2014; 114:2666-72. [PMID: 23794145 DOI: 10.1002/jcb.24613] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/11/2013] [Indexed: 01/02/2023]
Abstract
Retinoblastoma binding protein 2 (RBP2), a newly found histone demethylase, is overexpressed in gastric cancer. We examined the upstream regulatory mechanism of RBP2 at the microRNA (miRNA) level and the role in gastric carcinogenesis. We used bioinformatics to predict that microRNA-212 (miR-212) might be a direct upstream regulator of RBP2 and verified the regulation in gastric epithelial-derived cell lines. Overexpression of miR-212 significantly inhibited the expression levels of RBP2, whereas knockdown of miR-212 promoted RBP2 expression. Furthermore, we identified the putative miR-212 targeting sequence in the RBP2 3' UTR by luciferase assay. MiR-212 inhibited the colony formation ability of cells by repressing RBP2 expression and increasing that of P21(CIP1) and P27(kip1), both critical in cell cycle arrest. In addition, the expression of RBP2 and miR-212 in tumor tissue and matched normal tissue from 18 patients further supported the results in vivo. MiR-212 directly regulates the expression of RBP2 and inhibits cell growth in gastric cancer, which may provide new clues to treatment.
Collapse
Affiliation(s)
- Zeng Jiping
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, Shandong University School of Medicine, Jinan, China; Department of Biochemistry, Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Effect of curcumin on aged Drosophila melanogaster: a pathway prediction analysis. Chin J Integr Med 2013; 21:115-22. [PMID: 24155070 DOI: 10.1007/s11655-013-1333-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To re-analyze the data published in order to explore plausible biological pathways that can be used to explain the anti-aging effect of curcumin. METHODS Microarray data generated from other study aiming to investigate effect of curcumin on extending lifespan of Drosophila melanogaster were further used for pathway prediction analysis. The differentially expressed genes were identified by using GeneSpring GX with a criterion of 3.0-fold change. Two Cytoscape plugins including BisoGenet and molecular complex detection (MCODE) were used to establish the protein-protein interaction (PPI) network based upon differential genes in order to detect highly connected regions. The function annotation clustering tool of Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for pathway analysis. RESULTS A total of 87 genes expressed differentially in D. melanogaster melanogaster treated with curcumin were identified, among which 50 were up-regulated significantly and 37 were remarkably down-regulated in D. melanogaster melanogaster treated with curcumin. Based upon these differential genes, PPI network was constructed with 1,082 nodes and 2,412 edges. Five highly connected regions in PPI networks were detected by MCODE algorithm, suggesting anti-aging effect of curcumin may be underlined through five different pathways including Notch signaling pathway, basal transcription factors, cell cycle regulation, ribosome, Wnt signaling pathway, and p53 pathway. CONCLUSION Genes and their associated pathways in D. melanogaster melanogaster treated with anti-aging agent curcumin were identified using PPI network and MCODE algorithm, suggesting that curcumin may be developed as an alternative therapeutic medicine for treating aging-associated diseases.
Collapse
|
7
|
Min L, He S, Chen Q, Peng F, Peng H, Xie M. Comparative proteomic analysis of cellular response of human airway epithelial cells (A549) to benzo(a)pyrene. Toxicol Mech Methods 2011; 21:374-82. [PMID: 21417634 DOI: 10.3109/15376516.2010.551555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work aimed to investigate the cellular response of human airway epithelial cells (A549) to oxidative stress induced by benzo(a)pyrene [B(a)P]. Levels of intracellular reactive oxygen species (ROS) and lipid peroxidation were investigated in A549 cells treated with varying concentrations of B(a)P. A comparative proteomic analysis of total proteins was performed in cells treated with 1 µM B(a)P [B(a)P-1] and untreated cells. The expression of Mn superoxide dismutase (Mn SOD), one of the identified down-regulated proteins in B(a)P-1 cells, was then analyzed by Western blotting. The total antioxidant activity, total superoxide dismutase activity, catalase (CAT) activity, and glutathione reductase (GR) activity were all analyzed after B(a)P treatment. Our results demonstrated that 1 µM B(a)P could induce ROS generation and lead to lipid peroxidation in A549 cells, and 23 differentially expressed proteins were identified. The expression levels of Mn SOD and the total SOD were induced at 0.1 µM and suppressed at 1 µM and 10 µM. Up-regulation of CAT and GR activity resulted in an increase in total antioxidant activity in A549 after exposure to B(a)P. These findings provide a basis for understanding the mechanisms of mitochondrial dysfunction and perturbation of antioxidant status induced by B(a)P on airway epithelial cells.
Collapse
Affiliation(s)
- Lingfeng Min
- Department of Geriatric Medicine, Department of Respiratory, Xiangya Hospital of Central South University, Changsha, China
| | | | | | | | | | | |
Collapse
|