1
|
Amin MA, Zehravi M, Sweilam SH, Shatu MM, Durgawale TP, Qureshi MS, Durgapal S, Haque MA, Vodeti R, Panigrahy UP, Ahmad I, Khan SL, Emran TB. Neuroprotective potential of epigallocatechin gallate in Neurodegenerative Diseases: Insights into molecular mechanisms and clinical Relevance. Brain Res 2025; 1860:149693. [PMID: 40350140 DOI: 10.1016/j.brainres.2025.149693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis pose significant challenges due to their complex pathophysiology and lack of effective treatments. Green tea, rich in the epigallocatechin gallate (EGCG) polyphenolic component, has demonstrated potential as a neuroprotective agent with numerous medicinal applications. EGCG effectively reduces tau and Aβ aggregation in ND models, promotes autophagy, and targets key signaling pathways like Nrf2-ARE, NF-κB, and MAPK. This review explores the molecular processes that underlie EGCG's neuroprotective properties, including its ability to regulate mitochondrial dysfunction, oxidative stress, neuroinflammation, and protein misfolding. Clinical research indicates that EGCG may enhance cognitive and motor abilities, potentially inhibiting disease progression despite absorption and dose optimization limitations. The substance has been proven to slow the amyloidogenic process, prevent protein aggregation, decrease amyloid cytotoxicity, inhibit fibrillogenesis, and restructure fibrils for synergistic therapeutic effects. The review highlights the potential of EGCG as a natural, multi-targeted strategy for NDs but emphasizes the need for further clinical trials to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Mst Maharunnasa Shatu
- Department of Botany, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra 415539, India
| | - Mohammad Shamim Qureshi
- Department of Pharmacognosy & Phytochemistry, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad 500001, India
| | - Sumit Durgapal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun 248007, Uttarakhand, India
| | | | | | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| |
Collapse
|
2
|
Chen Y, Jiang Y, Huang L, Li Z, Zhu M, Luo L, Zhou K, Chen M. Urate-lowering effect of delphinidin-3-glucoside in red kidney beans via binding to the FAD site of the XO enzyme. J Adv Res 2025:S2090-1232(25)00266-8. [PMID: 40254219 DOI: 10.1016/j.jare.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND The incidence of hyperuricemia (HUA) is increasing globally, posing serious health risks. The discovery of natural urate-lowering agents is urgently needed. OBJECTIVE To discover natural urate-lowering agents and investigate their effect and action mechanisms for ameliorating HUA. METHODS Our study comprehensively explored the association between the intake of 13 specific legume varieties in the US population. A composition-target-metabolic (C-T-M) pathway network was constructed to identify key agents and their interactions with key proteins, which were verified by molecular dynamics simulations (MD) and surface plasmon resonance (SPR). Biochemical, in vitro, and in vivo metabolomic studies in male ICR mice were conducted to examine the effects of the key agent in red kidney beans on uric acid production and other metabolisms. RESULTS We found that consuming red kidney beans was robustly negatively associated with the risk of HUA. Based on the C-T-M network, delphinidin-3-glucoside (Dp-3G) was identified as the key agent in red kidney beans, focusing on its binding to xanthine oxidase (XO) enzyme. This interaction was subsequently verified by MD and SPR, revealing that Dp-3G binds to the FAD site of the XO enzyme, thereby blocking electron transfer during enzyme catalysis involving Moco, [2Fe-2S], and FAD. Dp-3G consistently reduces uric acid production under biochemical, in vitro, and in vivo conditions and reverses metabolic abnormalities related to HUA in mice, including methionine, proline, and folate. CONCLUSIONS This study identifies Dp-3G, a novel natural agent enriched in red kidney beans, as capable of occupying the FAD site of the XO enzyme, thereby interfering with uric acid synthesis, and suggesting its potential for preventing and treating HUA.
Collapse
Affiliation(s)
- Yanling Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingtong Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lei Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ziyi Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mengyuan Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lu Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Occupational Medicine and Environmental Health, School of Public Health, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Gupta RC, Doss RB. Toxicity Potential of Nutraceuticals. Methods Mol Biol 2025; 2834:197-230. [PMID: 39312167 DOI: 10.1007/978-1-0716-4003-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
During the past few decades and especially during and after the COVID-19 pandemic, the use of nutraceuticals has become increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have an inherent toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies and biomarkers of exposure, effect, and susceptibility appears to play a pivotal role in the safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly or when polypharmacy is involved. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors that influence their safety.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA.
| | - Robin B Doss
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA
| |
Collapse
|
4
|
Guo X, Wang Y, Zhu Z, Li L. The Role of Plant Extracts in Enhancing Nutrition and Health for Dogs and Cats: Safety, Benefits, and Applications. Vet Sci 2024; 11:426. [PMID: 39330805 PMCID: PMC11435925 DOI: 10.3390/vetsci11090426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Plant extracts, derived from various natural sources, encompass primary and secondary metabolites, which include plant polysaccharides, polyphenols, alkaloids, flavonoids, glycosides, terpenes, and volatile oils. These compounds exhibit a range of biological activities such as antioxidant, anti-inflammatory, and antimicrobial functions. Currently, polyphenols and other bioactive compounds are being incorporated into the diets of farm animals, fish, and pets to promote health benefits. Despite this, the application and potential of plant extracts in canine and feline nutrition have not been comprehensively explored. Many aspects of the mechanisms underlying the action of these plant metabolites remain to be analyzed and elucidated. Furthermore, leveraging natural plant extracts for the treatment of clinical conditions in dogs and cats is a crucial component of clinical nutrition. Consequently, this review aims to highlight the impact of plant extracts on overall health, gastrointestinal health, immune health, cardiovascular health, redox balance, and pathology in dogs and cats.
Collapse
Affiliation(s)
- Xinzi Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Yifei Wang
- College of Animal Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Zhaoxuan Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Lian Li
- College of Animal Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| |
Collapse
|
5
|
Li S, Wang Z, Liu G, Chen M. Neurodegenerative diseases and catechins: (-)-epigallocatechin-3-gallate is a modulator of chronic neuroinflammation and oxidative stress. Front Nutr 2024; 11:1425839. [PMID: 39149548 PMCID: PMC11326534 DOI: 10.3389/fnut.2024.1425839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Catechins, a class of phytochemicals found in various fruits and tea leaves, have garnered attention for their diverse health-promoting properties, including their potential in combating neurodegenerative diseases. Among these catechins, (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, has emerged as a promising therapeutic agent due to its potent antioxidant and anti-inflammatory effects. Chronic neuroinflammation and oxidative stress are key pathological mechanisms in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). EGCG has neuroprotective efficacy due to scavenging free radicals, reducing oxidative stress and attenuating neuroinflammatory processes. This review discusses the molecular mechanisms of EGCG's anti-oxidative stress and chronic neuroinflammation, emphasizing its effects on autoimmune responses, neuroimmune system interactions, and focusing on the related effects on AD and PD. By elucidating EGCG's mechanisms of action and its impact on neurodegenerative processes, this review underscores the potential of EGCG as a therapeutic intervention for AD, PD, and possibly other neurodegenerative diseases. Overall, EGCG emerges as a promising natural compound for combating chronic neuroinflammation and oxidative stress, offering novel avenues for neuroprotective strategies in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Siying Li
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Zaoyi Wang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Meixia Chen
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
6
|
Abiri B, Amini S, Hejazi M, Hosseinpanah F, Zarghi A, Abbaspour F, Valizadeh M. Tea's anti-obesity properties, cardiometabolic health-promoting potentials, bioactive compounds, and adverse effects: A review focusing on white and green teas. Food Sci Nutr 2023; 11:5818-5836. [PMID: 37823174 PMCID: PMC10563719 DOI: 10.1002/fsn3.3595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Tea is one of the most commonly consumed beverages in the world. Morocco, Japan, and China have consumed green tea for centuries. White tea, which is a variety of green teas, is very popular in China and is highly revered for its taste. Presently, both teas are consumed in other countries around the world, even as functional ingredients, and novel research is constantly being conducted in these areas. We provide an update on the health benefits of white and green teas in this review, based on recent research done to present. After a general introduction, we focused on tea's anti-obesity and human health-promoting potential, adverse effects, and new approaches to tea and its bioactive compounds. It has been found that the health benefits of tea are due to its bioactive components, mainly phenolic compounds. Of these, catechins are the most abundant. This beverage (or its extracts) has potential anti-inflammatory and antioxidant properties, which could contribute to body weight control and the improvement of several chronic diseases. However, some studies have mentioned the possibility of toxic effects; therefore, reducing tea consumption is a good idea, especially during the last trimester of pregnancy. Additionally, new evidence will provide insight into the possible effects of tea on the human gut microbiota, and even on the viruses responsible for SARS-CoV-2. A beverage such as this may favor beneficial gut microbes, which may have important implications due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Shirin Amini
- Department of NutritionShoushtar Faculty of Medical SciencesShoushtarIran
| | - Mahdi Hejazi
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Farhad Hosseinpanah
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Faeze Abbaspour
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Majid Valizadeh
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
8
|
Fischer TE, Marcondes A, Zardo DM, Nogueira A, Calhelha RC, Vaz JA, Barros L, Zielinski AAF, Alberti A. Bioactive Activities of the Phenolic Extract from Sterile Bracts of Araucaria angustifolia. Antioxidants (Basel) 2022; 11:antiox11122431. [PMID: 36552640 PMCID: PMC9774675 DOI: 10.3390/antiox11122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Sterile bracts can represent 80% of Araucaria angustifolia pinecone and are a rich source of phenolic compounds. This study aimed to optimize the extraction of the phenolic compounds from Araucaria angustifolia bracts using response surface methodology; the bioactivity properties were also investigated. The effects of the ethanol concentration, solute/solvent ratio, and temperature in relation to the phenolic composition and antioxidant activity were evaluated. The quantification and identification of the individual phenolic compounds (using high-performance liquid chromatography) and their bioactivity were evaluated. The optimized extraction conditions, which detected gallic acid, catechin, epicatechin, quercetin, and kaempferol, were obtained using 60% ethanol at a ratio of 1:38 (w/v) and a temperature of 80 °C. The extract showed high levels of phenolic classes and antioxidant activity. The extract also showed an inhibitory activity for pathogenic (approximately 80%, 10,000 µg/mL) and lactic acid (27.9%, 15,000 µg/mL) bacteria strains. The α-glucosidase inhibitory activity was approximately ten times greater than acarbose, demonstrating its high antiglycemic potential. No antioxidant and anti-inflammatory cellular activity were determined; however, a high cytotoxicity for non-tumor cells and the antiproliferative activity against the tumor cells were observed. Overall, the phenolic extract showed promising action in relation to the fight against the diseases related to oxidative stress and, hopefully, the application of the safe concentrations of the extract, based on bioavailability assays, can be verified.
Collapse
Affiliation(s)
- Thaís Estéfane Fischer
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
| | - Amanda Marcondes
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
| | - Danianni Marinho Zardo
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
| | - Alessandro Nogueira
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana A. Vaz
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Acácio Antonio Ferreira Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis 88010-970, SC, Brazil
| | - Aline Alberti
- Graduate Program in Food Science and Technology, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil
- Correspondence: ; Tel.: +55-42-32203775
| |
Collapse
|
9
|
Gurley BJ, McGill MR, Koturbash I. Hepatotoxicity due to herbal dietary supplements: Past, present and the future. Food Chem Toxicol 2022; 169:113445. [PMID: 36183923 PMCID: PMC11404749 DOI: 10.1016/j.fct.2022.113445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
Dietary supplements (DS) constitute a widely used group of products comprising vitamin, mineral, and botanical extract formulations. DS of botanical or herbal origins (HDS) comprise nearly 30% of all DS and are presented on the market either as single plant extracts or multi-extract-containing products. Despite generally safe toxicological profiles of most products currently present on the market, rising cases of liver injury caused by HDS - mostly by multi-ingredient and adulterated products - are of particular concern. Here we discuss the most prominent historical cases of HDS-induced hepatotoxicty - from Ephedra to Hydroxycut and OxyELITE Pro-NF, as well as products with suspected hepatotoxicity that are either currently on or are entering the market. We further provide discussion on overcoming the existing challenges with HDS-linked hepatotoxicity by introduction of advanced in silico, in vitro, in vivo, and microphysiological system approaches to address the matter of safety of those products before they reach the market.
Collapse
Affiliation(s)
- Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA; Center for Dietary Supplement Research, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Mitchell R McGill
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Center for Dietary Supplement Research, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Center for Dietary Supplement Research, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
10
|
Crowe-White KM, Evans LW, Kuhnle GGC, Milenkovic D, Stote K, Wallace T, Handu D, Senkus KE. Flavan-3-ols and Cardiometabolic Health: First Ever Dietary Bioactive Guideline. Adv Nutr 2022; 13:2070-2083. [PMID: 36190328 PMCID: PMC9776652 DOI: 10.1093/advances/nmac105] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023] Open
Abstract
Guideline recommendation for a plant bioactive such as flavan-3-ols is a departure from previous recommendations because it is not based on deficiencies but rather improvement in health outcomes. Nevertheless, there is a rapidly growing body of clinical data reflecting benefits of flavan-3-ol intake that outweigh potential harms. Thus, the objective of the Expert Panel was to develop an intake recommendation for flavan-3-ols and cardiometabolic outcomes to inform multiple stakeholders including clinicians, policymakers, public health entities, and consumers. Guideline development followed the process set forth by the Academy of Nutrition and Dietetics, which includes use of the Evidence to Decision Framework. Studies informing this guideline (157 randomized controlled trials and 15 cohort studies) were previously reviewed in a recently published systematic review and meta-analysis. Quality and strength-of-evidence along with risk-of-bias in reporting was reviewed. In drafting the guideline, data assessments and opinions by authoritative scientific bodies providing guidance on the safety of flavan-3-ols were considered. Moderate evidence supporting cardiometabolic protection resulting from flavan-3-ol intake in the range of 400-600 mg/d was supported in the literature. Further, increasing consumption of dietary flavan-3-ols can help improve blood pressure, cholesterol concentrations, and blood sugar. Strength of evidence was strongest for some biomarkers (i.e., systolic blood pressure, total cholesterol, HDL cholesterol, and insulin/glucose dynamics). It should be noted that this is a food-based guideline and not a recommendation for flavan-3-ol supplements. This guideline was based on beneficial effects observed across a range of disease biomarkers and endpoints. Although a comprehensive assessment of available data has been reviewed, evidence gaps identified herein can inform scientists in guiding future randomized clinical trials.
Collapse
Affiliation(s)
| | - Levi W Evans
- USDA-ARS, Western Human Nutrition Research Center, Davis, CA, USA
| | - Gunter G C Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Kim Stote
- State University of New York, Empire State College, Saratoga Springs, NY, USA
| | - Taylor Wallace
- Department of Nutrition and Food Studies, George Mason University, Washington, DC, USA,Produce for Better Health Foundation, Washington, DC, USA
| | - Deepa Handu
- Academy of Nutrition and Dietetics, Chicago, IL, USA
| | - Katelyn E Senkus
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
11
|
Kumar NB, Hogue S, Pow-Sang J, Poch M, Manley BJ, Li R, Dhillon J, Yu A, Byrd DA. Effects of Green Tea Catechins on Prostate Cancer Chemoprevention: The Role of the Gut Microbiome. Cancers (Basel) 2022; 14:3988. [PMID: 36010981 PMCID: PMC9406482 DOI: 10.3390/cancers14163988] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/22/2023] Open
Abstract
Accumulating evidence supports green tea catechins (GTCs) in chemoprevention for prostate cancer (PCa), a leading cause of cancer morbidity and mortality among men. GTCs include (-)-epigallocatechin-3-gallate, which may modulate the molecular pathways implicated in prostate carcinogenesis. Prior studies of GTCs suggested that they are bioavailable, safe, and effective for modulating clinical and biological markers implicated in prostate carcinogenesis. GTCs may be of particular benefit to those with low-grade PCas typically managed with careful monitoring via active surveillance (AS). Though AS is recommended, it has limitations including potential under-grading, variations in eligibility, and anxiety reported by men while on AS. Secondary chemoprevention of low-grade PCas using GTCs may help address these limitations. When administrated orally, the gut microbiome enzymatically transforms GTC structure, altering its bioavailability, bioactivity, and toxicity. In addition to xenobiotic metabolism, the gut microbiome has multiple other physiological effects potentially involved in PCa progression, including regulating inflammation, hormones, and other known/unknown pathways. Therefore, it is important to consider not only the independent roles of GTCs and the gut microbiome in the context of PCa chemoprevention, but how gut microbes may relate to individual responses to GTCs, which, in turn, can enhance clinical decision-making.
Collapse
Affiliation(s)
- Nagi B. Kumar
- Cancer Epidemiology Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Stephanie Hogue
- Cancer Epidemiology Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Julio Pow-Sang
- Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Michael Poch
- Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Brandon J. Manley
- Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Roger Li
- Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jasreman Dhillon
- Anatomic Pathology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alice Yu
- Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Doratha A. Byrd
- Cancer Epidemiology Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
12
|
Tallei TE, Fatimawali, Niode NJ, Idroes R, Zidan BMRM, Mitra S, Celik I, Nainu F, Ağagündüz D, Emran TB, Capasso R. A Comprehensive Review of the Potential Use of Green Tea Polyphenols in the Management of COVID-19. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7170736. [PMID: 34899956 PMCID: PMC8664505 DOI: 10.1155/2021/7170736] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023]
Abstract
Green tea is produced from Camellia sinensis (L.) buds and leaves that have not gone through the oxidation and withering processes used to produce black and oolong teas. It was originated in China, but its cultivation and production have expanded to other Eastern Asian countries. Several polyphenolic compounds, including flavandiols, flavonols, flavonoids, and phenolic acids, are found in green tea and may constitute greater than 30% of the dry weight. Flavonols, especially catechins, represent the majority of green tea polyphenols. Green tea polyphenolic compounds have been reported to confer several health benefits. This review describes the potential use of green tea polyphenols in the management of coronavirus disease 2019 (COVID-19). The immunomodulatory, antibacterial, antioxidant, and anti-inflammatory effects of green tea polyphenols have also been considered in this review. In addition to describing the bioactivities associated with green tea polyphenols, this review discusses the potential delivery of these biomolecules using a nanoparticle drug delivery system. Moreover, the bioavailability and toxicity of green tea polyphenols are also evaluated.
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Indonesia
| | | | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| |
Collapse
|
13
|
Cladis DP, Weaver CM, Ferruzzi MG. (Poly)phenol toxicity in vivo following oral administration: A targeted narrative review of (poly)phenols from green tea, grape, and anthocyanin-rich extracts. Phytother Res 2021; 36:323-335. [PMID: 34725890 DOI: 10.1002/ptr.7323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
Fruit- and vegetable-derived (poly)phenols are secondary plant metabolites that may have beneficial effects on human health when consumed regularly. Recent years have seen rapid growth in both consumer demand for and research interest in (poly)phenol-rich dietary supplements, natural colorants, and functional foods. As these products continue to enter the marketplace and (poly)phenol intake patterns change from traditional food products to these sources, attention must be paid to the potential for toxicity from consuming elevated doses of (poly)phenols. To date, much remains unknown regarding the safety of high doses of (poly)phenols, especially in vivo. In this targeted narrative review, we summarize evidence from in vivo investigations of (poly)phenol toxicity after oral administration of green tea extracts, grape-derived phenolics, and anthocyanin-rich extracts. There is limited evidence of overt toxicity from oral ingestion of these (poly)phenol-rich sources, though more research on the safety of high doses-as well as defining what constitutes a "high" dose of both individual and complex mixtures of (poly)phenols-is needed before these observations can be used to create dietary guidance for consumers.
Collapse
Affiliation(s)
- Dennis P Cladis
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Connie M Weaver
- Department of Food Science, Purdue University, Lafayette, Indiana, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| |
Collapse
|
14
|
Tanprasertsuk J, Tate DE, Shmalberg J. Roles of plant-based ingredients and phytonutrients in canine nutrition and health. J Anim Physiol Anim Nutr (Berl) 2021; 106:586-613. [PMID: 34495560 PMCID: PMC9291198 DOI: 10.1111/jpn.13626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2021] [Accepted: 08/11/2021] [Indexed: 12/05/2022]
Abstract
Dogs possess the ability to obtain essential nutrients, established by the Association of American Feed Control Officials (AAFCO), from both animal‐ and plant‐based ingredients. There has been a recent increase in the popularity of diets that limit or completely exclude certain plant‐based ingredients. Examples of these diets include ‘ancestral’ or ‘evolutionary’ diets, raw meat‐based diets and grain‐free diets. As compared to animal sources, plant‐derived ingredients (including vegetables, fruits, grains, legumes, nuts and seeds) provide many non‐essential phytonutrients with some data suggesting they confer health benefits. This review aims to assess the strength of current evidence on the relationship between the consumption of plant‐based foods and phytonutrients (such as plant‐derived carotenoids, polyphenols and phytosterols) and biomarkers of health and diseases (such as body weight/condition, gastrointestinal health, immune health, cardiovascular health, visual function and cognitive function) from clinical trials and epidemiological studies. This review highlights the potential nutritional and health benefits of including plant‐based ingredients as a part of balanced canine diets. We also highlight current research gaps in existing studies and provide future research directions to inform the impact of incorporating plant‐based ingredients in commercial or home‐prepared diets.
Collapse
Affiliation(s)
| | | | - Justin Shmalberg
- NomNomNow Inc, Nashville, TN, USA.,Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Wang S, Li Z, Ma Y, Liu Y, Lin CC, Li S, Zhan J, Ho CT. Immunomodulatory Effects of Green Tea Polyphenols. Molecules 2021; 26:molecules26123755. [PMID: 34203004 PMCID: PMC8234133 DOI: 10.3390/molecules26123755] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
Green tea and its bioactive components, especially polyphenols, possess many health-promoting and disease-preventing benefits, especially anti-inflammatory, antioxidant, anticancer, and metabolic modulation effects with multi-target modes of action. However, the effect of tea polyphenols on immune function has not been well studied. Moreover, the underlying cellular and molecular mechanisms mediating immunoregulation are not well understood. This review summarizes the recent studies on the immune-potentiating effects and corresponding mechanisms of tea polyphenols, especially the main components of (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG). In addition, the benefits towards immune-related diseases, such as autoimmune diseases, cutaneous-related immune diseases, and obesity-related immune diseases, have been discussed.
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Zhiliang Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yuting Ma
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yan Liu
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Chen Lin
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan;
| | - Shiming Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| | - Jianfeng Zhan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| |
Collapse
|
16
|
Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Res Int 2021; 142:110186. [PMID: 33773663 DOI: 10.1016/j.foodres.2021.110186] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Green tea, the least processed tea product, is scientifically known for its rich antioxidant content originating from polyphenols, especially catechins. The most potent green tea catechin is epigallocatechin-3-gallate (EGCG), which is responsible for a wide range of health benefits including anticancer, antidiabetics, and anti-inflammatory properties. However, green tea catechins (GTCs) are very labile under both environmental and gastrointestinal conditions; their chemical stability and bioavailability primarily depend on the processing and formulation conditions. Nanocarriers can protect GTCs against such conditions, and consequently, can be applicable for designing nanodelivery systems suitable for GTCs. In this review, the latest findings about both opportunities and limitations for the nanodelivery of GTCs and their incorporation into various functional food products are discussed. The scientific findings so far confirm that nanodelivery of GTCs can be an efficient approach towards the enhancement of their health-promoting effects with a minimal dose, controlled and targeted release, lessening the dose-related toxicity, and the efficient incorporation into functional foods. However, further investigation is yet needed to fully explain the cellular mechanisms of action of GTCs on human health and to elucidate the effect of encapsulation on their bioefficacy using well-designed, systematic, long-term, and large-scale clinical interventions. There also exists a substantial concern regarding the safety of the manufactured nanoparticles, their absorption, and the associated release mechanisms.
Collapse
|
17
|
Shi Z, Zhu JX, Guo YM, Niu M, Zhang L, Tu C, Huang Y, Li PY, Zhao X, Zhang ZT, Bai ZF, Zhang GQ, Lu Y, Xiao XH, Wang JB. Epigallocatechin Gallate During Dietary Restriction - Potential Mechanisms of Enhanced Liver Injury. Front Pharmacol 2021; 11:609378. [PMID: 33584288 PMCID: PMC7878556 DOI: 10.3389/fphar.2020.609378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/24/2020] [Indexed: 01/14/2023] Open
Abstract
Green tea extract (GTE) is popular in weight loss, and epigallocatechin gallate (EGCG) is considered as the main active component. However, GTE is the primary cause of herbal and dietary supplement-induced liver injury in the United States. Whether there is a greater risk of liver injury when EGCG is consumed during dieting for weight loss has not been previously reported. This study found for the first time that EGCG could induce enhanced lipid metabolism pathways, suggesting that EGCG had the so-called “fat burning” effect, although EGCG did not cause liver injury at doses of 400 or 800 mg/kg in normal mice. Intriguingly, we found that EGCG caused dose-dependent hepatotoxicity on mice under dietary restriction, suggesting the potential combination effects of dietary restriction and EGCG. The combination effect between EGCG and dietary restriction led to overactivation of linoleic acid and arachidonic acid oxidation pathways, significantly increasing the accumulation of pro-inflammatory lipid metabolites and thus mediating liver injury. We also found that the disruption of Lands’ cycle and sphingomyelin-ceramides cycle and the high expression of taurine-conjugated bile acids were important metabolomic characteristics in EGCG-induced liver injury under dietary restriction. This original discovery suggests that people should not go on a diet while consuming EGCG for weight loss; otherwise the risk of liver injury will be significantly increased. This discovery provides new evidence for understanding the “drug-host” interaction hypothesis of drug hepatotoxicity and provides experimental reference for clinical safe use of green tea-related dietary supplements.
Collapse
Affiliation(s)
- Zhuo Shi
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing-Xiao Zhu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Ming Guo
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Le Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Can Tu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Huang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Peng-Yan Li
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xu Zhao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zi-Teng Zhang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhao-Fang Bai
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guang-Qin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao-He Xiao
- Integrative Medical Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Zhang S, Zhu Q, Chen JY, OuYang D, Lu JH. The pharmacological activity of epigallocatechin-3-gallate (EGCG) on Alzheimer's disease animal model: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153316. [PMID: 32942205 DOI: 10.1016/j.phymed.2020.153316] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is currently incurable and there is an urgent need to develop new AD drugs. Many studies have revealed the potential neuroprotective effect of Epigallocatechin-3-O-gallate (EGCG), the main antioxidant in green tea, on animal models of AD. However, a systematic review of these reports is lacking. PURPOSE To assess the effectiveness of EGCG for AD treatment using systematic review and meta-analysis of pre-clinical trials. METHODS We conducted a systematic search of all available randomized controlled trials (RCTs) performed up to November 2019 in the following electronic databases: ScienceDirect, Web of Science, and PubMed. 17 preclinical studies assessing the effect of EGCG on animal AD models have been identified. Meta-analysis and subgroup analysis was performed to evaluate cognition improvement of various types of AD models. The study quality was assessed using the CAMARADES checklist and the criteria of published studies. RESULTS Our analysis shows that the methodological quality ranges from 3 to 5, with a median score of 4. According to meta-analysis of random-effects method, EGCG showed a positive effect in AD with shorter escape latency (SMD= -9.24, 95%CI= -12.05 to -6.42) and decreased Aβ42 level (SD= -25.74,95%CI= -42.36 to -9.11). Regulation of α-, β-, γ-secretase activity, inhibition of tau phosphorylation, anti-oxidation, anti-inflammation, anti-apoptosis, and inhibition of AchE activity are reported as the main neuroprotective mechanisms. Though more than 100 clinical trials have been registered on the ClinicalTrials.gov, only one clinical trial has been conducted to test the therapeutic effects of EGCG on the AD progression and cognitive performance. CONCLUSION Here, we conducted this review to systematically describe the therapeutic potential of EGCG in animal models of AD and hope to provide a more comprehensive assessment of the effects in order to design future clinical trials. Besides, the safety, blood-brain barrier (BBB) penetration and bioavailability issues in conducting clinical trials were also discussed.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Qi Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Jia-Yue Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Defang OuYang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| |
Collapse
|
19
|
El-Sayed Mostafa H, Ahmed Allithy AN, Abdellatif NA, Anani M, Fareed SA, El-Shafei DA, Alaa El-Din EA. Amelioration of pulmonary aflatoxicosis by green tea extract: An in vivo study. Toxicon 2020; 189:48-55. [PMID: 33212099 DOI: 10.1016/j.toxicon.2020.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
Aflatoxins (AFB1) are mycotoxins known to be associated with human and animal diseases. The lung is a at risk from AFB1exposure either via inhalation or circulation. Green tea consumption is increasing over time due to widespread popularity as antioxidants, anti-inflammatory, and cytoprotective agents. Therefore, we attempted to study the lung toxicity caused by AFB1 and the possible ameliorating effect of green tea extract. Forty adult male albino rats were divided into five groups; Group I: Untreated control group, Group II (vehicle): Each rat received 1 ml of olive oil, Group III (GTE): Each rat received Camellia sinensis, green tea extract (30 mg/kg/day), Group IV(AFB1): Each rat received (50 μg/kg/day of AFB1). Group V (AFB1+ GTE): Each rat received the same previously mentioned doses of AFB1 in addition to GTE concomitantly. All treatments were orally gavaged for 8 weeks then rats were sacrificed. Serum levels of pro-inflammatory (IL-1β, TNF-α, IL-6) and anti-inflammatory (IL-10) cytokines were measured, lung tissues' oxidative stress indices were also measured in addition to the histopathological study which was performed by using hematoxylin & eosin and Masson trichrome stains. Morphometric and statistical analyses were also performed. Oral gavage of AFB1 resulted in significant histopathological changes in the lung tissues, in the form of variable degrees of congestion, hemorrhage, interstitial inflammation with infiltration by chronic inflammatory cells, interstitial fibrosis, bronchitis, vasculitis and fibrous thickening of arterial walls. Inflammation was evident by elevated levels of pro-inflammatory cytokines and a declined level of anti-inflammatory cytokines. Also, oxidative stress was evident by increased levels of Malondialdehyde (MDA), Myeloperoxidase (MPO), and decreased levels of total glutathione (tGSH) and Catalase (CAT). The histopathological changes, inflammatory cytokines, and oxidative stress markers were significantly decreased during concomitant administration of green tea extract in (AFB1+ GTE) group. Aflatoxin B1 has deleterious effects on the lung tissue that could be minimized by concomitant administration of Green tea extract owing to its anti-inflammatory, antioxidant, and protective properties.
Collapse
Affiliation(s)
- Heba El-Sayed Mostafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | | | | - Maha Anani
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Shimaa Antar Fareed
- Department of Anatomy, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Dalia Abdallah El-Shafei
- Departments of Community, Environmental & Occupational Medicine, Faculty of Medicine, Zagazig University, Egypt.
| | - Eman Ahmed Alaa El-Din
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
20
|
Green tea polyphenols mitigate the plant lectins-induced liver inflammation and immunological reaction in C57BL/6 mice via NLRP3 and Nrf2 signaling pathways. Food Chem Toxicol 2020; 144:111576. [DOI: 10.1016/j.fct.2020.111576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
|
21
|
Rojo MÁ, Garrosa M, Jiménez P, Girbés T, Garcia-Recio V, Cordoba-Diaz M, Cordoba-Diaz D. Unexpected Toxicity of Green Tea Polyphenols in Combination with the Sambucus RIL Ebulin. Toxins (Basel) 2020; 12:E542. [PMID: 32842591 PMCID: PMC7551510 DOI: 10.3390/toxins12090542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 11/17/2022] Open
Abstract
The safety of concentrated food complements intake is a major health concern. It has been well established that green tea polyphenols (GTPs) consumption promotes healthy effects. However, the ingestion of large amounts of GTPs is a matter of controversy due to reported adverse effects. We underwent a preliminary exploration of the effects of the oral administration of a standardized concentrated GTPs preparation on mice which suffered from reversible intestinal derangement promoted by sublethal amounts of the antiribosomal lectin ebulin f from dwarf elder (Sambucus ebulus L.). Neither independent oral administration of 30 mg/kg body weight Polyphenon 60 nor intraperitoneal administration of 2.5 mg/kg body weight ebulin f triggered lethal toxicity. In contrast, the simultaneous administration of these same doses of both Polyphenon 60 and ebulin f triggered an important and unexpected synergistic toxic action featured by the biphasic reduction of weight, which continued after eight days, reaching a reduction of 40%. Lethality appeared 2 days after the onset of the combined treatment and reached more than 50% after 10 days.
Collapse
Affiliation(s)
- M. Ángeles Rojo
- Area of Experimental Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain;
| | - Manuel Garrosa
- Area of Histology, Faculty of Medicine and INCYL, University of Valladolid, 47005 Valladolid, Spain;
| | - Pilar Jiménez
- Area of Nutrition and Food Sciences, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (P.J.); (T.G.)
| | - Tomás Girbés
- Area of Nutrition and Food Sciences, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (P.J.); (T.G.)
| | - Verónica Garcia-Recio
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (V.G.-R.); (M.C.-D.)
| | - Manuel Cordoba-Diaz
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (V.G.-R.); (M.C.-D.)
- University Institute of Industrial Pharmacy (IUFI), Complutense University of Madrid, 28040 Madrid, Spain
| | - Damián Cordoba-Diaz
- Area of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (V.G.-R.); (M.C.-D.)
- University Institute of Industrial Pharmacy (IUFI), Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
22
|
Reis A, Perez-Gregorio R, Mateus N, de Freitas V. Interactions of dietary polyphenols with epithelial lipids: advances from membrane and cell models in the study of polyphenol absorption, transport and delivery to the epithelium. Crit Rev Food Sci Nutr 2020; 61:3007-3030. [PMID: 32654502 DOI: 10.1080/10408398.2020.1791794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently, diet-related diseases such as diabetes, obesity, hypertension, and cardiovascular diseases account for 70% of all global deaths. To counteract the rising prevalence of non-communicable diseases governments are investing in persuasive educational campaigns toward the ingestion of fresh fruits and vegetables. The intake of dietary polyphenols abundant in Mediterranean and Nordic-type diets holds great potential as nutritional strategies in the management of diet-related diseases. However, the successful implementation of healthy nutritional strategies relies on a pleasant sensory perception in the mouth able to persuade consumers to adopt polyphenol-rich diets and on a deeper understanding on the chemical modifications, that affect not only their chemical properties but also their physical interaction with epithelial lipids and in turn their permeability, location within the lipid bilayer, toxicity and biological activity, and fate during absorption at the gastro-intestinal epithelium, transport in circulation and delivery to the endothelium. In this paper, we review the current knowledge on the interactions between polyphenols and their metabolites with membrane lipids in artificial membranes and epithelial cell models (oral, stomach, gut and endothelium) and the findings from polyphenol-lipid interactions to physiological processes such as oral taste perception, gastrointestinal absorption and endothelial health. Finally, we discuss the limitations and challenges associated with the current experimental approaches in membrane and cell model studies and the potential of polyphenol-rich diets in the quest for personalized nutritional strategies ("personalized nutrition") to assist in the prevention, treatment, and management of non-communicable diseases in an increasingly aged population.
Collapse
Affiliation(s)
- Ana Reis
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rosa Perez-Gregorio
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
23
|
Oketch-Rabah HA, Roe AL, Rider CV, Bonkovsky HL, Giancaspro GI, Navarro V, Paine MF, Betz JM, Marles RJ, Casper S, Gurley B, Jordan SA, He K, Kapoor MP, Rao TP, Sherker AH, Fontana RJ, Rossi S, Vuppalanchi R, Seeff LB, Stolz A, Ahmad J, Koh C, Serrano J, Low Dog T, Ko R. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol Rep 2020; 7:386-402. [PMID: 32140423 PMCID: PMC7044683 DOI: 10.1016/j.toxrep.2020.02.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
As part of the United States Pharmacopeia's ongoing review of dietary supplement safety data, a new comprehensive systematic review on green tea extracts (GTE) has been completed. GTEs may contain hepatotoxic solvent residues, pesticide residues, pyrrolizidine alkaloids and elemental impurities, but no evidence of their involvement in GTE-induced liver injury was found during this review. GTE catechin profiles vary significantly with manufacturing processes. Animal and human data indicate that repeated oral administration of bolus doses of GTE during fasting significantly increases bioavailability of catechins, specifically EGCG, possibly involving saturation of first-pass elimination mechanisms. Toxicological studies show a hepatocellular pattern of liver injury. Published adverse event case reports associate hepatotoxicity with EGCG intake amounts from 140 mg to ∼1000 mg/day and substantial inter-individual variability in susceptibility, possibly due to genetic factors. Based on these findings, USP included a cautionary labeling requirement in its Powdered Decaffeinated Green Tea Extract monograph that reads as follows: "Do not take on an empty stomach. Take with food. Do not use if you have a liver problem and discontinue use and consult a healthcare practitioner if you develop symptoms of liver trouble, such as abdominal pain, dark urine, or jaundice (yellowing of the skin or eyes)."
Collapse
Key Words
- ADME, Absorption, distribution, metabolism, and excretion
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUC, area under the curve
- Bw, body weight
- C, Catechin
- CAM, causality assessment method
- CG, (+)‐catechin‐3‐gallate
- CIH, Concanavalin A-induced hepatitis
- CMC, chemistry, manufacturing, and controls
- COMT, catechol‐O‐methyltransferase
- Camellia sinensis
- ConA, Concanavalin A
- DILI, drug‐induced liver injury
- DILIN, Drug‐Induced Liver Injury Network
- DO, Diversity Outbred
- DS, Dietary Supplement
- DSAE, JS3 USP Dietary Supplements Admission Evaluations Joint Standard-Setting Subcommittee
- Dietary supplements
- EC, (–)‐epicatechin
- ECG, (‐)‐epicatechin‐3‐gallate
- EFSA, European Food Safety Authority
- EGC, (–)‐epigallocatechin
- EGCG, (–)‐epigallocatechin‐3‐gallate
- FDA, United States Food and Drug Administration
- GC, (+)‐gallocatechin
- GCG, (–)‐gallocatechin‐3‐gallate
- GT(E), green tea or green tea extract
- GT, green tea
- GTE, green tea extract
- GTEH, EP Green Tea Extract Hepatotoxicity Expert Panel
- Green tea
- Green tea extract
- HDS, herbal dietary supplement
- HPMC, Hydroxypropyl methylcellulose
- Hepatotoxicity
- LD50, lethal dose, median
- LFT(s), liver function test(s)
- LT(s), Liver test(s)
- Liver injury
- MGTT, Minnesota Green Tea Trial
- MIDS, multi-ingredient dietary supplement
- MRL, maximum residue limit
- NAA, N-acetyl aspartate
- NIDDK, National Institute of Diabetes and Digestive and Kidney Diseases
- NIH, National Institutes of Health
- NOAEL, no observed adverse effect level
- NTP, National Toxicology Program
- OSM, online supplementary material
- PAs, Pyrrolizidine Alkaloids
- PD-1, Programmed death domain-1
- PDGTE, powdered decaffeinated green tea extract
- PK/PD, pharmacokinetics and pharmacodynamics
- RUCAM, Roussel Uclaf Causality Assessment Method
- SIDS, single-ingredient dietary supplement
- TGF-beta, Transforming growth factor beta
- USP, United States Pharmacopeia
- γ-GT, Gamma-glutamyl transferase
Collapse
Affiliation(s)
- Hellen A. Oketch-Rabah
- U.S. Pharmacopeial Convention, Rockville, MD, USA
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Amy L. Roe
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Vice Chair, (USP GTEH EP, 2015-2020 cycle)
| | - Cynthia V. Rider
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Herbert L. Bonkovsky
- U.S. FDA Liaison to the USP GTEH EP (2015-2020 cycle)
- Section on Gastroenterology & Hepatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Gabriel I. Giancaspro
- U.S. Pharmacopeial Convention, Rockville, MD, USA
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Victor Navarro
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Mary F. Paine
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Joseph M. Betz
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Robin J. Marles
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Steven Casper
- U.S. FDA Liaison to the USP GTEH EP (2015-2020 cycle)
| | - Bill Gurley
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Scott A. Jordan
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Kan He
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Mahendra P. Kapoor
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Theertham P. Rao
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Averell H. Sherker
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Blvd., Bethesda, MD, USA
| | - Robert J. Fontana
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Simona Rossi
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | | | - Leonard B. Seeff
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Andrew Stolz
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Jawad Ahmad
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Christopher Koh
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Drive, Building 10, Rm 9B-16, Bethesda, MD, 20892,USA
| | - Jose Serrano
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Blvd., Bethesda, MD, USA
| | - Tieraona Low Dog
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Richard Ko
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Chair (USP GTEH EP, 2015-2020 cycle)
| |
Collapse
|
24
|
Zheng E, Sandhu N, Navarro V. Drug-induced Liver Injury Secondary to Herbal and Dietary Supplements. Clin Liver Dis 2020; 24:141-155. [PMID: 31753247 DOI: 10.1016/j.cld.2019.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The use of herbal and dietary supplements (HDS) is increasing in the United States and worldwide. Its significant association with liver injury has become a concern, particularly because rates of hepatotoxicity caused by HDS are increasing. There are variety of HDS available, ranging from multi-ingredient substances, to anabolic steroids for bodybuilding purposes, to individual ingredients for purposes of supplementing a diet. This article reviews the impact of liver injury cause by HDS and explores the hepatotoxic potential of such products and their individual ingredients.
Collapse
Affiliation(s)
- Elizabeth Zheng
- Columbia University Medical Center, 622 West 168th Street, PH-14-406, New York, NY 10032, USA
| | - Naemat Sandhu
- Einstein Medical Center, 5401 Old York Road, Klein Building Suite 505, Philadelphia, PA 19141, USA
| | - Victor Navarro
- Einstein Medical Center, 5401 Old York Road, Klein Building Suite 505, Philadelphia, PA 19141, USA.
| |
Collapse
|
25
|
Alagawany M, Abd El-Hack ME, Saeed M, Naveed M, Arain MA, Arif M, Tiwari R, Khandia R, Khurana SK, Karthik K, Yatoo MI, Munjal A, Bhatt P, Sharun K, Iqbal HMN, Sun C, Dhama K. Nutritional applications and beneficial health applications of green tea and l-theanine in some animal species: A review. J Anim Physiol Anim Nutr (Berl) 2020; 104:245-256. [PMID: 31595607 DOI: 10.1111/jpn.13219] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023]
Abstract
Green tea (Camellia sinensis) is a popular herbal plant with abundant health benefits, and thus, it has been used as a potent antioxidant for a long time. Based on the available literature, the diversity and the availability of multifunctional compounds in green tea offer its noteworthy potential against many diseases such as liver and heart diseases, inflammatory conditions and different metabolic syndromes. Owing to its bioactive constituents including caffeine, amino acids, l-theanine, polyphenols/flavonoids and carbohydrates among other potent molecules, green tea has many pharmacological and physiological effects. The effects of green tea include anti-oxidative, anti-inflammatory, anti-arthritic, anti-stress, hypolipidaemic, hypocholesterolaemic, skin/collagen protective, hepatoprotective, anti-diabetic, anti-microbial, anti-infective, anti-parasitic, anti-cancerous, inhibition of tumorigenesis and angiogenesis, anti-mutagenic, and memory and bone health-improving activities. Apart from its utilization in humans, green tea has also played a significant role in livestock production such as in dairy, piggery, goatry and poultry industries. Supplementation of animal feeds with green tea and its products is in line with the modern concepts of organic livestock production. Hence, incorporating green tea or green tea by-products into the diet of poultry and other livestock can enhance the value of the products obtained from these animals. Herein, an effort is made to extend the knowledge on the importance and useful applications of green tea and its important constituents in animal production including poultry. This review will be a guideline for researchers and entrepreneurs who want to explore the utilization of feeds supplemented with green tea and green tea by-products for the enhancement of livestock production.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad Saeed
- Department of Animal Nutrition, Cholistan University of Veterinary and Animal Sciences Bahawalpur, Pakistan
| | - Muhammad Naveed
- Faculty of Pharmacy and Alternative Medicine, Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Department of Clinical Pharmacy, School of Basic Medicine, and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Muhammad A Arain
- College of Animal Science and Technology, NW A&F University, Yangling, Shaanxi, China
| | - Muhammad Arif
- Department of Animal Sciences, University College of Agriculture, University of Sargodha, Pakistan
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sandip K Khurana
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Mohd I Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar (Udham Singh Nagar), Uttarakhand, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, India
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Monterrey, NL, Mexico
| | - Chao Sun
- College of Animal Science and Technology, NW A&F University, Yangling, Shaanxi, China
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
26
|
Becker LC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Gill LJ, Heldreth B. Safety Assessment of Camellia sinensis-Derived Ingredients As Used in Cosmetics. Int J Toxicol 2019; 38:48S-70S. [PMID: 31840549 DOI: 10.1177/1091581819889914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cosmetic ingredients derived from Camellia sinensis (tea) plant parts function as antioxidants and skin conditioning agents-humectant and miscellaneous. The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed relevant animal and human data related to these ingredients. The use of the leaf ingredients in beverages results in much larger systemic exposures than those possible from cosmetic use. Accordingly, concern over the systemic toxicity potential of leaf-derived ingredients is mitigated. Because product formulations may contain multiple botanical ingredients, each containing the same constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may lead to sensitization or other toxic effects. The Panel concluded that the C sinensis leaf-derived ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonsensitizing. However, the available data are insufficient to determine whether the non-leaf-derived ingredients are safe for use in cosmetics.
Collapse
Affiliation(s)
- Lillian C Becker
- Cosmetic Ingredient Review Former Scientific Analyst/Writer, Cosmetic Ingredient Review, Washington, DC, USA
| | - Wilma F Bergfeld
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Donald V Belsito
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald A Hill
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Curtis D Klaassen
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Daniel C Liebler
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - James G Marks
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald C Shank
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Thomas J Slaga
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Paul W Snyder
- Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Lillian J Gill
- Cosmetic Ingredient Review Former Director, Cosmetic Ingredient Review, Washington, DC, USA
| | - Bart Heldreth
- Cosmetic Ingredient Review Executive Director, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
27
|
Veri N, As E, Mutiah C, Seriana I, Malinda R. Protective effect of green tea on tunica adventitia and endothelial changes resulting from depot medroxy progesterone acetate. J Taibah Univ Med Sci 2019; 14:8-13. [PMID: 31435385 PMCID: PMC6694920 DOI: 10.1016/j.jtumed.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022] Open
Abstract
Objective This study aimed to analyse the effects of green tea in inhibiting uterine atrophy and vascular changes due to the use of depot medroxy progesterone acetate (DMPA). Methods Twenty-five female Wistar rats aged one to two months were randomly assigned to five treatment groups: control group, DMPA-induced group, and DMPA-induced group orally treated with green tea extract (at 10.8 mg/day, 21.6 mg/day, or 43.2 mg/day). Histologic analysis of uterine and vascular tissues was performed with haematoxylin-eosin staining. Results DMPA decreased the thickness of endometrium and tunica adventitia, as well as significantly decreased endothelial cell count (p < 0.05). DMPA-induced decreases in the thickness of tunica adventitia and endothelial cell count could be significantly inhibited by green tea extract (p < 0.05). Conclusion This study concluded that DMPA triggered the depletion of uterine endometrium and vascular tunica adventitia and decreased endothelial cell count. Green tea extract at the highest dose normalized tunica adventitia and endothelial changes to the basal value.
Collapse
Affiliation(s)
- Nora Veri
- Midwifery Study Program, Ministry of Health Polytechnic of Langsa, Aceh, Special Region of Aceh, Indonesia
| | - Emilda As
- Midwifery Study Program, Ministry of Health Polytechnic of Langsa, Aceh, Special Region of Aceh, Indonesia
| | - Cut Mutiah
- Midwifery Study Program, Ministry of Health Polytechnic of Langsa, Aceh, Special Region of Aceh, Indonesia
| | - Irma Seriana
- Department of Midwifery, Polytechnic of Health-Ministry of Health, Aceh, Indonesia
| | - Risnati Malinda
- STIKES Bustanul Ulum of Langsa, Aceh, Special Region of Aceh, Indonesia
| |
Collapse
|
28
|
Gurley BJ, Miousse IR, Nookaew I, Ewing LE, Skinner CM, Jenjaroenpun P, Wongsurawat T, Kennon-McGill S, Avula B, Bae JY, McGill MR, Ussery D, Khan IA, Koturbash I. Decaffeinated Green Tea Extract Does Not Elicit Hepatotoxic Effects and Modulates the Gut Microbiome in Lean B6C3F₁ Mice. Nutrients 2019; 11:nu11040776. [PMID: 30987244 PMCID: PMC6521095 DOI: 10.3390/nu11040776] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
The main purpose of this study was to investigate the hepatotoxic potential and effects on the gut microbiome of decaffeinated green tea extract (dGTE) in lean B6C3F1 mice. Gavaging dGTE over a range of 1X–10X mouse equivalent doses (MED) for up to two weeks did not elicit significant histomorphological, physiological, biochemical or molecular alterations in mouse livers. At the same time, administration of dGTE at MED comparable to those consumed by humans resulted in significant modulation of gut microflora, with increases in Akkermansia sp. being most pronounced. Results of this study demonstrate that administration of relevant-to-human-consumption MED of dGTE to non-fasting mice does not lead to hepatotoxicity. Furthermore, dGTE administered to lean mice, caused changes in gut microflora comparable to those observed in obese mice. This study provides further insight into the previously reported weight management properties of dGTE; however, future studies are needed to fully evaluate and understand this effect.
Collapse
Affiliation(s)
- Bill J Gurley
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - Laura E Ewing
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - Charles M Skinner
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - Stefanie Kennon-McGill
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - Bharathi Avula
- National Center for Natural Product Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Ji-Yeong Bae
- National Center for Natural Product Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Mitchell R McGill
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - David Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - Ikhlas A Khan
- National Center for Natural Product Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Igor Koturbash
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| |
Collapse
|
29
|
Kumar NB, Dickinson SI, Schell MJ, Manley BJ, Poch MA, Pow-Sang J. Green tea extract for prevention of prostate cancer progression in patients on active surveillance. Oncotarget 2018; 9:37798-37806. [PMID: 30701033 PMCID: PMC6340872 DOI: 10.18632/oncotarget.26519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 01/01/2023] Open
Abstract
Background Active surveillance (AS) has evolved as a management strategy for men with low grade prostate cancer (PCa). However, these patients report anxiety, doubts about the possible progression of the disease as well as higher decisional conflict regarding selection of active surveillance, and have been reported to ultimately opt for treatment without any major change in tumor characteristics. Currently, there is a paucity of research that systematically examines alternate strategies for this target population. Methods We conducted a review the evidence from epidemiological, in vitro, preclinical and early phase trials that have evaluated green tea catechins (GTC) for secondary chemoprevention of prostate cancer, focused on men opting for active surveillanceof low grade PCa. Results Results of our review of the in vitro, preclinical and phase I-II trials, demonstrates that green tea catechins (GTC) can modulate several relevant intermediate biological intermediate endpoint biomarkers implicated in prostate carcinogenesis as well as clinical progression of PCa, without major side effects. Discussion Although clinical trials using GTC have been evaluated in early phase trials in men diagnosed with High-Grade Prostatic Intraepithelial Neoplasia, Atypical Small Acinar Proliferation and in men with localized disease before prostatectomy, the effect of GTC on biological and clinical biomarkers implicated in prostate cancer progression have not been evaluated in this patient population. Conclusion Results of these studies promise to provide a strategy for secondary chemoprevention, reduce morbidities due to overtreatment and improve quality of life in men diagnosed with low-grade PCa.
Collapse
Affiliation(s)
- Nagi B Kumar
- H. Lee Moffitt Cancer Center & Research Institute, Inc., Cancer Epidemiology, MRC/CANCONT, Tampa, FL 33612-9497, USA
| | - Shohreh I Dickinson
- H. Lee Moffitt Cancer Center & Research Institute, Inc., Pathology Anatomic MMG, WCB-GU PROG, Tampa, FL 33612-9497, USA
| | - Michael J Schell
- H. Lee Moffitt Cancer Center & Research Institute, Inc., Biostatics and Bioinformatics, MRC-BIOSTAT, Tampa, FL 33612-9497, USA
| | - Brandon J Manley
- H. Lee Moffitt Cancer Center & Research Institute, GU Oncology MMG, Tampa, FL 33612-9497, USA
| | - Michael A Poch
- H. Lee Moffitt Cancer Center & Research Institute, GU Oncology MMG, Tampa, FL 33612-9497, USA
| | - Julio Pow-Sang
- H. Lee Moffitt Cancer Center & Research Institute, GU Oncology MMG, Tampa, FL 33612-9497, USA
| |
Collapse
|
30
|
Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Lambré C, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Andrade RJ, Fortes C, Mosesso P, Restani P, Arcella D, Pizzo F, Smeraldi C, Wright M. Scientific opinion on the safety of green tea catechins. EFSA J 2018; 16:e05239. [PMID: 32625874 PMCID: PMC7009618 DOI: 10.2903/j.efsa.2018.5239] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The EFSA ANS Panel was asked to provide a scientific opinion on the safety of green tea catechins from dietary sources including preparations such as food supplements and infusions. Green tea is produced from the leaves of Camellia sinensis (L.) Kuntze, without fermentation, which prevents the oxidation of polyphenolic components. Most of the polyphenols in green tea are catechins. The Panel considered the possible association between the consumption of (-)-epigallocatechin-3-gallate (EGCG), the most relevant catechin in green tea, and hepatotoxicity. This scientific opinion is based on published scientific literature, including interventional studies, monographs and reports by national and international authorities and data received following a public 'Call for data'. The mean daily intake of EGCG resulting from the consumption of green tea infusions ranges from 90 to 300 mg/day while exposure by high-level consumers is estimated to be up to 866 mg EGCG/day, in the adult population in the EU. Food supplements containing green tea catechins provide a daily dose of EGCG in the range of 5-1,000 mg/day, for adult population. The Panel concluded that catechins from green tea infusion, prepared in a traditional way, and reconstituted drinks with an equivalent composition to traditional green tea infusions, are in general considered to be safe according to the presumption of safety approach provided the intake corresponds to reported intakes in European Member States. However, rare cases of liver injury have been reported after consumption of green tea infusions, most probably due to an idiosyncratic reaction. Based on the available data on the potential adverse effects of green tea catechins on the liver, the Panel concluded that there is evidence from interventional clinical trials that intake of doses equal or above 800 mg EGCG/day taken as a food supplement has been shown to induce a statistically significant increase of serum transaminases in treated subjects compared to control.
Collapse
|
31
|
Bedrood Z, Rameshrad M, Hosseinzadeh H. Toxicological effects of Camellia sinensis (green tea): A review. Phytother Res 2018; 32:1163-1180. [PMID: 29575316 DOI: 10.1002/ptr.6063] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/14/2018] [Accepted: 01/26/2018] [Indexed: 12/21/2022]
Abstract
Many scientific articles proved that green tea (GT), Camellia sinensis, has a great potential to manage central nervous system, cardiovascular, and metabolic diseases and treat cancer and inflammatory disorders. However, it is important to consider that "natural" is not always "safe." Some relevant articles reported side effects of GT, detrimental effects on health. The aim of this study is to provide a classified report about the toxicity of GT and its main constituents in acute, subacute, subchronic, and chronic states. Furthermore, it discusses on the cytotoxicity, genotoxicity, mutagenicity, carcinogenicity, and developmental toxicity of GT and its main constituents. The most important side effects have been reported hepatotoxicity and gastrointestinal disorders specially while consumed on an empty stomach. GT and its main components are not major teratogen, mutagen, or carcinogen substances. However, there is limited data in using them during pregnancy, and they should be used with caution in pregnancy, breast-feeding, and susceptible people. Because GT and its main components have a wide variety of drug interactions, consideration should be taken in coadministration of them with narrow therapeutic indexed drugs. Furthermore, they evoke selective cytotoxicity on cancerous cells that could engage them as an adjuvant substance in cancer therapy.
Collapse
Affiliation(s)
- Zeinab Bedrood
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults - Results of a systematic review. Regul Toxicol Pharmacol 2018; 95:412-433. [PMID: 29580974 DOI: 10.1016/j.yrtph.2018.03.019] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022]
Abstract
A systematic review of published toxicology and human intervention studies was performed to characterize potential hazards associated with consumption of green tea and its preparations. A review of toxicological evidence from laboratory studies revealed the liver as the target organ and hepatotoxicity as the critical effect, which was strongly associated with certain dosing conditions (e.g. bolus dose via gavage, fasting), and positively correlated with total catechin and epigallocatechingallate (EGCG) content. A review of adverse event (AE) data from 159 human intervention studies yielded findings consistent with toxicological evidence in that a limited range of concentrated, catechin-rich green tea preparations resulted in hepatic AEs in a dose-dependent manner when ingested in large bolus doses, but not when consumed as brewed tea or extracts in beverages or as part of food. Toxico- and pharmacokinetic evidence further suggests internal dose of catechins is a key determinant in the occurrence and severity of hepatotoxicity. A safe intake level of 338 mg EGCG/day for adults was derived from toxicological and human safety data for tea preparations ingested as a solid bolus dose. An Observed Safe Level (OSL) of 704 mg EGCG/day might be considered for tea preparations in beverage form based on human AE data.
Collapse
Affiliation(s)
- Jiang Hu
- Worldwide Scientific Affairs, Herbalife Nutrition, Torrance, CA 90502, USA.
| | - Donna Webster
- Product Science, Herbalife Nutrition, Torrance, CA 90502, USA.
| | - Joyce Cao
- Global Post Market Safety Surveillance, Herbalife Nutrition, Torrance, CA 90502, USA.
| | - Andrew Shao
- Independent Consultant, Rancho Palos Verdes, CA 90505, USA.
| |
Collapse
|
33
|
Biological activities of (-)-epicatechin and (-)-epicatechin-containing foods: Focus on cardiovascular and neuropsychological health. Biotechnol Adv 2018; 36:666-681. [PMID: 29355598 DOI: 10.1016/j.biotechadv.2018.01.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
Abstract
Recent studies have suggested that certain (-)-epicatechin-containing foods have a blood pressure-lowering capacity. The mechanisms underlying (-)-epicatechin action may help prevent oxidative damage and endothelial dysfunction, which have both been associated with hypertension and certain brain disorders. Moreover, (-)-epicatechin has been shown to modify metabolic profile, blood's rheological properties, and to cross the blood-brain barrier. Thus, (-)-epicatechin causes multiple actions that may provide unique synergy beneficial for cardiovascular and neuropsychological health. This review summarises the current knowledge on the biological actions of (-)-epicatechin, related to cardiovascular and brain functions, which may play a remarkable role in human health and longevity.
Collapse
|
34
|
Abstract
By the turn of the twenty-first century, the use of nutraceuticals became increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have a toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies appears to play a pivotal role in safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors influencing their safety.
Collapse
|
35
|
Risk of Liver Injury Associated with Green Tea Extract in SLIMQUICK(®) Weight Loss Products: Results from the DILIN Prospective Study. Drug Saf 2017; 39:749-54. [PMID: 27189593 DOI: 10.1007/s40264-016-0428-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Herbal and dietary supplements (HDS) have been increasingly recognized as a cause for acute liver injury (Navarro et al. Hepatology 60(4):1399-1408, 2014; Bailey et al. J Nutr 141:261-266, 2011). HDS products frequently contain numerous ingredients, and are marketed under various product names. A perusal of marketed weight loss products indicates that green tea extract (GTE) is a common ingredient in many. We aimed to describe the course and outcome of six patients who developed liver injury attributed to SLIMQUICK(®) weight loss products. METHODS Patients with suspected drug-induced liver injury were enrolled in a prospective study of the Drug-Induced Liver Injury Network (DILIN) and causality was assessed by a panel of hepatologists. During the period under study, 6 of 1091 cases of liver injury were attributed to a SLIMQUICK(®) product and were assigned causality scores of probable, highly likely, or definite. RESULTS Six cases of acute liver injury attributed to SLIMQUICK(®) products were enrolled in the DILIN prospective study between 2007 and 2011. All were women aged 22 to 58 years. Two had a normal body weight and four were mildly obese (body mass index 22.9-32.2 kg/m(2)). All were taking SLIMQUICK(®) products for weight loss and no patient reported prior use. Laboratory tests revealed a hepatocellular pattern of injury, with initial alanine aminotransferase (ALT) levels above 1000 U/L in all but one patient. Three patients were hospitalized and one underwent successful liver transplantation. No patients died of liver injury. GTE and/or its component catechins were listed among the ingredients for five of the six products. CONCLUSIONS SLIMQUICK(®) products can lead to severe acute hepatocellular liver injury, which may result in transplantation. Given the frequency of GTE as a component in weight loss products, this ingredient should be studied further as a possible cause for liver injury.
Collapse
|
36
|
James KD, Kennett MJ, Lambert JD. Potential role of the mitochondria as a target for the hepatotoxic effects of (-)-epigallocatechin-3-gallate in mice. Food Chem Toxicol 2017; 111:302-309. [PMID: 29175576 DOI: 10.1016/j.fct.2017.11.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 11/29/2022]
Abstract
Green tea and (-)-epigallocatechin-3-gallate (EGCG) have been studied for their obesity-related health effects. Many green tea extract (GTE)-based dietary supplements are commercially-available. Although green tea beverage has a long history of safe use, a growing number of case-reports have linked GTE-based supplements to incidents of hepatotoxicity. Animal studies support the hepatotoxic potential of GTE and EGCG, but the mechanisms remain unclear. Here, we examined the hepatotoxic effects of EGCG in C57BL/6J mice and evaluated changes in hepatic antioxidant response and mitochondria structure and function. Intragastric dosing with EGCG (500 - 750 mg/kg) once daily for 3 d caused hepatic inflammation, necrosis, and hemorrhage. Hepatotoxicity was associated with increased oxidative stress and decreased superoxide dismutase and glutathione peroxidase levels. Real-time PCR and transmission electron microscopy showed decreased hepatic mitochondria copy number in EGCG-treated mice. The mRNA levels of marker genes of respiratory complex I and III, sirtuin 3, forkhead box O3a, and peroxisome-EGCG-treated mice. Sirtuin 3 protein levels were also decreased by EGCG. Our data indicate the mitochondria may be a target for EGCG, and that inhibition of mitochondria function/antioxidant response may be important for the hepatotoxicity of bolus EGCG.
Collapse
Affiliation(s)
- Karma D James
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States
| | - Mary J Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joshua D Lambert
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, United States; Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
37
|
Shen CL, Brackee G, Song X, Tomison MD, Finckbone V, Mitchell KT, Tang L, Chyu MC, Dunn DM, Wang JS. Safety Evaluation of Green Tea Polyphenols Consumption in Middle-aged Ovariectomized Rat Model. J Food Sci 2017; 82:2192-2205. [PMID: 28753729 DOI: 10.1111/1750-3841.13745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 03/25/2017] [Accepted: 04/17/2017] [Indexed: 01/12/2023]
Abstract
This work evaluates chronic safety in middle-aged ovariectomized rats supplemented with different dosages of green tea polyphenols (GTP) in drinking water. The experiment used 6-mo-old sham (n = 39) and ovariectomized (OVX, n = 143) female rats. All sham (n = 39) and 39 of the OVX animals received no GTP treatment and their samples were collected for outcome measures at baseline, 3 mo, and 6 mo (n = 13 per group for each). The remaining OVX animals were randomized into 4 groups receiving 0.15%, 0.5%, 1%, and 1.5% (n = 26 for each) of GTP (wt/vol), respectively, in drinking water for 3 and 6 mo. No mortality or abnormal treatment-related findings in clinical observations or ophthalmologic examinations were noted. No treatment-related macroscopic or microscopic findings were noted for animals administered 1.5% GTP supplementation. Throughout the study, there was no difference in the body weight among all OVX groups. In all OVX groups, feed intake and water consumption significantly decreased with GTP dose throughout the study period. At 6 mo, GTP intake did not affect hematology, clinical chemistry, and urinalysis, except for phosphorus and blood urea nitrogen (increased), total cholesterol, lactate dehydrogenase, and urine pH (decreased). This study reveals that the no-observed-adverse-effect level (NOAEL) of GTP is 1.5% (wt/vol) in drinking water, the highest dose used in this study.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Dept. of Pathology, Texas Tech Univ. Health Sciences Center, Lubbock, Tex., U.S.A
| | - Gordon Brackee
- Laboratory Animal Resources Center, Texas Tech Univ. Health Sciences Center, Lubbock, Tex., U.S.A
| | - Xiao Song
- Dept. of Epidemiology and Biostatistics, Univ. of Georgia, Athens, Ga., U.S.A
| | - Michael D Tomison
- Ophthalmology & Visual Sciences, Texas Tech Univ. Health Sciences Center, Lubbock, Tex., U.S.A
| | - VelvetLee Finckbone
- Laboratory Animal Resources Center, Texas Tech Univ. Health Sciences Center, Lubbock, Tex., U.S.A
| | - Kelly T Mitchell
- Ophthalmology & Visual Sciences, Texas Tech Univ. Health Sciences Center, Lubbock, Tex., U.S.A
| | - Lili Tang
- Dept. of Environmental Health Science, Univ. of Georgia, Athens, Ga., U.S.A
| | - Ming-Chien Chyu
- Graduate Healthcare Engineering, Whitacre College of Engineering, Texas Tech Univ., Lubbock, Tex., U.S.A
| | - Dale M Dunn
- Dept. of Pathology, Texas Tech Univ. Health Sciences Center, Lubbock, Tex., U.S.A
| | - Jia-Sheng Wang
- Dept. of Environmental Health Science, Univ. of Georgia, Athens, Ga., U.S.A
| |
Collapse
|
38
|
Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements. Toxicol Lett 2017; 277:104-108. [PMID: 28655517 DOI: 10.1016/j.toxlet.2017.06.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022]
Abstract
The safety of green tea infusions and green tea extract (GTE)-based products is reviewed regarding catechins. Epigallocatechin 3-gallate (EGCG), the major catechin present in green tea, is suspected of being responsible for liver toxicity reported in humans consuming food supplements. Intake of EGCG with green tea infusions and GTE-based beverages is up to about 450mg EGCG/person/day in Europe and higher in Asia. Consumption of green tea is not associated with liver damage in humans, and green tea infusion and GTE-based beverages are considered safe in the range of historical uses. In animal studies, EGCG's potency for liver effects is highly dependent on conditions of administration. Use of NOAELs from bolus administration to derive a tolerable upper intake level applying the margin of safety concept results in acceptable EGCG-doses lower than those from one cup of green tea. NOAELs from toxicity studies applying EGCG with diet/split of the daily dose are a better point of departure for risk characterization. In clinical intervention studies, liver effects were not observed after intakes below 600mg EGCG/person/day. Thus, a tolerable upper intake level of 300mg EGCG/person/day is proposed for food supplements; this gives a twofold safety margin to clinical studies that did not report liver effects and a margin of safety of 100 to the NOAELs in animal studies with dietary administration of green tea catechins.
Collapse
|
39
|
Liu Z, Liu D, Cheng J, Mei S, Fu Y, Lai W, Wang Y, Xu Y, Vo TD, Lynch BS. Lipid-soluble green tea extract: Genotoxicity and subchronic toxicity studies. Regul Toxicol Pharmacol 2017; 86:366-373. [DOI: 10.1016/j.yrtph.2017.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/24/2022]
|
40
|
Guo Y, Zhi F, Chen P, Zhao K, Xiang H, Mao Q, Wang X, Zhang X. Green tea and the risk of prostate cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e6426. [PMID: 28353571 PMCID: PMC5380255 DOI: 10.1097/md.0000000000006426] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Prostate cancer (PCa) now remains the 2nd most frequently diagnosed cancer. In recent years, chemoprevention for PCa becomes a possible concept. Especially, many phytochemicals rich foods are suggested to lower the risk of cancer. Among these foods, green tea is considered as effective prevention for various cancers. However, clinical trials and previous meta-analyses on the relationship between green tea consumption and the risk of PCa have produced inconsistent outcomes. This study aims to determine the dose-response association of green tea intake with PCa risk and the preventive effect of green tea catechins on PCa risk. Seven observational studies and 3 randomized controlled trials were retrieved from Cochrane Library, PubMed, Sciencedirect Online, and hand searching. The STATA (version 12.0) was applied to analyze the data. The relative risks (RRs) and 95% confidence intervals were pooled by fixed or random effect modeling. Dose-response relations were evaluated with categories of green tea intake. Although there was no statistical significance in the comparison of the highest versus lowest category, there was a trend of reduced incidence of PCa with each 1 cup/day increase of green tea (P = 0.08). Our dose-response meta-analysis further demonstrated that higher green tea consumption was linearly associated with a reduced risk of PCa with more than 7 cups/day. In addition, green tea catechins were effective for preventing PCa with an RR of 0.38 (P = 0.02). In conclusion, our dose-response meta-analysis evaluated the association of green tea intake with PCa risk systematically and quantitatively. And this is the first meta-analysis of green tea catechins consumption and PCa incidence. Our novel data demonstrated that higher green tea consumption was linearly reduced PCa risk with more than 7 cups/day and green tea catechins were effective for preventing PCa. However, further studies are required to substantiate these conclusions.
Collapse
Affiliation(s)
- Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan
| | - Fan Zhi
- Department of Urology, People's Hospital of New District Longhua, Shenzhen, P.R. China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan
| | - Keke Zhao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan
| | - Han Xiang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan
| | - Qi Mao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan
| |
Collapse
|
41
|
Yates AA, Erdman JW, Shao A, Dolan LC, Griffiths JC. Bioactive nutrients - Time for tolerable upper intake levels to address safety. Regul Toxicol Pharmacol 2017; 84:94-101. [PMID: 28110066 DOI: 10.1016/j.yrtph.2017.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
There is increasing interest by consumers, researchers, and regulators into the roles that certain bioactive compounds, derived from plants and other natural sources, can play in health maintenance and promotion, and even prolonging a productive quality of life. Research has rapidly emerged suggesting that a wide range of compounds and mixtures in and from plants (such as fruits and vegetables, tea and cocoa) and animals (such as fish and probiotics) may exert substantial health benefits. There is interest in exploring the possibility of establishing recommended intakes or dietary guidance for certain bioactive substances to help educate consumers. A key aspect of establishing dietary guidance is the assessment of safety/toxicity of these substances. Toxicologists need to be involved in both the development of the safety framework and in the evaluation of the science to establish maximum intake/upper limits.
Collapse
Affiliation(s)
- Allison A Yates
- Food and Nutrition Board, Institute of Medicine, National Research Council, Johnson City, TN 37615, United States.
| | - John W Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Andrew Shao
- Global Nutrition Policy, Herbalife Nutrition, Los Angeles, CA 90015, United States.
| | | | - James C Griffiths
- Science & International Affairs, Council for Responsible Nutrition, Washington, DC 20036, United States.
| |
Collapse
|
42
|
Heidemann LA, Navarro VJ, Ahmad J, Hayashi PH, Stolz A, Kleiner DE, Fontana RJ. Erratum to: Severe Acute Hepatocellular Injury Attributed to OxyELITE Pro: A Case Series. Dig Dis Sci 2016; 61:3638. [PMID: 27714508 DOI: 10.1007/s10620-016-4290-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lauren A Heidemann
- Department of Internal Medicine, University of Michigan Medical Center, 3912 Taubman Center, Ann Arbor, MI, 48109-0362, USA
| | - Victor J Navarro
- Department of Medicine, Einstein Healthcare Network, Philadelphia, PA, USA
| | - Jawad Ahmad
- Department of Medicine, Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | | | - Andrew Stolz
- University of Southern California, Los Angeles, CA, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Fontana
- Department of Internal Medicine, University of Michigan Medical Center, 3912 Taubman Center, Ann Arbor, MI, 48109-0362, USA.
| |
Collapse
|
43
|
Zheng E, Navarro V. Daño hepático debido al uso de suplementos nutricionales y de herbolario: revisión de componentes individuales. Clin Liver Dis (Hoboken) 2016; 8:S30-S33. [PMID: 31041093 PMCID: PMC6490225 DOI: 10.1002/cld.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/08/2016] [Indexed: 02/04/2023] Open
Affiliation(s)
- Elizabeth Zheng
- Del Department of HepatologyEinstein Medical CenterPhiladelphiaPA, EE. UU
| | - Víctor Navarro
- Del Department of HepatologyEinstein Medical CenterPhiladelphiaPA, EE. UU
| |
Collapse
|
44
|
Kumar NB, Pow-Sang J, Spiess PE, Park J, Salup R, Williams CR, Parnes H, Schell MJ. Randomized, placebo-controlled trial evaluating the safety of one-year administration of green tea catechins. Oncotarget 2016; 7:70794-70802. [PMID: 28053292 PMCID: PMC5340117 DOI: 10.18632/oncotarget.12222] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/13/2016] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Although preclinical, epidemiological and prior clinical trial data suggest that green tea catechins (GTCs) may reduce prostate cancer (PCa) risk, several preclinical studies and case reports have reported liver toxicities and acute gastrointestinal bleeding. Based on these observations, regulatory bodies have required stringent inclusion criteria with frequent, excessive toxicity monitoring and early stopping rules in clinical trials. These requirements have impeded recruitment and retention of subjects in chemoprevention trials and subsequent progress in agent development efforts. EXPERIMENTAL DESIGN We conducted a placebo-controlled, randomized clinical trial of Polyphenon E® (PolyE®), a proprietary mixture of decaffeinated GTCs, containing 400 mg (-)-epigallocatechin-3-gallate (EGCG) per day, in 97 men with high-grade prostatic intraepithelial neoplasia (HGPIN) and/or atypical small acinar proliferation (ASAP). PolyE® containing 200 mg EGCG was administered with food, BID. A secondary study endpoint in this trial was a comparison of the overall one-year treatment related adverse events and grade 3 or higher adverse event on the two study arms. Monthly assessments of toxicity (CTCAE 4.0), concomitant medications and organ function, including hepatic panel, PT/PTT and LDH, were performed. RESULTS Daily intake of a standardized, decaffeinated, catechin mixture containing 200 mg EGCG BID taken with food for 1 year accumulated in plasma and was well tolerated and did not produce treatment related adverse effects in men with baseline HGPIN or ASAP. CONCLUSION The current data provides evidence of safety of decaffeinated, catechin mixture containing 200 mg EGCG BID to be further tested for prostate cancer prevention or other indications.
Collapse
Affiliation(s)
- Nagi B. Kumar
- H. Lee Moffitt Cancer Center & Research Institute, Inc., Cancer Epidemiology, Tampa, FL 33612-9497, USA
- H. Lee Moffitt Cancer Center & Research Institute, Inc., Genitourinary Oncology, Tampa, FL 33612-9497, USA
| | - Julio Pow-Sang
- H. Lee Moffitt Cancer Center & Research Institute, Inc., Genitourinary Oncology, Tampa, FL 33612-9497, USA
| | - Philippe E. Spiess
- H. Lee Moffitt Cancer Center & Research Institute, Inc., Genitourinary Oncology, Tampa, FL 33612-9497, USA
| | - Jong Park
- H. Lee Moffitt Cancer Center & Research Institute, Inc., Cancer Epidemiology, Tampa, FL 33612-9497, USA
| | - Raoul Salup
- University of South Florida College of Medicine, Urology, Tampa, FL 33612, USA
| | - Christopher R. Williams
- University of Florida – Jacksonville, UF Health Jacksonville, Urologic Oncology, Jacksonville, FL 32209, USA
| | - Howard Parnes
- National Cancer Institute, Division of Cancer Prevention, Bethesda, MD 20892, USA
| | - Michael J. Schell
- Moffitt Cancer Center & Research Institute, Inc., Biostatistics and Bioinformatics, Tampa, FL 33612-9497, USA
| |
Collapse
|
45
|
Heidemann LA, Navarro VJ, Ahmad J, Hayashi PH, Stolz A, Kleiner DE, Fontana RJ. Severe Acute Hepatocellular Injury Attributed to OxyELITE Pro: A Case Series. Dig Dis Sci 2016; 61:2741-8. [PMID: 27142670 PMCID: PMC4982804 DOI: 10.1007/s10620-016-4181-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIM Herbal and dietary supplement (HDS) hepatotoxicity is increasingly being reported in the USA. This case series describes the presenting clinical features and outcomes of seven patients with liver injury attributed to OxyELITE Pro enrolled in the Drug-Induced Liver Injury Network (DILIN) study. METHODS The 6-month outcomes of patients with hepatotoxicity attributed to OxyELITE Pro enrolled in the DILIN prospective registry between 2004 and 2015 are presented. RESULTS Six of the seven patients (86 %) presented in 2013 with symptoms of hepatitis and acute hepatocellular injury. The median duration of OxyELITE Pro use was 18 weeks (range 5-102 weeks). Median age was 36 years (range 28-62), 86 % were female, and 43 % were Asian. One patient had rash, none had eosinophilia, and three had antinuclear antibody reactivity. The median peak ALT was 2242 U/L, alkaline phosphatase 284 U/L and bilirubin 15.0 mg/dL. Six patients (86 %) were hospitalized, three developed acute liver failure and two underwent liver transplantation. DILIN causality scores for OxyELITE Pro were definite in 1, highly likely in 3, probable in 2, and possible in 1. Four of the five patients without liver transplant recovered completely within 6 months, while one patient had mild residual ALT elevations. CONCLUSIONS Seven cases of severe acute hepatocellular injury attributed to OxyELITE Pro are reported. These results reinforce the need to assess for HDS supplement use in patients presenting with unexplained acute hepatitis and point to the need for additional regulatory oversight of HDS products.
Collapse
Affiliation(s)
- Lauren A Heidemann
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI
| | - Victor J Navarro
- Department of Medicine, Einstein Healthcare Network, Philadelphia, PA
| | - Jawad Ahmad
- Department of Medicine, Icahn School of Medicine at Mount Sinai Medical Center, New York, NY
| | | | - Andrew Stolz
- University of Southern California, Los Angeles, CA
| | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Robert J. Fontana
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI
| |
Collapse
|
46
|
Martineau AS, Leray V, Lepoudere A, Blanchard G, Bensalem J, Gaudout D, Ouguerram K, Nguyen P. A mixed grape and blueberry extract is safe for dogs to consume. BMC Vet Res 2016; 12:162. [PMID: 27487916 PMCID: PMC4973095 DOI: 10.1186/s12917-016-0786-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/28/2016] [Indexed: 11/27/2022] Open
Abstract
Background Grape and blueberry extracts are known to protect against age-related cognitive decline. However, beneficial effects achieved by mixing grape and blueberry extracts have yet to be evaluated in dogs, or their bioavailability assessed. Of concern to us were cases of acute renal failure in dogs, after their ingestion of grapes or raisins. The European Pet Food Industry Federation (2013) considers only the grape or raisin itself to be potentially dangerous; grape-seed extracts per-se, are not considered to be a threat. Our aim was therefore to evaluate the renal and hepatic safety, and measure plasma derivatives of a polyphenol-rich extract from grape and blueberry (PEGB; from the Neurophenols Consortium) in dogs. Polyphenol expression was analyzed by UHPLC-MS/MS over 8 hours, for dogs given PEGB at 4 mg/kg. Safety was evaluated using four groups of 6 dogs. These groups received capsules containing no PEGB (control), or PEGB at 4, 20, or 40 mg/kg BW/d, for 24 weeks. Blood and urine samples were taken the week prior to study commencement, then at the end of the 24-wk study period. Routine markers of renal and liver damage, including creatinine (Creat), blood urea nitrogen, albumin, minerals, alkaline phosphatase (ALP), and alanine transaminase (ALT) were measured. Biomarkers for early renal damage were also evaluated in plasma (cystatin C (CysC), and neutrophil gelatinase-associated lipocalin (NGAL)), and urine (CysC, clusterin (Clu), and NGAL). Ratios of urinary biomarkers to Creat were calculated, and compared with acceptable maximal values obtained for healthy dogs, as reported in the literature. Results While several PEGB-specific polyphenols and metabolites were detected in dog plasma, at the end of the PEGB consumption period, our biomarker analyses presented no evidence of either renal or liver damage (Creat, BUN, ionogram, albumin and ALT, ALP). Similarly, no indication of early renal damage could be detected. Plasma CysC, urinary CysC/Creat, Clu/Creat, and NGAL/Creat ratios were all beneath reported benchmarked maximums, with no evidence of PEGB toxicity. Conclusions Long-term consumption of a pet specific blend of a polyphenol-rich extract from grape and blueberry (PEGB; from the Neurophenols Consortium), was not associated with renal or hepatic injury, and can therefore be considered safe.
Collapse
Affiliation(s)
- Anne-Sophie Martineau
- LUNAM University, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, Nutrition and Endocrinology Unit, C.S. 40706, 44307, Nantes Cedex 03, France
| | - Véronique Leray
- LUNAM University, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, Nutrition and Endocrinology Unit, C.S. 40706, 44307, Nantes Cedex 03, France
| | - Anne Lepoudere
- SPF-DIANA Pet Food Business, ZA du Gohélis, 56250, Elven, France
| | - Géraldine Blanchard
- Animal Nutrition Expertise, 33 avenue de l'Île-de-France, 92160, Antony, France
| | - Julien Bensalem
- Activ'Inside, Espace Legendre, 33 rue Max Linder, 33500, Libourne, France
| | - David Gaudout
- Activ'Inside, Espace Legendre, 33 rue Max Linder, 33500, Libourne, France
| | - Khadija Ouguerram
- UMR1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, CHU-Hôtel Dieu, Place Alexis Ricordeau, 44096, Nantes Cedex 1, France
| | - Patrick Nguyen
- LUNAM University, Oniris, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, Nutrition and Endocrinology Unit, C.S. 40706, 44307, Nantes Cedex 03, France.
| | | |
Collapse
|
47
|
de la Torre R, de Sola S, Hernandez G, Farré M, Pujol J, Rodriguez J, Espadaler JM, Langohr K, Cuenca-Royo A, Principe A, Xicota L, Janel N, Catuara-Solarz S, Sanchez-Benavides G, Bléhaut H, Dueñas-Espín I, del Hoyo L, Benejam B, Blanco-Hinojo L, Videla S, Fitó M, Delabar JM, Dierssen M. Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15:801-810. [DOI: 10.1016/s1474-4422(16)30034-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
|
48
|
Zheng E, Navarro V. Liver injury due to herbal and dietary supplements: A review of individual ingredients. Clin Liver Dis (Hoboken) 2016; 7:80-83. [PMID: 31041035 PMCID: PMC6490262 DOI: 10.1002/cld.541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/25/2016] [Accepted: 02/08/2016] [Indexed: 02/04/2023] Open
Affiliation(s)
- Elizabeth Zheng
- Department of HepatologyEinstein Medical CenterPhiladelphiaPA
| | - Victor Navarro
- Department of HepatologyEinstein Medical CenterPhiladelphiaPA
| |
Collapse
|
49
|
Pfeuffer S, Ruck T, Kleinschnitz C, Wiendl H, Meuth SG. Failed, interrupted and inconclusive trials on relapsing multiple sclerosis treatment: update 2010–2015. Expert Rev Neurother 2016; 16:689-700. [DOI: 10.1080/14737175.2016.1176531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Bak MJ, Das Gupta S, Wahler J, Suh N. Role of dietary bioactive natural products in estrogen receptor-positive breast cancer. Semin Cancer Biol 2016; 40-41:170-191. [PMID: 27016037 DOI: 10.1016/j.semcancer.2016.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer, including luminal-A and -B, is the most common type of breast cancer. Extended exposure to estrogen is associated with an increased risk of breast cancer. Both ER-dependent and ER-independent mechanisms have been implicated in estrogen-mediated carcinogenesis. The ER-dependent pathway involves cell growth and proliferation triggered by the binding of estrogen to the ER. The ER-independent mechanisms depend on the metabolism of estrogen to generate genotoxic metabolites, free radicals and reactive oxygen species to induce breast cancer. A better understanding of the mechanisms that drive ER-positive breast cancer will help optimize targeted approaches to prevent or treat breast cancer. A growing emphasis is being placed on alternative medicine and dietary approaches toward the prevention and treatment of breast cancer. Many natural products and bioactive compounds found in foods have been shown to inhibit breast carcinogenesis via inhibition of estrogen induced oxidative stress as well as ER signaling. This review summarizes the role of bioactive natural products that are involved in the prevention and treatment of estrogen-related and ER-positive breast cancer.
Collapse
Affiliation(s)
- Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|