1
|
Squecco R, Pierucci F, Idrizaj E, Frati A, Lenci E, Vicenti C, Iachini MC, Martinesi M, Garella R, Baccari MC, Francini F, Meacci E. Ceramide/protein phosphatase 2A axis is engaged in gap junction impairment elicited by PCB153 in liver stem-like progenitor cells. Mol Cell Biochem 2021; 476:3111-3126. [PMID: 33837873 PMCID: PMC8263450 DOI: 10.1007/s11010-021-04135-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
The widespread environmental pollutant 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) is a non-dioxin-like toxicant. It is a potential carcinogen compound able to induce gap junction (GJ) intercellular communication impairment, probably the first non-genomic event leading to tumor promotion. Although PCBs have been known for many years, the molecular mode of PCB153 action is still unclear. Recent studies from our research group have shown that the toxicant elicits a transient modulation of connexin (Cx) 43-formed GJs in hepatic stem-like WB-F344 cells involving sphingosine 1-phosphate (S1P) path. Taking into account that other strictly related bioactive sphingolipids, such as ceramide (Cer), may have different effects from S1P, here we aim to clarify the signaling paths engaged by PCB153 in the control of GJs, focusing primarily on the role of Cer. Accordingly, we have achieved a combined biomolecular and electrophysiological analysis of GJs in cultured WB-F344 cells treated with PCB153 at different time points. We have found that the toxicant elicited a time-dependent regulation of GJs formed by different Cx isoforms, through a transient modulation of Cer/Cer kinase (CerK) axis and, in turn, of protein phosphatase 2A (PP2A). Our new findings demonstrate the existence of a specific molecular mechanism downstream to Cer, which distinctly affects the voltage-dependent and -independent GJs in liver stem-like cells, and open new opportunities for the identification of additional potential targets of these environmental toxicants.
Collapse
Affiliation(s)
- Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Elena Lenci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Catia Vicenti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Maria Chiara Iachini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Maria Martinesi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Fabio Francini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
2
|
Totland C, Nerdal W, Steinkopf S. Effects and Location of Coplanar and Noncoplanar PCB in a Lipid Bilayer: A Solid-State NMR Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8290-8295. [PMID: 27379686 DOI: 10.1021/acs.est.6b01723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coplanar and noncoplanar polychlorinated biphenyls (PCBs) are known to have different routes and degree of toxicity. Here, the effects of noncoplanar PCB 52 and coplanar PCB 77 present at 2 mol % in a model system consisting of POPC liposomes (50% hydrated) are investigated by solid-state (13)C and (31)P NMR at 298 K. Both PCBs intercalate horizontally in the outer part of the bilayer, near the segments of the acyl chain close to the glycerol group. Despite similar membrane locations, the coplanar PCB 77 shows little effect on the bilayer properties overall, except for the four nearest neighboring lipids, while the effect of PCB 52 is more dramatic. The first ∼2 layers of lipids around each PCB 52 in the bilayer form a high fluidity lamellar phase, whereas lipids beyond these layers form a lamellar phase with a slight increase in fluidity compared to a bilayer without PCB 52. Further, a third high mobility domain is observed. The explanation for this is the interference of several high fluidity lamellar phases caused by interactions of PCB 52 molecules in different leaflets of the model bilayer. This causes formation of high curvature toroidal region in the bilayer and might induce formation of channels.
Collapse
Affiliation(s)
- Christian Totland
- Department of Chemistry, University of Bergen, Norway , Allégaten 41, N-5007 Bergen, Norway
| | - Willy Nerdal
- Department of Chemistry, University of Bergen, Norway , Allégaten 41, N-5007 Bergen, Norway
| | - Signe Steinkopf
- Department of Biomedical Laboratory Sciences and Chemical Engineering, Bergen University College , 5020 Bergen, Norway
| |
Collapse
|
3
|
Pierucci F, Frati A, Squecco R, Lenci E, Vicenti C, Slavik J, Francini F, Machala M, Meacci E. Non-dioxin-like organic toxicant PCB153 modulates sphingolipid metabolism in liver progenitor cells: its role in Cx43-formed gap junction impairment. Arch Toxicol 2016; 91:749-760. [PMID: 27318803 DOI: 10.1007/s00204-016-1750-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
The non-dioxin-like environmental toxicant 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153), member of a group of persistent organic pollutants wide-spread throughout the environment, reduces gap junction intercellular communication (GJIC), an event possibly associated with tumor promotion. Since very few studies have investigated the signaling effectors and mode(s) of action of PCB153, and it is known that the gap junction (GJ) protein Cx43 can be regulated by the bioactive sphingolipid (SL) sphingosine 1-phosphate (S1P), this in vitro study mainly addresses whether SL metabolism is affected by PCB153 in rat liver epithelial WB-F344 cells. PCB153 treatment obtained significant changes in the S1P/ceramide (Cer) ratio, known to be crucial in determining cell fate. In particular, an increase in S1P at 30 min and a decrease of the bioactive lipid at 3 h were observed, whereas Cer level increased at 1 h and 24 h. Notably, a time-dependent modulation of sphingosine kinase (SphK), the enzyme responsible for S1P synthesis, and of its regulators, ERK1/2 and protein phosphatase PP2A, supports the involvement of these signaling effectors in PCB153 toxicity. Electrophysiological analyses, furthermore, indicated that the lipophilic environmental toxicant significantly reduced GJ biophysical properties, affecting both voltage-dependent (such as those formed by Cx43 and/or Cx32) and voltage-independent channels, thereby demonstrating that PCB153 may act differently on GJs formed by distinct Cx isoforms. SphK down-regulation alone induced GJIC impairment, and, when combined with PCB153, the acute effect on GJ suppression was additive. Moreover, after enzyme-specific gene silencing, the SphK1 isoform appears to be responsible for down-regulating Cx43 expression, while being the target of PCB153 at short-term exposure. In conclusion, we provide the first evidence of novel effectors in PCB153 toxic action in rat liver stem-like cells, leading us to consider SLs as potential markers for preventing GJIC deregulation and, thus, the tumorigenic action elicited by this environmental toxicant.
Collapse
Affiliation(s)
- F Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - A Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - R Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - E Lenci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - C Vicenti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - J Slavik
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - F Francini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - M Machala
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - E Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
4
|
Misaki K, Takamura-Enya T, Ogawa H, Takamori K, Yanagida M. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives. Mutagenesis 2015; 31:205-13. [PMID: 26656082 DOI: 10.1093/mutage/gev076] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Various types of polycyclic aromatic compounds (PACs) in diesel exhaust particles are thought to contribute to carcinogenesis in mammals. Although the carcinogenicity, mutagenicity and tumour-initiating activity of these compounds have been evaluated, their tumour-promoting activity is unclear. In the present study, to determine the tumour-inducing activity of PACs, including previously known mutagenic compounds in atmospheric environments, a transformation assay for promoting activity mediated by the release of contact inhibition was conducted for six polycyclic aromatic hydrocarbons (PAHs), seven oxygenated PAHs (oxy-PAHs) and seven nitrated PAHs (nitro-PAHs) using mouse embryonic fibroblast cells transfected with the v-Ha-ras gene (Bhas 42 cells). Of these, two PAHs [benzo[k]fluoranthene (B[k]FA) and benzo[b]fluoranthene (B[b]FA)], one oxy-PAH [6H-benzo[cd]pyren-6-one (BPO)] and two nitro-PAHs (3-nitro-7H-benz[de]anthracen-7-one and 6-nitrochrysene) were found to exhibit particularly powerful tumour-promoting activity (≥10 foci following exposure to <100nM). In addition, clear mRNA expression of CYP1A1, which is associated with aryl hydrocarbon receptor (AhR)-mediated activation, was observed following the exposure of cells to two PAHs (B[k]FA and B[b]FA) and three oxy-PAHs (1,2-naphthoquinone, 11H-benzo[b]fluoren-11-one and BPO). Further, an HO-1 antioxidant response activation was observed following exposure to B[k]FA, B[b]FA and BPO, suggesting that the induction of tumour-promoting activity in these compounds is correlated with the dysfunction of signal transduction via AhR-mediated responses and/or oxidative stress responses.
Collapse
Affiliation(s)
- Kentaro Misaki
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan and
| | - Takeji Takamura-Enya
- Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Mitsuaki Yanagida
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| |
Collapse
|
5
|
Yufang Z, Cen C, Xiu W, Panpan G, Xinyu Z, Zhiqiang Y, Jing A. HBCD and PCBs enhance the cell migration and invasion of HepG2 via the PI3 K/Akt pathway. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00108g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exposure to hexabromocyclododecane (HBCD) and polychlorinated biphenyls (PCBs) has been proved to result in diversified toxicity, including cancerogenesis.
Collapse
Affiliation(s)
- Zhong Yufang
- Institute of Environmental Pollution and Health
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Chen Cen
- Institute of Environmental Pollution and Health
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Wang Xiu
- Institute of Environmental Pollution and Health
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Guo Panpan
- Institute of Environmental Pollution and Health
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Zhang Xinyu
- Institute of Environmental Pollution and Health
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Yu Zhiqiang
- State Key Laboratory of Organic Geochemistry
- Guangzhou Institute of Geochemistry
- Chinese Academy of Sciences
- Guangzhou 510640
- P. R. China
| | - An Jing
- Institute of Environmental Pollution and Health
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
6
|
An J, Wang X, Guo P, Zhong Y, Zhang X, Yu Z. Hexabromocyclododecane and polychlorinated biphenyls increase resistance of hepatocellular carcinoma cells to cisplatin through the phosphatidylinositol 3-kinase/protein kinase B pathway. Toxicol Lett 2014; 229:265-72. [PMID: 24960055 DOI: 10.1016/j.toxlet.2014.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/15/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in China with high mortality, high chemotherapy resistance incidence, and poor prognosis. This study aimed to investigate the influence of polychlorinated biphenyls (PCBs) and hexabromocyclododecane (HBCD) on chemoresistance of HCC cells (HepG2, MHCC97H, and MHCC97L) to cisplatin and to explore the potential molecular mechanism. Cell viability, DNA damage, the expression level and activity of nuclear factor-κB (NF-κB), p53/Mdm4, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway were measured. The results showed that HBCD and PCBs could significantly reduce the chemosensitivity of HCC cells to cisplatin, increasing the cell viability and decreasing DNA damage. Moreover, HBCD and PCBs could induce the transcriptional activity of NF-κb and suppress the p53 expression in HepG2 and MHCC97H cells. In MHCC97L cells, however, opposite changes for NF-κB protein expression, NF-κB transcriptional activity, and p53/Mdm4 expression were observed after HBCD and PCBs exposure. Further investigation revealed that HBCD and PCBs exposure significantly increased the expression level of p-Akt and mammalian target of rapamycin (mTOR) in HepG2 and MHCC97H cells, but reduced that in MHCC97L cells. PI3K inhibitor LY294002 could relieve the influence of HBCD and PCBs on chemoresistance in HepG2 and MHCC97H cells. Taken together, HBCD and PCBs at low concentrations could increase the resistance of HCC cells to cisplatin through modulation on NF-κB pathway activation and p53 function, which is associated with the activity of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China.
| | - Xiu Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Panpan Guo
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Yufang Zhong
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Xinyu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
7
|
Gonzalez A, Odjélé A, Weber JM. PCB-153 and temperature cause restructuring of goldfish membranes: homeoviscous response to a chemical fluidiser. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:11-18. [PMID: 24121159 DOI: 10.1016/j.aquatox.2013.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Ortho-substituted PCBs intercalate between membrane phospholipids similarly to cholesterol and increase fluidity. Ectothermic animals have a well-developed homeoviscous response to counter the fluidising effect of temperature and avoid the disruption of membrane proteins. However, it remains unknown whether chemical fluidisation can also activate a homeoviscous response or interfere with normal acclimation to temperature. The fatty acid composition and cholesterol content of membranes from gill, white muscle, liver, and brain was measured in goldfish exposed to 4 treatments in a 2 × 2 factorial design (acclimated to 5 or 20°C, and exposed or not to PCB-153). The expression of Δ6 and Δ9 desaturases was also measured in gill and liver because these enzymes modulate changes in membrane unsaturation. We hypothesised that thermal and chemical stress would cause similar adjustments in phospholipid unsaturation, membrane cholesterol, and desaturase expression. Results show that PCB-153 triggers a homeoviscous response by changing cholesterol content in liver (+51%) and brain (+216%), as well as the double bond index in gills (-17%). In response to higher temperature, the membranes of gill, muscle, and brain substitute polyunsaturated fatty acids such as arachidonate [20:4] and eicosadienoate [20:2] with saturated fatty acids such as palmitate [16:0] and stearate [18:0]. Each tissue has a distinct pattern of changes, suggesting that different local factors contribute to the stress response. It is also possible that the thermal tolerance of individual species influences the homeoviscous response because the changes observed in goldfish liver are not consistent with what has been reported for trout liver. No evidence supporting the activation of desaturase expression could be found. Overall, and contrary to expectation, modulating membrane cholesterol is the main mechanism used to cope with PCB-153, whereas changes in unsaturation dominate temperature acclimation. If also present in other species, these protective responses may prove particularly important for polar fish that face the combined effects of thermal stress from climate change and chemical stress from organochlorine deposition. This study is the first to show that in vivo exposure to a membrane fluidiser can cause a homeoviscous response in an ectothermic animal. We conclude that the homeostatic mechanisms that preserve normal membrane function vary: (1) with the nature of the stress that perturbs fluidity, (2) with local conditions within each tissue, and (3) possibly with the thermal tolerance of individual species. These complicating factors will have to be considered in future studies of homeoviscous adjustments.
Collapse
|
8
|
Chemokine (C-C motif) ligand 22 is down-regulated in a human B lymphoblastoid cell line by PCB153 and in residents from PCBs-contaminated areas. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 752:21-7. [DOI: 10.1016/j.mrgentox.2012.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/19/2012] [Accepted: 12/26/2012] [Indexed: 11/21/2022]
|