1
|
Ferremi FJ, Moscoso VV, Montanaro MA, Gonzalez-Baro MR, Cattaneo ER. The protumorigenic enzyme GPAT2 inhibits arachidonic acid-triggered apoptosis in breast cancer. Lipids Health Dis 2024; 23:391. [PMID: 39605002 PMCID: PMC11600616 DOI: 10.1186/s12944-024-02344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Cancer is a significant health challenge and the leading cause of mortality globally. Tumor cells use multiple mechanisms to acquire their distinctive capacity for uncontrolled proliferation, one of which is the evasion of apoptosis. It has been shown that in breast, colon, and liver cancer, evasion of apoptosis is associated with the overexpression of enzymes that metabolize arachidonic acid (AA) because free AA is a strong inducer of apoptosis. Glycerol-3-phosphate acyltransferase 2 (GPAT2) is a key enzyme in AA metabolism and is highly expressed in breast and colon cancer, where it promotes the development of essential tumor features. METHODS In this work, a model of GPAT2 silencing in the human breast cancer-derived cell line MDA-MB-231 was used, and the cells were exposed to exogenous AA. The role of GPAT2 in AA-induced cell death was studied using MTT and TUNEL assays and measurements of caspase activity. The underlying molecular mechanism of cell death was assessed by qRT‒PCR. RESULTS The results showed that AA reduced cell viability only in GPAT2-silenced cells, and that this cell death was a consequence of an apoptotic process involving BNIP3 overexpression. Additionally, it was demonstrated that GPAT2 silencing triggered a compensatory mechanism by overexpressing other genes involved in AA utilization for eicosanoid biosynthesis. CONCLUSIONS We concluded that GPAT2 expression is necessary to prevent AA-induced apoptotic cell death in MDA-MB-231 cells and that the overexpression of other AA-metabolizing genes is not sufficient to compensate for the lack of GPAT2 and prevent apoptosis.
Collapse
Affiliation(s)
- Fiorella J Ferremi
- Instituto de Investigaciones Bioquímicas de La Plata Dr. Rodolfo R. Brenner, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Veronica V Moscoso
- Instituto de Investigaciones Bioquímicas de La Plata Dr. Rodolfo R. Brenner, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mauro A Montanaro
- Instituto de Investigaciones Bioquímicas de La Plata Dr. Rodolfo R. Brenner, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Maria R Gonzalez-Baro
- Instituto de Investigaciones Bioquímicas de La Plata Dr. Rodolfo R. Brenner, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Elizabeth R Cattaneo
- Instituto de Investigaciones Bioquímicas de La Plata Dr. Rodolfo R. Brenner, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Sarg NH, Zaher DM, Abu Jayab NN, Mostafa SH, Ismail HH, Omar HA. The interplay of p38 MAPK signaling and mitochondrial metabolism, a dynamic target in cancer and pathological contexts. Biochem Pharmacol 2024; 225:116307. [PMID: 38797269 DOI: 10.1016/j.bcp.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Mitochondria play a crucial role in cellular metabolism and bioenergetics, orchestrating various cellular processes, including energy production, metabolism, adaptation to stress, and redox balance. Besides, mitochondria regulate cellular metabolic homeostasis through coordination with multiple signaling pathways. Importantly, the p38 mitogen-activated protein kinase (MAPK) signaling pathway is a key player in the intricate communication with mitochondria, influencing various functions. This review explores the multifaced interaction between the mitochondria and p38 MAPK signaling and the consequent impact on metabolic alterations. Overall, the p38 MAPK pathway governs the activities of key mitochondrial proteins, which are involved in mitochondrial biogenesis, oxidative phosphorylation, thermogenesis, and iron homeostasis. Additionally, p38 MAPK contributes to the regulation of mitochondrial responses to oxidative stress and apoptosis induced by cancer therapies or natural substances by coordinating with other pathways responsible for energy homeostasis. Therefore, dysregulation of these interconnected pathways can lead to various pathologies characterized by aberrant metabolism. Consequently, gaining a deeper understanding of the interaction between mitochondria and the p38 MAPK pathway and their implications presents exciting forecasts for novel therapeutic interventions in cancer and other disorders characterized by metabolic dysregulation.
Collapse
Affiliation(s)
- Nadin H Sarg
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nour N Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Salma H Mostafa
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hussein H Ismail
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
3
|
Lv Y, Li K, Wang S, Wang X, Yue G, Zhang Y, Lv X, Zhao P, Wang S, Zhang Q, Li Q, Zhu J, Li J, Peng P, Li Y, Luo J, Zhang X, Yang J, Zhang B, Wang X, Zhang M, Shen C, Wang X, Wang M, Ye Z, Cui Y. Protective role of arachidonic acid against diabetic myocardial ischemic injury: a translational study of pigs, rats, and humans. Cardiovasc Diabetol 2024; 23:58. [PMID: 38336692 PMCID: PMC10858581 DOI: 10.1186/s12933-024-02123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/05/2024] [Indexed: 02/12/2024] Open
Abstract
AIM Patients with diabetes mellitus have poor prognosis after myocardial ischemic injury. However, the mechanism is unclear and there are no related therapies. We aimed to identify regulators of diabetic myocardial ischemic injury. METHODS AND RESULTS Mass spectrometry-based, non-targeted metabolomic approach was used to profile coronary sinus blood from diabetic and non-diabetic Bama-mini pigs at 0.5-h post coronary artery ligation. Six metabolites had a |log2 (Fold Change)|> 1.3. Among them, the most changed is arachidonic acid (AA), levels of which were 32 times lower in diabetic pigs than in non-diabetic pigs. The AA-derived products, PGI2 and 6-keto-PGF1α, were also significantly reduced. AA treatment of cultured cardiomyocytes protected against cell death by 30% at 48 h of high glucose and oxygen deprivation, which coincided with increased mitophagic activity (as indicated by increased LC3II/LC3I, decreased p62 and increased parkin & PINK1), improved mitochondrial renewal (upregulation of Drp1 and FIS1), reduced ROS generation and increased ATP production. These cardioprotective effects were abolished by PINK1(a crucial mitophagy protein) knockdown or the autophagy inhibitor 3-Methyladenine. The protective effect of AA was also inhibited by indomethacin and Cay10441, a prostacyclin receptor antagonist. Furthermore, diabetic Sprague Dawley rats were subjected to coronary ligation for 40 min and AA treatment (10 mg/day per animal gavaged) decreased myocardial infarct size, cell apoptosis index, inflammatory cytokines and improved heart function. Scanning electron microscopy showed more intact mitochondria in the border zone of infarcted myocardium in AA treated rats. Lastly, diabetic patients after myocardial infarction had lower plasma levels of AA and 6-keto-PGF1α and reduced cardiac ejection fraction, compared with non-diabetic patients after myocardial infarction. Plasma AA level was inversely correlated with fasting blood glucose. CONCLUSIONS AA protects against diabetic ischemic myocardial damage by promoting mitochondrial autophagy and renewal, which is related to AA derived PGI2 signaling. AA may represent a new strategy to treat diabetic myocardial ischemic injury.
Collapse
Affiliation(s)
- Yunhui Lv
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Kai Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Shuo Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Xiaokang Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Guangxin Yue
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yangyang Zhang
- Department of Pharmacy & Cardiology & Endocrinology & General Surgery, Suqian First Hospital, 120 Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, China
| | - Xin Lv
- Department of Pharmacy & Cardiology & Endocrinology & General Surgery, Suqian First Hospital, 120 Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, China
| | - Ping Zhao
- Department of Pharmacy & Cardiology & Endocrinology & General Surgery, Suqian First Hospital, 120 Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, China
| | - Shiping Wang
- Department of Pharmacy & Cardiology & Endocrinology & General Surgery, Suqian First Hospital, 120 Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, China
| | - Qi Zhang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Qiuju Li
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jinyan Zhu
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jubo Li
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Peng Peng
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yue Li
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jiafei Luo
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Xue Zhang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jianzhong Yang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Baojie Zhang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Xuemin Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Min Zhang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Chen Shen
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Xin Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| | - Miao Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| | - Zhen Ye
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
- Department of Pharmacy & Cardiology & Endocrinology & General Surgery, Suqian First Hospital, 120 Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, China.
| | - Yongchun Cui
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
4
|
Montecillo-Aguado M, Tirado-Rodriguez B, Huerta-Yepez S. The Involvement of Polyunsaturated Fatty Acids in Apoptosis Mechanisms and Their Implications in Cancer. Int J Mol Sci 2023; 24:11691. [PMID: 37511450 PMCID: PMC10380946 DOI: 10.3390/ijms241411691] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is a significant global public health issue and, despite advancements in detection and treatment, the prognosis remains poor. Cancer is a complex disease characterized by various hallmarks, including dysregulation in apoptotic cell death pathways. Apoptosis is a programmed cell death process that efficiently eliminates damaged cells. Several studies have indicated the involvement of polyunsaturated fatty acids (PUFAs) in apoptosis, including omega-3 PUFAs such as alpha-linolenic acid, docosahexaenoic acid, and eicosapentaenoic acid. However, the role of omega-6 PUFAs, such as linoleic acid, gamma-linolenic acid, and arachidonic acid, in apoptosis is controversial, with some studies supporting their activation of apoptosis and others suggesting inhibition. These PUFAs are essential fatty acids, and Western populations today have a high consumption rate of omega-6 to omega-3 PUFAs. This review focuses on presenting the diverse molecular mechanisms evidence in both in vitro and in vivo models, to help clarify the controversial involvement of omega-3 and omega-6 PUFAs in apoptosis mechanisms in cancer.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City 04510, Mexico
| | - Belen Tirado-Rodriguez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico
| |
Collapse
|
5
|
Dong F, Xiao P, Li X, Chang P, Zhang W, Wang L. Cadmium triggers oxidative stress and mitochondrial injury mediated apoptosis in human extravillous trophoblast HTR-8/SVneo cells. Reprod Toxicol 2021; 101:18-27. [PMID: 33588013 DOI: 10.1016/j.reprotox.2021.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/16/2021] [Accepted: 02/09/2021] [Indexed: 12/25/2022]
Abstract
Cadmium (Cd) is a bioaccumulative heavy metal element with potential placental toxicity during pregnancy. Up to now, however, the precise toxic effects of Cd on human placentae, particularly as they pertain to trophoblast cells remain obscure. We therefore sought to investigate the cytotoxic effects of Cd on human extravillous trophoblast HTR-8/SVneo cells and the mechanisms involved in the processes. Results in this present study showed that CdCl2 treatment significantly suppressed cell viability and induced noticeable oxidative stress in HTR-8/SVneo cells. Further studies showed that CdCl2 treatment caused distortion of mitochondrial structure, reduction of mitochondrial membrane potential (Δψm), DNA damage and G0/G1 phase arrest. Under the same condition, CdCl2 treatment increased Bax/Bcl-2 ratios by up-regulating Bax expression and down-regulating Bcl-2 expression, and activated apoptotic executive molecule caspase-3, which irreversibly induced HTR-8/SVneo cell apoptosis. N-acetyl-l-cysteine (NAC), ROS scavenger, significantly attenuated CdCl2-caused mitochondrial injury, DNA damage, G0/G1 phase arrest and apoptosis. In addition, in vivo assay suggested that CdCl2 induced trophoblast cells apoptosis but not other cells in mice placental tissue. Taken together, these data suggest that Cd selectively triggers oxidative stress and mitochondrial injury mediated apoptosis in trophoblast cells, which might contribute to placentae impairment and placental-related disorders after Cd exposure. These findings may provide new insights to understand adverse effects of Cd on placentae during pregnancy.
Collapse
Affiliation(s)
- Feng Dong
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Pan Xiao
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiangyang Li
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | | | - Wenyi Zhang
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Lan Wang
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
6
|
Liu JY, Zhang YC, Xie RR, Song LN, Yang WL, Xin Z, Cao X, Yang JK. Nifuroxazide improves insulin secretion and attenuates high glucose-induced inflammation and apoptosis in INS-1 cells. Eur J Pharmacol 2021; 899:174042. [PMID: 33745960 DOI: 10.1016/j.ejphar.2021.174042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
Inflammation and oxidative stress are important factors that cause islet β-cell dysfunction. STAT3 is not only a major factor in cell proliferation and differentiation, but also plays an important role in mediating inflammation. As a potent inhibitor of STAT3, the effect of Nifuroxazide (Nifu) on pancreatic islet cells in a high glucose environment has not been reported. In the present study, we used high concentration glucose-induced INS-1 cells to examine the effects of Nifu on high glucose-induced cell function by glucose-stimulated insulin secretion (GSIS). The effects of Nifu on high glucose-induced oxidative stress were recorded by oxidative factors and antioxidant factors. Simultaneously, the effect of Nifu on the inflammatory response, apoptosis, and STAT3/SOCS3 signal pathway were validated by quantitative real-time PCR (qRT-PCR) and Western blot. Our study indicated that Nifu significantly improved cell vitality and insulin secretion of INS-1 cells induced by high glucose. We found Nifu significantly inhibited pro-oxidative factors (ROS, MDA) and promoted anti-oxidative factors (SOD, GSH-PX, CAT). Meanwhile, qRT-PCR and Western blot results showed that inflammatory and apoptosis factors were remarkably inhibited by Nifu. Further research indicated that Nifu clearly suppressed the activation of the STAT3/SOCS3 signaling pathway. In conclusion, Nifu can significantly improve the insulin secretion function, protect oxidative stress injury, and reduce inflammatory response and apoptosis in high glucose-induced INS-1 cells. Therefore, Nifu has a new positive effect on maintaining the normal function of pancreatic islet cells in a high glucose environment and provides new drug candidates for the treatment and prevention of diabetes.
Collapse
Affiliation(s)
- Jing-Yi Liu
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yi-Chen Zhang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Rong-Rong Xie
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Li-Ni Song
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei-Li Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhong Xin
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Jin-Kui Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
7
|
Liang H, Pan Y, Teng Y, Yuan S, Wu X, Yang H, Zhou P. A proteoglycan extract from Ganoderma Lucidum protects pancreatic beta-cells against STZ-induced apoptosis. Biosci Biotechnol Biochem 2020; 84:2491-2498. [PMID: 32799731 DOI: 10.1080/09168451.2020.1805718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pancreatic β-cell death or dysfunction induced by oxidative stress plays an important effect on the development and progression of diabetes mellitus. Based on our previous findings, a natural proteoglycan extracted from Ganoderma Lucidum, named FYGL, could treat T2DM in vivo. In this study, we investigated the effects of FYGL on STZ-induced apoptosis of INS-1 cells and its underlying mechanisms. The results showed that FYGL significantly improved the cell viability and alleviated the apoptosis in STZ-treated INS-1 cells. Moreover, FYGL markedly decreased the intracellular ROS accumulation and NO release, and deactivated NF-κB, JNK, and p38 MAPK signaling pathways in STZ-induced INS-1 cells. Furthermore, FYGL improved the insulin secretion through inhibiting the activation of JNK and improving the expression of Pdx-1 in INS-1 cells damaged by STZ. These results indicated that FYGL could protect pancreatic β-cells against apoptosis and dysfunction, and be used as a promising pharmacological medicine for diabetes management. Abbreviations: T2DM: type 2 diabetes mellitus; FYGL: Fudan-Yueyang G. lucidum; ROS: reactive oxygen species; NO: reactive oxygen species; NF-κB: nuclear factor kappa beta; JNK: c-jun N-terminal kinase; MAPK: mitogen-activated protein kinase; Pdx-1: Pancreatic duodenal homeobox 1.
Collapse
Affiliation(s)
- Haohui Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, P. R. China
| | - Yanna Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, P. R. China
| | - Yilong Teng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, P. R. China
| | - Shilin Yuan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, P. R. China
| | - Xiao Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, P. R. China
| | - Hongjie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai, P. R. China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, P. R. China
| |
Collapse
|
8
|
Caballero-Solares A, Xue X, Cleveland BM, Foroutani MB, Parrish CC, Taylor RG, Rise ML. Diet-Induced Physiological Responses in the Liver of Atlantic Salmon (Salmo salar) Inferred Using Multiplex PCR Platforms. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:511-525. [PMID: 32495111 PMCID: PMC8346449 DOI: 10.1007/s10126-020-09972-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The simultaneous quantification of several transcripts via multiplex PCR can accelerate research in fish physiological responses to diet and enable the development of superior aquafeeds for farmed fish. We designed two multiplex PCR panels that included assays for 40 biomarker genes representing key aspects of fish physiology (growth, metabolism, oxidative stress, and inflammation) and 3 normalizer genes. We used both panels to assess the physiological effects of replacing fish meal and fish oil by terrestrial alternatives on Atlantic salmon smolts. In a 14-week trial, we tested three diets based on marine ingredients (MAR), animal by-products and vegetable oil (ABP), and plant protein and vegetable oil (VEG). Dietary treatments affected the expression of genes involved in hepatic glucose and lipid metabolism (e.g., srebp1, elovl2), cell redox status (e.g., txna, prdx1b), and inflammation (e.g., pgds, 5loxa). At the multivariate level, gene expression profiles were more divergent between fish fed the marine and terrestrial diets (MAR vs. ABP/VEG) than between the two terrestrial diets (ABP vs. VEG). Liver ARA was inversely related to glucose metabolism (gck)- and growth (igfbp-5b1, htra1b)-related biomarkers and hepatosomatic index. Liver DHA and EPA levels correlated negatively with elovl2, whereas ARA levels correlated positively with fadsd5. Lower hepatic EPA/ARA in ABP-fed fish correlated with the increased expression of biomarkers related to mitochondrial function (fabp3a), oxidative stress (txna, prdx1b), and inflammation (pgds, 5loxa). The analysis of hepatic biomarker gene expression via multiplex PCR revealed potential physiological impacts and nutrient-gene interactions in Atlantic salmon fed lower levels of marine-sourced nutrients.
Collapse
Affiliation(s)
- Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, ARS/USDA, 11861 Leetown Rd, Kearneysville, WV, 25430, USA
| | - Maryam Beheshti Foroutani
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
9
|
Tsuzuki N, Kanbayashi Y, Kusano K. Markers for oxidative stress in the synovial fluid of Thoroughbred horses with carpal bone fracture. J Equine Sci 2019; 30:13-16. [PMID: 30944542 PMCID: PMC6445753 DOI: 10.1294/jes.30.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 11/26/2018] [Indexed: 11/23/2022] Open
Abstract
Arthritis is thought to cause oxidative stress in synovial fluid in humans, but there
have been few reports in horses. To evaluate oxidative stress in synovial fluid in horses,
this study used 19 horses with unilateral fracture of the carpal joint bone. Synovial
fluid was collected from the carpal joint on the fracture (arthritis group) and
contralateral (control group) sides. Diacron-reactive oxygen metabolites (d-ROMs) and
biological antioxidant potential (BAP) were then measured, and the oxidative stress index
(OSI) was calculated. d-ROMs and OSI of the arthritis group were significantly higher than
the control group. BAP of the arthritis group was significantly lower than the control
group. Thus, this study revealed that oxidative stress develops in the synovial fluid of
horses during arthritis.
Collapse
Affiliation(s)
- Nao Tsuzuki
- Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Yoshinori Kanbayashi
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki 300-0493, Japan
| | - Kanichi Kusano
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Ibaraki 300-0493, Japan
| |
Collapse
|
10
|
Han EJ, Um JH, Kim EA, Lee W, Kang N, Oh JY, Park SY, Jeon YJ, Ahn CB, Lee SH, Ahn G. Protective Effects of An Water Extracts Prepared from Loliolus beka Gray Meat Against H 2O 2-Induced Oxidative Stress in Chang Liver Cells and Zebrafish Embryo Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:585-601. [PMID: 28849484 DOI: 10.1007/978-94-024-1079-2_46] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we first evaluated protective effects of Loliolus beka in a human liver cell line and zebrafish embryo model with its anti-oxidant activity. First, we prepared the water extract from L. beka meat (LBMW) at room temperature for 24 h and revealed it consisted of a rich taurine. LBMW exhibited the scavenging effects against 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and hydrogen peroxide (H2O2) as well as the high value of oxygen radical absorbance capacity (ORAC). Also, the hydroxyl radical-induced DNA damage was dose-dependently reduced by the treatment of LBMW. In addition, LBMW showed no cytotoxicity and reduced the production of reactive oxygen species (ROS) in H2O2-treated hepatocytes. Moreover, LBMW regulated the expression of an anti-apoptotic molecule, Bcl-2 and the expression of pro-apoptotic molecules, Bax and PARP in H2O2-treated hepatocytes as well as the increment of antioxidant mediated-HO-1 and Nrf2 protein expression. In further study, LBMW improved the survival rate and decreased the production of ROS in H2O2-treated zebrafish embryo model. Therefore, our results suggest that Loliolus beka has protective effects against H2O2-induced oxidative stress and may be used as a potential source for functional foods.
Collapse
Affiliation(s)
- Eui Jeong Han
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Ju Hyung Um
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Eun A Kim
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Republic of Korea
| | - WonWoo Lee
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Nalae Kang
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - Jae Young Oh
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Soo Yeon Park
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Chang-Bum Ahn
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwang ju, Republic of Korea
| | - Seung Hong Lee
- Division of Food Bioscience and Korea Nokyong Research Center, Konkuk University, Chungju, Republic of Korea
| | - Ginnae Ahn
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea.
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
11
|
Choi KH, Park MH, Lee HA, Han JS. Cyanidin-3-rutinoside protects INS-1 pancreatic β cells against high glucose-induced glucotoxicity by apoptosis. ACTA ACUST UNITED AC 2018; 73:281-289. [DOI: 10.1515/znc-2017-0172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/23/2018] [Indexed: 01/09/2023]
Abstract
Abstract
Exposure to high levels of glucose may cause glucotoxicity, leading to pancreatic β cell dysfunction, including cell apoptosis and impaired glucose-stimulated insulin secretion. The aim of this study was to explore the effect of cyanidin-3-rutinoside (C3R), a derivative of anthocyanin, on glucotoxicity-induced apoptosis in INS-1 pancreatic β cells. Glucose (30 mM) treatment induced INS-1 pancreatic β cell death, but glucotoxicity and apoptosis significantly decreased in cells treated with 50 μM C3R compared to that observed in 30 mM glucose-treated cells. Furthermore, hyperglycemia increased intracellular reactive oxygen species (ROS), lipid peroxidation, and nitric oxide (NO) levels, while C3R treatment reduced these in a dose-dependent manner. C3R also increased the activity of antioxidant enzymes, markedly reduced the expression of pro-apoptotic proteins (such as Bax, cytochrome c, caspase 9 and caspase 3), and increased the expression of the anti-apoptotic protein, Bcl-2, in hyperglycemia-exposed cells. Finally, cell death was examined using annexin V/propidium iodide staining, which revealed that C3R significantly reduced high glucose-induced apoptosis. In conclusion, C3R may have therapeutic effects against hyperglycemia-induced β cell damage in diabetes.
Collapse
Affiliation(s)
- Kung-Ha Choi
- Department of Food and Nutrition , College of Medical and Life Science , Silla University , Busan 46958 , Republic of Korea
- Department of Food Science and Nutrition , Pusan National University , Busan 46241 , Republic of Korea
| | - Mi Hwa Park
- Department of Food and Nutrition , College of Medical and Life Science , Silla University , Busan 46958 , Republic of Korea
| | - Hyun Ah Lee
- Department of Food Science and Nutrition , Pusan National University , Busan 46241 , Republic of Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition , Pusan National University , Busan 609-735 , Republic of South Korea , Phone: +82-51-510-2836, Fax: +82-51-583-3648
| |
Collapse
|
12
|
Shen Z, Ma Y, Ji Z, Hao Y, Yan X, Zhong Y, Tang X, Ren W. Arachidonic acid induces macrophage cell cycle arrest through the JNK signaling pathway. Lipids Health Dis 2018; 17:26. [PMID: 29426338 PMCID: PMC5807765 DOI: 10.1186/s12944-018-0673-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 02/05/2018] [Indexed: 01/14/2023] Open
Abstract
Background Arachidonic acid (AA) has potent pro-apoptotic effects on cancer cells at a low concentration and on macrophages at a very high concentration. However, the effects of AA on the macrophage cell cycle and related signaling pathways have not been fully investigated. Herein we aim to observe the effect of AA on macrophages cell cycle. Results AA exposure reduced the viability and number of macrophages in a dose- and time-dependent manner. The reduction in RAW264.7 cell viability was not caused by apoptosis, as indicated by caspase-3 and activated caspase-3 detection. Further research illustrated that AA exposure induced RAW264.7 cell cycle arrested at S phase, and some cell cycle-regulated proteins were altered accordingly. Moreover, JNK signaling was stimulated by AA, and the stimulation was partially reversed by a JNK signaling inhibitor in accordance with cell cycle-related factors. In addition, nuclear and total Foxo1/3a and phosphorylated Foxo1/3a were elevated by AA in a dose- and time-dependent manner, and this elevation was suppressed by the JNK signaling inhibitor. Conclusion Our study demonstrated that AA inhibits macrophage viability by inducing S phase cell cycle arrest. The JNK signaling pathway and the downstream FoxO transcription factors are involved in AA-induced RAW264.7 cell cycle arrest. Electronic supplementary material The online version of this article (10.1186/s12944-018-0673-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ziying Shen
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Yunqing Ma
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Zhonghao Ji
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Yang Hao
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Xuan Yan
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Yuan Zhong
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Xiaochun Tang
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China
| | - Wenzhi Ren
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Xi'an Road, 5333#, Jilin, 130062, China.
| |
Collapse
|
13
|
Jia D, Lu W, Zhang X, Cai G, Teng L, Wang X, Zhang M, Zeng Y, Liang C, Wang D. Calf Spleen Extractive Injection (CSEI), a small peptides enriched extraction, induces human hepatocellular carcinoma cell apoptosis via ROS/MAPKs dependent mitochondrial pathway. J Pharmacol Sci 2016; 132:122-130. [PMID: 28314430 DOI: 10.1016/j.jphs.2016.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/20/2023] Open
Abstract
Calf Spleen Extractive Injection (CSEI), a small peptides enriched extraction, performs immunomodulatory activity on cancer patients suffering from radiotherapy or chemotherapy. The present study aims to investigate the anti-hepatocellular carcinoma effects of CSEI in cells and tumor-xenografted mouse models. In HepG2 and SMMC-7721 cells, CSEI reduced cell viability, enhanced apoptosis rate, caused reactive oxygen species (ROS) accumulation, inhibited migration ability, and induced caspases cascade and mitochondrial membrane potential dissipation. CSEI significantly inhibited HepG2-xenografted tumor growth in nude mice. In cell and animal experiments, CSEI increased the activations of pro-apoptotic proteins including caspase 8, caspase 9 and caspase 3; meanwhile, it suppressed the expressions of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and anti-oxidation proteins, such as nuclear factor-erythroid 2 related factor 2 (Nrf2) and catalase (CAT). The enhanced phosphorylation of P38 and c-JunN-terminalkinase (JNK), and decreased phosphorylation of extra cellular signal-regulated protein kinase (ERKs) were observed in CSEI-treated cells and tumor tissues. CSEI-induced cell viability reduction was significantly attenuated by N-Acetyl-l-cysteine (a ROS inhibitor) pretreatment. All data demonstrated that the upregulated oxidative stress status and the altered mitogen-activated protein kinases (MAPKs) phosphorylation contributed to CSEI-driven mitochondrial dysfunction. Taken together, CSEI exactly induced apoptosis in human hepatocellular carcinoma cells via ROS/MAPKs dependent mitochondrial pathway.
Collapse
Affiliation(s)
- Dongxu Jia
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Wenqian Lu
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xinrui Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Guangsheng Cai
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Lirong Teng
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xinyu Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Minghai Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Yan Zeng
- JiLin AoDong Pharmaceutical Co., Ltd., Taonan, 137100, China.
| | - Chunhua Liang
- Jilin Institute for Drug Control, Changchun, 130062, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
14
|
Yurinskaya MM, Mit’kevich VA, Barykin EP, Garbuz DG, Evgen’ev MB, Makarov AA, Vinokurov MG. Heat-shock protein HSP70 protects neuroblastoma cells SK-N-SH from the neurotoxic effects of hydrogen peroxide and the β-amyloid peptide. Mol Biol 2015. [DOI: 10.1134/s0026893315060230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Park MH, Heo SJ, Kim KN, Ahn G, Park PJ, Moon SH, Jeon BT, Lee SH. 6,6'-Bieckol protects insulinoma cells against high glucose-induced glucotoxicity by reducing oxidative stress and apoptosis. Fitoterapia 2015; 106:135-40. [PMID: 26343533 DOI: 10.1016/j.fitote.2015.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 11/21/2022]
Abstract
Pancreatic β cells are highly sensitive to oxidative stress, which might play an important role in β cell death in diabetes. The protective effect of 6,6'-bieckol, a phlorotannin polyphenol compound purified from Ecklonia cava, against high glucose-induced glucotoxicity was investigated in rat insulinoma cells. High glucose (30 mM) treatment induced the death of rat insulinoma cells, but treatment with 10 or 50 μg/mL 6,6'-bieckol significantly inhibited the high glucose-induced glucotoxicity. Furthermore, treatment with 6,6'-bieckol dose-dependently reduced the level of thiobarbituric acid reactive substances, generation of intracellular reactive oxygen species, and the level of nitric oxide, all of which were increased by high glucose concentration. In addition, 6,6'-bieckol protected rat insulinoma cells from apoptosis under high-glucose conditions. These effects were associated with increased expression of the anti-apoptotic protein Bcl-2 and reduced expression of the pro-apoptotic protein Bax. These findings indicate that 6,6'-bieckol could be used as a potential nutraceutical agent offering protection against the glucotoxicity caused by hyperglycemia-induced oxidative stress associated with diabetes.
Collapse
Affiliation(s)
- Mi-Hwa Park
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan, 617-736, Republic of Korea
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology, Jeju, 63349, Republic of Korea
| | - Kil-Nam Kim
- Jeju center, Korea Basic Science Institute (KBSI), Jeju, 690-140, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Science, Chonnam National University, Yeosu, 550-749, Republic of Korea
| | - Pyo-Jam Park
- Department of Biotechnology, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Sang-Ho Moon
- Division of Food Bioscience, and Korea Nokyong Research Center, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Byong-Tae Jeon
- Division of Food Bioscience, and Korea Nokyong Research Center, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Seung-Hong Lee
- Division of Food Bioscience, and Korea Nokyong Research Center, Konkuk University, Chungju, 380-701, Republic of Korea.
| |
Collapse
|
16
|
Park MH, Han JS. Phloroglucinol Protects INS-1 Pancreatic β-cells Against Glucotoxicity-Induced Apoptosis. Phytother Res 2015; 29:1700-6. [PMID: 26152514 DOI: 10.1002/ptr.5407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/15/2015] [Accepted: 06/03/2015] [Indexed: 01/29/2023]
Abstract
Decreasing numbers, and impaired function, of pancreatic β-cells are key factors in the development of type 2 diabetes. This study was designed to investigate whether phloroglucinol protected pancreatic β-cells against glucotoxicity-induced apoptosis using a rat insulinoma cell line (INS-1). High glucose treatment (30 mM) induced INS-1 cell death; however, the level of glucose-induced apoptosis was significantly reduced in cells treated with 100-μM phloroglucinol. Treatment with 10-100-μM phloroglucinol increased cell viability and decreased intracellular levels of reactive oxygen species, nitric oxide, and lipid peroxidation dose-dependently in INS-1 cells pretreated with high glucose. Furthermore, phloroglucinol treatment markedly reduced the protein expression of Bax, cytochrome c, and caspase 9, while increasing anti-apoptotic Bcl-2 protein expression. Cell death type was examined using annexin V/propidium iodide staining, revealing that phloroglucinol markedly reduced high glucose-induced apoptosis. These results demonstrated that phloroglucinol could be useful as a potential therapeutic agent for the protection of pancreatic β-cells against glucose-induced apoptosis.
Collapse
Affiliation(s)
- Mi Hwa Park
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan, 617-736, Republic of Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition and Research Institute of Ecology for the Elderly, Pusan National University, Busan, 609-735, Republic of Korea
| |
Collapse
|
17
|
Scola G, Andreazza AC. The role of neurotrophins in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:122-8. [PMID: 25193130 DOI: 10.1016/j.pnpbp.2014.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/29/2022]
Abstract
Bipolar disorder (BD) is a chronic psychiatric illness of which the pathophysiology remains partially unknown. Abnormalities of neurotrophins and other trophic factors orchestrate important alterations which could be implicated in the etiology of BD. Therefore, the main objective of this review is to examine the recent findings and critically evaluate the potential role of neurotrophins that may allow us to substantially improve the development of novel treatments. The most recently published findings highlight that brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF-1) and vascular endothelial growth factor (VEGF) present distinct patterns in the different stages of BD, suggesting their potential in the identification of the BD subgroups and may ultimately advance treatment strategies.
Collapse
Affiliation(s)
- Gustavo Scola
- Department of Psychiatry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada.
| | - Ana Cristina Andreazza
- Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada; Department of Pharmacology and Department of Psychiatry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
18
|
Antidiabetogenic and antioxidative effects of octaphlorethol a isolated from the brown algae Ishige foliacea in streptozotocin-induced diabetic mice. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0173-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
19
|
Min SW, Park MH, Han JS. Polyopes lancifolia extracts protect INS-1 pancreatic β cells against high glucose level induced apoptosis. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0086-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
20
|
Lee SH, Kang SM, Ko SC, Kang MC, Jeon YJ. Octaphlorethol A, a novel phenolic compound isolated from Ishige foliacea, protects against streptozotocin-induced pancreatic β cell damage by reducing oxidative stress and apoptosis. Food Chem Toxicol 2013; 59:643-9. [PMID: 23871829 DOI: 10.1016/j.fct.2013.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/26/2013] [Accepted: 07/07/2013] [Indexed: 02/02/2023]
Abstract
Pancreatic β cells are extremely sensitive to oxidative stress, which probably has an important role in β cell damage in diabetes. The protective effect of octaphlorethol A (OPA), a novel phenolic compound isolated from Ishige foliacea, against streptozotocin (STZ)-induced pancreatic β cell damage was investigated using a rat insulinoma cell line (RINm5F pancreatic β cells). Pretreatment with OPA decreased the death of STZ-treated pancreatic β cells at concentrations of 12.5 μg/ml or 50 μg/ml, and reduced the generation of thiobarbituric acid reactive substances and intracellular reactive oxygen species in a dose-dependent manner in STZ-treated pancreatic β cells. In addition, the OPA pretreatment increased the activities of antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase in STZ-treated pancreatic β cells. Moreover, OPA treatment elevated the level of insulin, which was reduced by STZ treatment, and protected pancreatic β cells against damage under STZ-treated conditions. These effects were mediated by suppressing apoptosis and were associated with increased anti-apoptotic Bcl-xL expression and reduced pro-apoptotic Bax and cleaved caspase-3 expression. These findings indicate that OPA may be useful as a potential pharmaceutical agent to protect against pancreatic β cell damage caused by oxidative stress associated with diabetes.
Collapse
Affiliation(s)
- Seung-Hong Lee
- Division of Food Bioscience, Konkuk University, Chungju Chungbuk 380-701, Republic of Korea
| | | | | | | | | |
Collapse
|
21
|
Moon KH, Tajuddin N, Brown J, Neafsey EJ, Kim HY, Collins MA. Phospholipase A2, oxidative stress, and neurodegeneration in binge ethanol-treated organotypic slice cultures of developing rat brain. Alcohol Clin Exp Res 2013; 38:161-9. [PMID: 23909864 DOI: 10.1111/acer.12221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/22/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Brain neurodamage from chronic binge ethanol (EtOH) exposure is linked to neuroinflammation and associated oxidative stress. Using rat organotypic hippocampal-entorhinal cortical (HEC) slice cultures of developing brain age, we reported that binge EtOH promotes release of a neuroinflammatory instigator, arachidonic acid (AA), concomitant with neurodegeneration, and that mepacrine, a global inhibitor of phospholipase A2 (PLA2) enzymes mobilizing AA from phospholipids, is neuroprotective. Here, we sought with binge EtOH-treated HEC cultures to establish that PLA2 activity is responsible in part for significant oxidative stress and to ascertain the PLA2 families responsible for AA release and neurodegeneration. METHODS HEC slices, prepared from 1-week-old rats and cultured 2 to 2.5 weeks, were exposed to 100 mM EtOH over 6 successive days, with 4 daytime "withdrawals" (no EtOH). Brain 3-nitrotyrosinated (3-NT)- and 4-hydroxy-2-nonenal (4-HNE)-adducted proteins, oxidative stress footprints, were immunoassayed on days 3 through 6, and mepacrine's effect was determined on day 6. The effects of specific PLA2 inhibitors on neurodegeneration (propidium iodide staining) and AA release (ELISA levels in media) in the cultures were then determined. Also, the effect of JZL184, an inhibitor of monoacylglycerol lipase (MAGL) which is reported to mobilize AA from endocannabinoids during neuroinflammatory insults, was examined. RESULTS 3-NT- and 4-HNE-adducted proteins were significantly increased by the binge EtOH exposure, consistent with oxidative stress, and mepacrine prevented the increases. The PLA2 inhibitor results implicated secretory PLA2 (group II sPLA2) and to some extent Ca(2+) -independent cytosolic PLA2 (group VI iPLA2) in binge EtOH-induced neurotoxicity and in AA release, but surprisingly, Ca(2+) -dependent cytosolic PLA2 (group IV cPLA2) did not appear important. Furthermore, unlike PLA2 inhibition, MAGL inhibition failed to prevent the neurodegeneration. CONCLUSIONS In these developing HEC slice cultures, pro-oxidative signaling via sPLA2 and iPLA2, but not necessarily cPLA2 or MAGL, is involved in EtOH neurotoxicity. This study provides further insights into neuroinflammatory phospholipase signaling and oxidative stress underlying binge EtOH-induced neurodegeneration in developing (adolescent age) brain in vitro.
Collapse
Affiliation(s)
- Kwan-Hoon Moon
- Department of Molecular Pharmacology & Therapeutics , Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | | | | | | | | | | |
Collapse
|
22
|
Surmeier DJ, Guzman JN, Sanchez J, Schumacker PT. Physiological phenotype and vulnerability in Parkinson's disease. Cold Spring Harb Perspect Med 2013; 2:a009290. [PMID: 22762023 DOI: 10.1101/cshperspect.a009290] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review will focus on the principles underlying the hypothesis that neuronal physiological phenotype-how a neuron generates and regulates action potentials-makes a significant contribution to its vulnerability in Parkinson's disease (PD) and aging. A cornerstone of this hypothesis is that the maintenance of ionic gradients underlying excitability can pose a significant energetic burden for neurons, particularly those that have sustained residence times at depolarized membrane potentials, broad action potentials, prominent Ca(2+) entry, and modest intrinsic Ca(2+) buffering capacity. This energetic burden is shouldered in neurons primarily by mitochondria, the sites of cellular respiration. Mitochondrial respiration increases the production of damaging superoxide and other reactive oxygen species (ROS) that have widely been postulated to contribute to cellular aging and PD. Many of the genetic mutations and toxins associated with PD compromise mitochondrial function, providing a mechanistic linkage between known risk factors and cellular physiology that could explain the pattern of pathology in PD. Because much of the mitochondrial burden created by this at-risk phenotype is created by Ca(2+) entry through L-type voltage-dependent channels for which there are antagonists approved for human use, a neuroprotective strategy to reduce this burden is feasible.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Northwestern University, Chicago, Illinois, USA.
| | | | | | | |
Collapse
|
23
|
Bell E, Ponthan F, Whitworth C, Westermann F, Thomas H, Redfern CPF. Cell survival signalling through PPARδ and arachidonic acid metabolites in neuroblastoma. PLoS One 2013; 8:e68859. [PMID: 23874790 PMCID: PMC3706415 DOI: 10.1371/journal.pone.0068859] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 06/06/2013] [Indexed: 12/11/2022] Open
Abstract
Retinoic acid (RA) has paradoxical effects on cancer cells: promoting cell death, differentiation and cell cycle arrest, or cell survival and proliferation. Arachidonic acid (AA) release occurs in response to RA treatment and, therefore, AA and its downstream metabolites may be involved in cell survival signalling. To test this, we inhibited phospholipase A2-mediated AA release, cyclooxygenases and lipoxygenases with small-molecule inhibitors to determine if this would sensitise cells to cell death after RA treatment. The data suggest that, in response to RA, phospholipase A2-mediated release of AA and subsequent metabolism by lipoxygenases is important for cell survival. Evidence from gene expression reporter assays and PPARδ knockdown suggests that lipoxygenase metabolites activate PPARδ. The involvement of PPARδ in cell survival is supported by results of experiments with the PPARδ inhibitor GSK0660 and siRNA-mediated knockdown. Quantitative reverse transcriptase PCR studies demonstrated that inhibition of 5-lipoxygenase after RA treatment resulted in a strong up-regulation of mRNA for PPARδ2, a putative inhibitory PPARδ isoform. Over-expression of PPARδ2 using a tetracycline-inducible system in neuroblastoma cells reduced proliferation and induced cell death. These data provide evidence linking lipoxygenases and PPARδ in a cell survival-signalling mechanism and suggest new drug-development targets for malignant and hyper-proliferative diseases.
Collapse
Affiliation(s)
- Emma Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frida Ponthan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire Whitworth
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frank Westermann
- Division of Tumor Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Huw Thomas
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher P. F. Redfern
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Thomasz L, Oglio R, Rossich L, Villamar S, Perona M, Salvarredi L, Dagrosa A, Pisarev MA, Juvenal GJ. 6 Iodo-δ-lactone: a derivative of arachidonic acid with antitumor effects in HT-29 colon cancer cells. Prostaglandins Leukot Essent Fatty Acids 2013; 88:273-80. [PMID: 23375358 DOI: 10.1016/j.plefa.2013.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/26/2012] [Accepted: 01/04/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND IL-δ (5-hydroxy-6 iodo-8,11,14-eicosatrienoic delta lactone) an iodinated arachidonic acid (AA) derivative, is one of the iodolipids biosynthesized by the thyroid. Although IL-δ regulates several thyroid parameters such as cell proliferation and goiter growth it was found that this iodolipid inhibits the growth of other non thyroid cell lines. OBJECTIVES To study the effect of IL-δ on cell proliferation and apoptosis in the colon cancer cell line HT-29. RESULTS Treatment with IL-δ reduced cell viability in a concentration-dependent manner: 1μM 20%, 5μM 25%, 10μM 31%, 50μM 47% and caused a significant decrease of PCNA expression (25%). IL-δ had pro-apoptotic effects, evidenced by morphological features of programmed cell death such as pyknosis, karyorrhexis, cell shrinkage and cell blebbing observed by fluorescence microscopy, and an increase in caspase-3 activity and in Bax/Bcl-2 ratio (2.5 after 3h of treatment). Furthermore, IL-δ increased ROS production (30%) and lipid peroxidation levels (19%), suggesting that apoptosis could be a result of increased oxidative stress. A maximum increase in c-fos and c-jun protein expression in response to IL-δ was observed 1h after initiation of the treatment. IL-δ also induced a tumour growth delay of 70% compared to the control group in NIH nude mice implanted with HT-29 cells. CONCLUSION Our study shows that IL-δ inhibits cell growth and induces apoptosis in the colon cancer cell line, HT-29 and opens the possibility that IL-δ could be a potential useful chemotherapy agent.
Collapse
Affiliation(s)
- Lisa Thomasz
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission Buenos Aires 1429, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ammodytoxins efficiently release arachidonic acid and induce apoptosis in a motoneuronal cell line in an enzymatic activity-dependent manner. Neurotoxicology 2012; 35:91-100. [PMID: 23266427 DOI: 10.1016/j.neuro.2012.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 11/20/2022]
Abstract
Secreted phospholipases A2 (sPLA2s) are phospholipolytic enzymes and receptor ligands whose action affects cell death and survival. We have previously shown that ammodytoxin A (AtxA), a snake venom sPLA2, is rapidly internalized into motoneuronal NSC34 cells, inducing characteristic neurotoxic sPLA2 cell damage and apoptosis. In this study, we have analyzed the role of sPLA2 enzymatic activity, including arachidonic acid (AA) release, in the induction of motoneuronal apoptosis by AtxA and homologous recombinant sPLA2s with different enzymatic properties: an AtxA mutant (V31W) with very high enzymatic activity, enzymatically inactive S49-sPLA2 (ammodytin L, AtnL), its mutant (LW) with restored enzymatic activity, and non-toxic, enzymatically active sPLA2 (AtnI2). Addition of AA, AtxA, AtxA-V31W and AtnL-LW, but not AtnL and AtnI2, to NSC34 cells resulted in caspase-3 activation, DNA fragmentation and disruption of mitochondrial membrane potential, leading to a significant and rapid decrease in motoneuronal cell viability that was not observed in C2C12 myoblasts and HEK293 cells. AtxA, AtxA-V31W and AtnL-LW, but not AtnL and AtnI2, also liberated large amounts of AA specifically from motoneuronal cells, and this ability correlated well with the ability to induce apoptotic changes and decrease cell viability. The enzymatic activity of AtxA and similar sPLA2s is thus necessary, but not sufficient, for inducing motoneuronal apoptosis. This suggests that specific binding to the motoneuronal cell surface, followed by internalization and enzymatic activity-dependent induction of apoptosis, possibly as a consequence of extensive extra- and intracellular AA release, is necessary for Atx-induced motoneuronal cell death.
Collapse
|
26
|
Lee JH, Won YS, Park KH, Lee MK, Tachibana H, Yamada K, Seo KI. Celastrol inhibits growth and induces apoptotic cell death in melanoma cells via the activation ROS-dependent mitochondrial pathway and the suppression of PI3K/AKT signaling. Apoptosis 2012; 17:1275-1286. [PMID: 23065091 DOI: 10.1007/s10495-012-0767-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Celastrol has been reported to possess anticancer effects in various cancers; however, the precise mechanism underlying ROS-mediated mitochondria-dependent apoptotic cell death triggered by celastrol treatment in melanoma cells remains unknown. We showed that celastrol effectively induced apoptotic cell death and inhibited tumor growth using tissue culture and in vivo models of B16 melanoma. In addition to apoptotic cell death in B16 cells, several apoptotic events such as PARP cleavage and activation of caspase were confirmed. Pretreatment with caspase inhibitor modestly attenuated the celastrol-induced increase in PARP cleavage and sub-G1 cell population, implying that caspases play a partial role in celastrol-induced apoptosis. Moreover, ROS generation was detected following celastrol treatment. Blocking of ROS accumulation with ROS scavengers resulted in inhibition of celastrol-induced Bcl-2 family-mediated apoptosis, indicating that celastrol-induced apoptosis involves ROS generation as well as an increase in the Bax/Bcl-2 ratio leading to release of cytochrome c and AIF. Importantly, silencing of AIF by transfection of siAIF into cells remarkably attenuated celastrol-induced apoptotic cell death. Moreover, celastrol inhibited the activation of PI3K/AKT/mTOR signaling cascade in B16 cells. Our data reveal that celastrol inhibits growth and induces apoptosis in melanoma cells via the activation of ROS-mediated caspase-dependent and -independent pathways and the suppression of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Ju-Hye Lee
- Department of Food and Nutrition, Sunchon National University, Jungangno, Suncheon, Jeonnam 540-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Davidson J, Rotondo D, Rizzo MT, Leaver HA. Therapeutic implications of disorders of cell death signalling: membranes, micro-environment, and eicosanoid and docosanoid metabolism. Br J Pharmacol 2012; 166:1193-210. [PMID: 22364602 DOI: 10.1111/j.1476-5381.2012.01900.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disruptions of cell death signalling occur in pathological processes, such as cancer and degenerative disease. Increased knowledge of cell death signalling has opened new areas of therapeutic research, and identifying key mediators of cell death has become increasingly important. Early triggering events in cell death may provide potential therapeutic targets, whereas agents affecting later signals may be more palliative in nature. A group of primary mediators are derivatives of the highly unsaturated fatty acids (HUFAs), particularly oxygenated metabolites such as prostaglandins. HUFAs, esterified in cell membranes, act as critical signalling molecules in many pathological processes. Currently, agents affecting HUFA metabolism are widely prescribed in diseases involving disordered cell death signalling. However, partly due to rapid metabolism, their role in cell death signalling pathways is poorly characterized. Recently, HUFA-derived mediators, the resolvins/protectins and endocannabinoids, have added opportunities to target selective signals and pathways. This review will focus on the control of cell death by HUFA, eicosanoid (C20 fatty acid metabolites) and docosanoid (C22 metabolites), HUFA-derived lipid mediators, signalling elements in the micro-environment and their potential therapeutic applications. Further therapeutic approaches will involve cell and molecular biology, the multiple hit theory of disease progression and analysis of system plasticity. Advances in the cell biology of eicosanoid and docosanoid metabolism, together with structure/function analysis of HUFA-derived mediators, will be useful in developing therapeutic agents in pathologies characterized by alterations in cell death signalling.
Collapse
Affiliation(s)
- J Davidson
- SIPBS, Strathclyde University, Glasgow, UK
| | | | | | | |
Collapse
|
28
|
Lee SH, Park MH, Kang SM, Ko SC, Kang MC, Cho S, Park PJ, Jeon BT, Kim SK, Han JS, Jeon YJ. Dieckol isolated from Ecklonia cava protects against high-glucose induced damage to rat insulinoma cells by reducing oxidative stress and apoptosis. Biosci Biotechnol Biochem 2012; 76:1445-51. [PMID: 22878185 DOI: 10.1271/bbb.120096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pancreatic β cells are very sensitive to oxidative stress and this might play an important role in β cell death with diabetes. The protective effect of dieckol, one of the phlorotannin polyphenol compounds purified from Ecklonia cava (E. cava), against high glucose-induced oxidative stress was investigated by using rat insulinoma cells. A high-glucose (30 mM) treatment induced the death of rat insulinoma cells, but dieckol, at a concentration 17.5 or 70 µM, significantly inhibited the high-glucose induced glucotoxicity. Treatment with dieckol also dose-dependently reduced thiobarbituric acid reactive substances (TBARS), the generation of intracellular reactive oxygen species (ROS), and the nitric oxide level increased by a high glucose concentration. In addition, the dieckol treatment increased the activities of antioxidative enzymes including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) in high glucose-pretreated rat insulinoma cells. Dieckol protected rat insulinoma cells damage under high glucose conditions. These effects were mediated by suppressing apoptosis and were associated with increased anti-apoptotic Bcl-2 expression, and reduced pro-apoptotic cleaved caspase-3 expression. These findings indicate that dieckol might be useful as a potential pharmaceutical agent to protect against the glucotoxicity caused by hyperglycemia-induced oxidative stress associated with diabetes.
Collapse
Affiliation(s)
- Seung-Hong Lee
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee SH, Park MH, Park SJ, Kim J, Kim YT, Oh MC, Jeong Y, Kim M, Han JS, Jeon YJ. Bioactive compounds extracted from Ecklonia cava by using enzymatic hydrolysis protects high glucose-induced damage in INS-1 pancreatic β-cells. Appl Biochem Biotechnol 2012; 167:1973-85. [PMID: 22644639 DOI: 10.1007/s12010-012-9695-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
Pancreatic β-cells are very sensitive to oxidative stress and this might play an important role in β-cell death in diabetes. In the present study, we investigated whether the brown alga Ecklonia cava has protective effects against high glucose-induced damage in INS-1 pancreatic β-cells. For that purpose, we prepared an enzymatic hydrolysate from E. cava (EHE) by using the carbohydrase, Celluclast. High-glucose (30 mM) treatment induced glucotoxicity, whereas EHE prevented cells from high glucose-induced damage then restoring cell viability was significantly increased. Furthermore, lipid peroxidation, intracellular reactive oxygen species (ROS) and nitric oxide (NO) were overproduced as the result of the treatment by high glucose; however, these lipid peroxidation, ROS and NO generations were effectively inhibited by addition of EHE in a dose-dependent manner. Moreover, EHE treatment increased activities of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) in high glucose pretreated INS-1 pancreatic β-cells. EHE slightly reduced the expression of pro-apoptotic protein Bax induced by high glucose but increased the expression of Bcl-2, an anti-apoptotic protein. These findings indicate that EHE might be used as potential nutraceutical agent which will protect the glucotoxicity caused by hyperglycemia-induced oxidative stress associated with diabetes.
Collapse
Affiliation(s)
- Seung-Hong Lee
- Department of Marine Life Science, Jeju National University, Jeju 690-756, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang Y, Yan M, Yu A, Mao H, Zhang J. Inhibitory effects of β-tricalciumphosphate wear particles on osteocytes via apoptotic response and Akt inactivation. Toxicology 2012; 297:57-67. [PMID: 22522029 DOI: 10.1016/j.tox.2012.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
Wear debris-induced osteolysis, a major contributing factor of orthopedic implant aseptic loosening, affects long-term survival of orthopedic prostheses following joint replacement and revision surgery. Pathogenic effects of wear debris on various cell types including macrophages/monocytes, osteoblasts, and osteoclasts have been well studied. However, the interactions between wear debris particles and osteocytes, which make up over 90% of all bone cells, have not been clearly illustrated. Here, we explored the biological effects of endotoxin-free beta-tricalciumphosphate (β-TCP) wear particles with the average diameter of 1.997 μm (range 1.3-3.2 μm) on osteocytes in vitro. Our results showed that 24 h or 48 h incubation of β-TCP particles dose-dependently inhibited cell viability of osteocytes MLO-Y4. Alternatively, β-TCP particles treatment for 24 h significantly increased the osteocytic marker SOST/sclerostin mRNA expression and the release of inflammatory cytokines including TNF-α and IL-1β into the culture media, but decreased the mRNA expression of another osteocytic marker dentin matrix protein-1 (DMP-1). Furthermore, these osteocytes dysfunctions were accompanied by F-actin disassembly, cell apoptosis, sustained enhancement of intracellular reactive oxygen species (ROS) and mitochondrial injury upon β-TCP particles stimulation. In addition, β-TCP particles also caused Akt inactivation at Ser473 resides with a dose- and time-dependent pattern. Taken together, β-TCP wear particles could cause osteocytes dysfunctions, which may be mediated by apoptotic death and Akt inactivation in MLO-Y4 cells. These findings strongly suggest that osteocytes may play an important role in the β-TCP wear particles-induced osteolysis, and provide valuable insights for understanding the molecular mechanisms of osteocytes death involved in tissue damage during bone cement and intolerance of cemented prostheses.
Collapse
Affiliation(s)
- Yun Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| | | | | | | | | |
Collapse
|
31
|
Ham YM, Yoon WJ, Park SY, Song GP, Jung YH, Jeon YJ, Kang SM, Kim KN. Quercitrin protects against oxidative stress-induced injury in lung fibroblast cells via up-regulation of Bcl-xL. J Funct Foods 2012. [DOI: 10.1016/j.jff.2011.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
An JM, Kim SS, Rhie JH, Shin DM, Seo SR, Seo JT. Carmustine induces ERK- and JNK-dependent cell death of neuronally-differentiated PC12 cells via generation of reactive oxygen species. Toxicol In Vitro 2011; 25:1359-65. [DOI: 10.1016/j.tiv.2011.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/29/2011] [Accepted: 05/04/2011] [Indexed: 11/26/2022]
|
33
|
Carnosic Acid, a Rosemary Phenolic Compound, Induces Apoptosis Through Reactive Oxygen Species-Mediated p38 Activation in Human Neuroblastoma IMR-32 Cells. Neurochem Res 2011; 36:2442-51. [DOI: 10.1007/s11064-011-0573-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
|
34
|
Li WJ, Chen Y, Nie SP, Xie MY, He M, Zhang SS, Zhu KX. Ganoderma atrum polysaccharide induces anti-tumor activity via the mitochondrial apoptotic pathway related to activation of host immune response. J Cell Biochem 2011; 112:860-71. [DOI: 10.1002/jcb.22993] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Lee IK, Kang KA, Lim CM, Kim KC, Kim HS, Kim DH, Kim BJ, Chang WY, Choi JH, Hyun JW. Compound K, a metabolite of ginseng saponin, induces mitochondria-dependent and caspase-dependent apoptosis via the generation of reactive oxygen species in human colon cancer cells. Int J Mol Sci 2010; 11:4916-4931. [PMID: 21614182 PMCID: PMC3100836 DOI: 10.3390/ijms11124916] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 02/06/2023] Open
Abstract
The objective of this study was to elucidate the cytotoxic mechanism of Compound K, with respect to the involvement of reactive oxygen species (ROS) and the mitochondrial involved apoptosis, in HT-29 human colon cancer cells. Compound K exhibited a concentration of 50% growth inhibition (IC(50)) at 20 μg/mL and cytotoxicity in a time dependent manner. Compound K produced intracellular ROS in a time dependent fashion; however, N-acetylcysteine (NAC) pretreatment resulted in the inhibition of this effect and the recovery of cell viability. Compound K induced a mitochondria-dependent apoptotic pathway via the modulation of Bax and Bcl-2 expressions, resulting in the disruption of the mitochondrial membrane potential (Δψ(m)). Loss of the Δψ(m) was followed by cytochrome c release from the mitochondria, resulting in the activation of caspase-9, -3, and concomitant poly ADP-ribosyl polymerase (PARP) cleavage, which are the indicators of caspase-dependent apoptosis. The apoptotic effect of Compound K, exerted via the activation of c-Jun NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), was abrogated by specific MAPK inhibitors. This study demonstrated that Compound K-mediated generation of ROS led to apoptosis through the modulation of a mitochondria-dependent apoptotic pathway and MAPK pathway.
Collapse
Affiliation(s)
- In Kyung Lee
- Department of Microbiology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea; E-Mails: (I.K.L.); (B.J.K.)
| | - Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K.); (C.M.L.); (K.C.K.); (W.Y.C.)
| | - Chae Moon Lim
- School of Medicine, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K.); (C.M.L.); (K.C.K.); (W.Y.C.)
| | - Ki Cheon Kim
- School of Medicine, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K.); (C.M.L.); (K.C.K.); (W.Y.C.)
| | - Hee Sun Kim
- Department of Neuroscience, College of Medicine, Ewha Womans University, Seoul 110-783, Korea; E-Mail:
| | - Dong Hyun Kim
- Department of Microbial Chemistry, College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea; E-Mail:
| | - Bum Joon Kim
- Department of Microbiology and Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea; E-Mails: (I.K.L.); (B.J.K.)
| | - Weon Young Chang
- School of Medicine, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K.); (C.M.L.); (K.C.K.); (W.Y.C.)
| | - Jae Hyuck Choi
- School of Medicine, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K.); (C.M.L.); (K.C.K.); (W.Y.C.)
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K.); (C.M.L.); (K.C.K.); (W.Y.C.)
| |
Collapse
|
36
|
Kim KN, Heo SJ, Kang SM, Ahn G, Jeon YJ. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol In Vitro 2010; 24:1648-54. [PMID: 20594983 DOI: 10.1016/j.tiv.2010.05.023] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 03/03/2010] [Accepted: 05/31/2010] [Indexed: 01/17/2023]
Abstract
Fucoxanthin, a natural biologically active substance isolated from Ishige okamurae, evidences antitumor activity in human leukemia cell HL-60 cells via the induction of apoptosis. However, the mechanism underlying fucoxanthin-induced apoptosis in HL-60 cells remains unclear. In this study, we focused on the effect of fucoxanthin induction on the accumulation of reactive oxygen species (ROS), and on the triggering of Bcl-xL signaling pathway in HL-60 cells. We determined that ROS are generated during fucoxanthin-induced cytotoxicity and apoptosis in HL-60 cells, and that N-acetylcysteine (NAC), a ROS scavenger, suppressed fucoxanthin-induced cytotoxicity and apoptosis. Moreover, fucoxanthin-induced the cleavage of caspases -3 and -7, and poly-ADP-ribose polymerase (PARP) and a decrease of Bcl-xL levels, whereas NAC pre-treatment significantly inhibited caspase-3, -7, and PARP cleavage and the reduction in Bcl-xL levels. In this study, it was demonstrated for the first time that fucoxanthin generated ROS and that the accumulation of ROS performed a crucial role in the fucoxanthin-induced Bcl-xL signaling pathway.
Collapse
Affiliation(s)
- Kil-Nam Kim
- Jeju Biodiversity Research Institute (JBRI), Jeju, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Abstract
Alzheimer’s disease (AD) is one of the major causes of dementia. The pathogenesis of the disease is not entirely understood, but the amyloid β peptide (Aβ) and the formation of senile plaques seem to play pivotal roles. Oligomerization of the Aβ is thought to trigger a cascade of events, including oxidative stress, glutamate excitotoxicity and inflammation. The kynurenine (KYN) pathway is the major route for the metabolism of the essential amino acid tryptophan. Some of the metabolites of this pathway, such as 3-hydroxykynurenine and quinolinic acid, are known to have neurotoxic properties, whereas others, such as kynurenic acid, are putative neuroprotectants. Among other routes, the KYN pathway has been shown to be involved in AD pathogenesis, and connections to other known mechanisms have also been demonstrated. Oxidative stress, glutamate excitotoxicity and the neuroinflammation involved in AD pathogenesis have been revealed to be connected to the KYN pathway. Intervention at these key steps may serve as the aim of potential therapy.
Collapse
Affiliation(s)
- Zsigmond Tamas Kincses
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary
| | | | | |
Collapse
|