1
|
Chen Y, Dong Y, Lu X, Li W, Zhang Y, Mao B, Pan X, Li X, Zhou Y, An Q, Xie F, Wang S, Xue Y, Cai X, Lai M, Zhou Q, Yan Y, Fu R, Wang H, Nakahata T, An X, Shi L, Zhang Y, Ma F. Inhibition of aryl hydrocarbon receptor signaling promotes the terminal differentiation of human erythroblasts. J Mol Cell Biol 2022; 14:6504013. [PMID: 35022784 PMCID: PMC9122643 DOI: 10.1093/jmcb/mjac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/12/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) plays an important role during mammalian embryo development. Inhibition of AHR signaling promotes the development of hematopoietic stem/progenitor cells. AHR also regulates the functional maturation of blood cells, such as T cells and megakaryocytes. However, little is known about the role of AHR modulation during the development of erythroid cells. In this study, we used the AHR antagonist StemRegenin 1 (SR1) and the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during different stages of human erythropoiesis to elucidate the function of AHR. We found that antagonizing AHR signaling improved the production of human embryonic stem cell (hESC)-derived erythrocytes and enhanced erythroid terminal differentiation. RNA-sequencing showed that SR1 treatment of proerythroblasts upregulated the expression of erythrocyte differentiation-related genes and downregulated actin organization-associated genes. We found that SR1 accelerated F-actin remodeling in terminally differentiated erythrocytes, favoring their maturation of the cytoskeleton and enucleation. We demonstrated that the effects of AHR inhibition on erythroid maturation were associated with F-actin remodeling. Our findings help uncover the mechanism for AHR-mediated human erythroid cell differentiation. We also provide a new approach toward the large-scale production of functionally mature human pluripotent stem cell-derived erythrocytes for use in translational applications.
Collapse
Affiliation(s)
- Yijin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yong Dong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xulin Lu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| | - Wanjing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yimeng Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Bin Mao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xu Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xiaohong Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ya Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Quanming An
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Fangxin Xie
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | | | - Yuan Xue
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xinping Cai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yan Yan
- Jinjiang Maternity and child health hospital, Chengdu, China
| | - Ruohan Fu
- Jinjiang Maternity and child health hospital, Chengdu, China
| | - Hong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| | - Yonggang Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| |
Collapse
|
2
|
Herruzo-Ruiz AM, Fuentes-Almagro CA, Jiménez-Pastor JM, Pérez-Rosa VM, Blasco J, Michán C, Alhama J. Meta-omic evaluation of bacterial microbial community structure and activity for the environmental assessment of soils: overcoming protein extraction pitfalls. Environ Microbiol 2021; 23:4706-4725. [PMID: 34258847 DOI: 10.1111/1462-2920.15673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/27/2022]
Abstract
Microorganisms play unique, essential and integral roles in the biosphere. This work aims to assess the utility of soil's metaomics for environmental diagnosis. Doñana National Park (DNP) was selected as a natural lab since it contains a strictly protected core that is surrounded by numerous threats of pollution. Culture-independent high-throughput molecular tools were used to evaluate the alterations of the global structure and metabolic activities of the microbiome. 16S rRNA sequencing shows lower bacterial abundance and diversity in areas historically exposed to contamination that surround DNP. For metaproteomics, an innovative post-alkaline protein extraction protocol was developed. After NaOH treatment, successive washing with Tris-HCl buffer supplemented with glycerol was essential to eliminate interferences. Starting from soils with different physicochemical characteristics, the method renders proteins with a remarkable resolution on SDS-PAGE gels. The proteins extracted were analysed by using an in-house database constructed from the rRNA data. LC-MS/MS analysis identified 2182 non-redundant proteins with 135 showing significant differences in relative abundance in the soils around DNP. Relevant global biological processes were altered in response to the environmental changes, such as protective and antioxidant mechanisms, translation, folding and homeostasis of proteins, membrane transport and aerobic respiratory metabolism.
Collapse
Affiliation(s)
- Ana M Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | | | - José M Jiménez-Pastor
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | - Víctor M Pérez-Rosa
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, Puerto Real, E-11510, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| |
Collapse
|
3
|
Orlowska K, Swigonska S, Sadowska A, Ruszkowska M, Nynca A, Molcan T, Ciereszko RE. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the proteome of porcine granulosa cells. CHEMOSPHERE 2018; 212:170-181. [PMID: 30144678 DOI: 10.1016/j.chemosphere.2018.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic man-made chemical compound contaminating the environment. The exposure of living organisms to TCDD may result in numerous disorders, including reproductive pathologies. By employing two-dimensional fluorescence difference gel electrophoresis we aimed to identify proteins potentially involved in the mechanism of TCDD action and toxicity in porcine granulosa cells. The porcine granulosa cells were treated with TCDD (100 nM) for 3, 12 or 24 h, and afterwards, cytoplasmic proteins were isolated and labeled with cyanines. Next, samples were separated by isoelectric focusing and SDS-PAGE. Proteins of interest were identified by MALDI-TOF/TOF MS analysis. A total of 75 differentially expressed protein spots (p < 0.05 and fold change ≥2.0) were found in granulosa cells treated with TCDD. After 3, 12 and 24 h of TCDD treatment, we were able to identify 29, 34 and 12 spots, respectively. Functional analysis showed that cytoskeletal proteins formed the largest class of proteins significantly affected by TCDD in all time points. We also demonstrated that most of the identified proteins were associated with the "structural constituent of cytoskeleton" and "chaperone binding" Gene Ontology categories. Based on the analysis of the porcine granulosa cell proteome, we demonstrated that TCDD may affect the ovarian follicle fate by the rearrangement of the cytoskeleton and extracellular matrix as well as the modulation of proteins important for the cellular response to stress. The results of the current study present an extended insight into the TCDD mechanism of action in porcine granulosa cells, providing new directions for future functional studies.
Collapse
Affiliation(s)
- Karina Orlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Agnieszka Sadowska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Monika Ruszkowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland; Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
4
|
Domínguez-Acosta O, Vega L, Estrada-Muñiz E, Rodríguez MS, Gonzalez FJ, Elizondo G. Activation of aryl hydrocarbon receptor regulates the LPS/IFNγ-induced inflammatory response by inducing ubiquitin-proteosomal and lysosomal degradation of RelA/p65. Biochem Pharmacol 2018; 155:141-149. [PMID: 29935959 DOI: 10.1016/j.bcp.2018.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023]
Abstract
Several studies have identified the aryl hydrocarbon receptor (AhR) as a negative regulator of the innate and adaptive immune responses. However, the molecular mechanisms by which this transcription factor exerts such modulatory effects are not well understood. Interaction between AhR and RelA/p65 has previously been reported. RelA/p65 is the major NFκB subunit that plays a critical role in immune responses to infection. The aim of the present study was to determine whether the activation of AhR disrupted RelA/p65 signaling in mouse peritoneal macrophages by decreasing its half-life. The data demonstrate that the activation of AhR by TCDD and β-naphthoflavone (β-NF) decreased protein levels of the pro-inflammatory cytokines TNF-α, IL-6 and IL-12 after macrophage activation with LPS/IFNγ. In an AhR-dependent manner, TCDD treatment induces RelA/p65 ubiquitination and proteosomal degradation, an effect dependent on AhR transcriptional activity. Activation of AhR also induced lysosome-like membrane structure formation in mouse peritoneal macrophages and RelA/p65 lysosome-dependent degradation. In conclusion, these results demonstrate that AhR activation promotes RelA/p65 protein degradation through the ubiquitin proteasome system, as well as through the lysosomes, resulting in decreased pro-inflammatory cytokine levels in mouse peritoneal macrophages.
Collapse
Affiliation(s)
- O Domínguez-Acosta
- Departamento de Biología Celular, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico
| | - L Vega
- Departamento de Toxicología, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico
| | - E Estrada-Muñiz
- Departamento de Toxicología, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico
| | - M S Rodríguez
- Institut des Technologies Avancées en Sciences du Vivant (ITAV) CNRS-USR3505, Institut de Pharmacologie et de Biologie Structurale (IPBS) CNRS UMR8601, Université de Toulouse, 31106 Toulouse, France
| | - F J Gonzalez
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - G Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico.
| |
Collapse
|
5
|
González-Barbosa E, Mejía-García A, Bautista E, Gonzalez FJ, Segovia J, Elizondo G. TCDD induces UbcH7 expression and synphilin-1 protein degradation in the mouse ventral midbrain. J Biochem Mol Toxicol 2017. [PMID: 28621812 DOI: 10.1002/jbt.21947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
UbcH7 is an ubiquitin-conjugating enzyme that interacts with parkin, an E3 ligase. The UbcH7-parkin complex promotes the ubiquitination and degradation of several proteins via the 26S proteasome. Cellular accumulation of the UbcH7-parkin targets alpha-synuclein and synphilin-1 has been associated with Parkinson disease. In mouse liver, 2,3,7,8-tetrachlorodibenzo-p-dioxin, an aryl hydrocarbon receptor ligand, induces UbcH7 expression. Therefore, the aim of the present study was to determine whether 2,3,7,8-tetrachlorodibenzo-p-dioxin induces Ubch7 mRNA and UbcH7 protein expression in the mouse brain, to characterize the molecular mechanism, and the effect on synphilin-1 half-life. We found that 2,3,7,8-tetrachlorodibenzo-p-dioxin promotes the aryl hydrocarbon receptor binding to Ubch7 gene promoter as well as its transactivation, resulting in an induction of UbcH7 levels in the olfactory bulb, ventral midbrain, hippocampus, striatum, cerebral cortex, brain stem, and medulla oblongata. In parallel, 2,3,7,8-tetrachlorodibenzo-p-dioxin promoted synphilin-1 degradation in an aryl hydrocarbon receptor-dependent way.
Collapse
Affiliation(s)
| | | | - Elizabeth Bautista
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, México D.F, México
| | - Frank J Gonzalez
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, MD, USA
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, México D.F, México
| | | |
Collapse
|
6
|
Angeles-Floriano T, Roa-Espitia AL, Baltiérrez-Hoyos R, Cordero-Martínez J, Elizondo G, Hernández-González EO. Absence of aryl hydrocarbon receptor alters CDC42 expression and prevents actin polymerization during capacitation. Mol Reprod Dev 2016; 83:1015-1026. [DOI: 10.1002/mrd.22736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Tania Angeles-Floriano
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| | - Ana L. Roa-Espitia
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| | - Rafael Baltiérrez-Hoyos
- Facultad de Medicina y Cirugía; Universidad Autónoma Benito Juárez de Oaxaca; Oaxaca; Cátedras CONACYT
| | - Joaquin Cordero-Martínez
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| | - Guillermo Elizondo
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| | - Enrique O. Hernández-González
- Departamento de Biología Celular; CINVESTAV-IPN; Av. Instituto Politécnico Nacional 2508; CP 07360; México DF México
| |
Collapse
|
7
|
Activation of AHR mediates the ubiquitination and proteasome degradation of c-Fos through the induction of Ubcm4 gene expression. Toxicology 2015; 337:47-57. [PMID: 26318284 DOI: 10.1016/j.tox.2015.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a specific, non-lysosomal pathway responsible for the controlled degradation of abnormal and short-half-life proteins. Despite its relevance in cell homeostasis, information regarding control of the UPS component gene expression is lacking. Data from a recent study suggest that the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor, might control the expression of several genes encoding for UPS proteins. Here, we showed that activation of AHR by TCDD and β-naphthoflavone (β-NF) results in Ubcm4 gene induction accompanied by an increase in protein levels. UbcM4 is an ubiquitin-conjugating enzyme or E2 protein that in association with ubiquitin ligase enzymes or E3 ligases promotes the ubiquitination and 26S proteasome-mediated degradation of different proteins, including p53, c-Myc, and c-Fos. We also present data demonstrating increased c-Fos ubiquitination and proteasomal degradation through the AHR-mediated induction of UbcM4 expression. The present study shows that AHR modulates the degradation of proteins involved in cell cycle control, consistent with previous reports demonstrating an essential role of the AHR in cell cycle regulation.
Collapse
|
8
|
Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, Massfelder T, Rathmell WK, Xia M, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Prudhomme KR, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Lowe L, Jensen L, Bisson WH, Kleinstreuer N. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis 2015; 36 Suppl 1:S184-S202. [PMID: 26106137 PMCID: PMC4492067 DOI: 10.1093/carcin/bgv036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
Collapse
Affiliation(s)
- Zhiwei Hu
- To whom correspondence should be addressed. Tel: +1 614 685 4606; Fax: +1-614-247-7205;
| | - Samira A. Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valérian Dormoy
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
- Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Chia-Wen Hsu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, Taipei Medical University, Taiwan, Republic of China
| | - Thierry Massfelder
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
| | - W. Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Fahd Al-Mulla
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Kalan R. Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate
, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - A. Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advance Research), King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden and
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems, Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, NIEHS, MD K2-16, RTP, NC 27709, USA
| |
Collapse
|
9
|
Harris C, Shuster DZ, Roman Gomez R, Sant KE, Reed MS, Pohl J, Hansen JM. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses. Free Radic Biol Med 2013; 63:325-37. [PMID: 23736079 PMCID: PMC3764921 DOI: 10.1016/j.freeradbiomed.2013.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/19/2013] [Accepted: 05/28/2013] [Indexed: 01/07/2023]
Abstract
Developmental signals that control growth and differentiation are regulated by environmental factors that generate reactive oxygen species (ROS) and alter steady-state redox environments in tissues and fluids. Protein thiols are selectively oxidized and reduced in distinct spatial and temporal patterns in conjunction with changes in glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) redox potentials (E(h)) to regulate developmental signaling. The purpose of this study was to measure compartment-specific thiol redox status in cultured organogenesis-stage rat conceptuses and to evaluate the impact of thiol oxidation on the redox proteome. The visceral yolk sac (VYS) has the highest initial (0 h) total intracellular GSH (GSH+2GSSG) concentration (5.5 mM) and the lowest Eh (-223 mV) as determined by HPLC analysis. Total embryo (EMB) GSH concentrations ranged lower (3.2 mM) and were only slightly more oxidized than the VYS. Total GSH concentrations in yolk sac fluid (YSF) and amniotic fluid (AF) are >500-fold lower than in tissues and are highly oxidized (YSF E(h)=-121 mV and AF E(h)=-49 mV). Steady-state total Cys concentrations (Cys+2CySS) were significantly lower than GSH in tissues but were otherwise equal in VYS and EMB near 0.5 mM. On gestational day 11, total GSH and Cys concentrations in EMB and VYS increase significantly over the 6h time course while E(h) remains relatively constant. The Eh (GSH/GSSG) in YSF and AF become more reduced over time while E(h) (Cys/CySS) become more oxidized. Addition of L-buthionine-S,R-sulfoximine (BS0) to selectively inhibit GSH synthesis and mimic the effects of some GSH-depleting environmental chemicals significantly decreased VYS and EMB GSH and Cys concentrations and increased Eh over the 6h exposure period, showing a greater overall oxidation. In the YSF, BSO caused a significant increase in total Cys concentrations to 1.7 mM but did not significantly change the E(h) for Cys/CySS. A significant net oxidation was seen in the BSO-treated AF compartment after 6 h. Biotinylated iodoacetamide (BIAM) labeling of proteins revealed the significant thiol oxidation of many EMB proteins following BSO treatment. Quantitative changes in the thiol proteome, associated with developmentally relevant pathways, were detected using isotope coded affinity tag (ICAT) labeling and mass spectroscopy. Adaptive pathways were selectively enriched with increased concentrations of proteins involved in mRNA processing (splicesome) and mRNA stabilization (glycolysis, GAPDH), as well as protein synthesis (aminoacyl-tRNA) and protein folding (antigen processing, Hsp70, protein disulfide isomerase). These results show the ability of chemical and environmental modulators to selectively alter compartmental intracellular and extracellular GSH and Cys concentrations and change their corresponding E(h) within the intact viable conceptus. The altered E(h) were also of sufficient magnitude to alter the redox proteome and change relative protein concentrations, suggesting that the mechanistic links through which environmental factors inform and regulate developmental signaling pathways may be discovered using systems developmental biology techniques.
Collapse
Affiliation(s)
- Craig Harris
- Developmental Toxicology Laboratory, Department of Environmental Health Sciences, 1420 Washington Heights, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Reyes-Hernández OD, Mejía-García A, Sánchez-Ocampo EM, Cabañas-Cortés MA, Ramírez P, Chávez-González L, Gonzalez FJ, Elizondo G. Ube2l3 gene expression is modulated by activation of the aryl hydrocarbon receptor: implications for p53 ubiquitination. Biochem Pharmacol 2010; 80:932-40. [PMID: 20478272 DOI: 10.1016/j.bcp.2010.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/04/2010] [Accepted: 05/10/2010] [Indexed: 12/14/2022]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a halogenated aromatic hydrocarbon and environmental contaminant, results in several deleterious effects, including fetal malformation and cancer. These effects are mediated by the aryl hydrocarbon receptor (AhR), a ligand-activated receptor that regulates the expression of genes encoding xenobiotic-metabolizing enzymes. Several reports suggest that AhR function is beyond the adaptive chemical response. In the present study, we analyzed and compared gene expression profiles of C57BL/6N wild-type (WT) and Ahr-null mice. DNA microarray and quantitative RT-PCR analyses revealed changes in the expression of genes involved in the ubiquitin-proteasome system (UPS). UPS has an important role in cellular homeostasis control and dysfunction of this pathway has been implicated in the development of several human pathologies. Protein ubiquitination is a multi-step enzymatic process that regulates the stability, function, and/or localization of the modified proteins. This system is highly regulated post-translationally by covalent modifications. However, little information regarding the transcriptional regulation of the genes encoding ubiquitin (Ub) proteins is available. Therefore, we investigated the role of the AhR in modulation of the UPS and regulation of Ube2l3 transcription, an E2 ubiquitin-conjugating enzyme, as well as the effects on p53 degradation. Our results indicate that AhR inactivation decreases on liver proteasome activity, probably due to a down-regulation on the expression of several proteasome subunits. On the other hand, AhR activation increases Ube2l3 mRNA and protein levels by controlling Ube2l3 gene expression, resulting in increased p53 ubiquitination and degradation. In agreement with this, induction of apoptosis was attenuated by the AhR activation.
Collapse
Affiliation(s)
- O D Reyes-Hernández
- Departamento de Toxicología, CINVESTAV-IPN, Zacatenco. México D.F., Av. IPN 2508, C.P. 07360, Mexico
| | | | | | | | | | | | | | | |
Collapse
|