1
|
Stubbs DB, Ruzicka JA, Taylor EW. Modular Polymerase Synthesis and Internal Protein Domain Swapping via Dual Opposed Frameshifts in the Ebola Virus L Gene. Pathogens 2024; 13:829. [PMID: 39452701 PMCID: PMC11510084 DOI: 10.3390/pathogens13100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Sequence analysis of the Zaire ebolavirus (EBOV) polymerase (L gene) mRNA, using online tools, identified a highly ranked -1 programmed ribosomal frameshift (FS) signal including an ideal slippery sequence heptamer (UUUAAAA), with an overlapping coding region featuring two tandem UGA codons, immediately followed by an RNA region that is the inverse complement (antisense) to a region of the mRNA of the selenoprotein iodothyronine deiodinase II (DIO2). This antisense interaction was confirmed in vitro via electrophoretic gel shift assay, using cDNAs at the EBOV and DIO2 segments. The formation of a duplex between the two mRNAs could trigger the ribosomal frameshift, by mimicking the enhancing role of a pseudoknot structure, while providing access to the selenocysteine insertion sequence (SECIS) element contained in the DIO2 mRNA. This process would allow the -1 frame UGA codons to be recoded as selenocysteine, forming part of a C-terminal module in a low abundance truncated isoform of the viral polymerase, potentially functioning in a redox role. Remarkably, 90 bases downstream of the -1 FS site, an active +1 FS site can be demonstrated, which, via a return to the zero frame, would enable the attachment of the entire C-terminal of the polymerase protein. Using a construct with upstream and downstream reporter genes, spanning a wildtype or mutated viral insert, we show significant +1 ribosomal frameshifting at this site. Acting singly or together, frameshifting at these sites (both of which are highly conserved in EBOV strains) could enable the expression of several modified isoforms of the polymerase. The 3D modeling of the predicted EBOV polymerase FS variants using the AI tool, AlphaFold, reveals a peroxiredoxin-like active site with arginine and threonine residues adjacent to a putative UGA-encoded selenocysteine, located on the back of the polymerase "hand". This module could serve to protect the viral RNA from peroxidative damage.
Collapse
Affiliation(s)
| | | | - Ethan W. Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC 27402-6170, USA; (D.B.S.); (J.A.R.)
| |
Collapse
|
2
|
Benoni B, Potužník J, Škríba A, Benoni R, Trylcova J, Tulpa M, Spustová K, Grab K, Mititelu MB, Pačes J, Weber J, Stanek D, Kowalska J, Bednarova L, Keckesova Z, Vopalensky P, Gahurova L, Cahova H. HIV-1 Infection Reduces NAD Capping of Host Cell snRNA and snoRNA. ACS Chem Biol 2024; 19:1243-1249. [PMID: 38747804 PMCID: PMC11197007 DOI: 10.1021/acschembio.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a critical component of the cellular metabolism and also serves as an alternative 5' cap on various RNAs. However, the function of the NAD RNA cap is still under investigation. We studied NAD capping of RNAs in HIV-1-infected cells because HIV-1 is responsible for the depletion of the NAD/NADH cellular pool and causing intracellular pellagra. By applying the NAD captureSeq protocol to HIV-1-infected and uninfected cells, we revealed that four snRNAs (e.g., U1) and four snoRNAs lost their NAD cap when infected with HIV-1. Here, we provide evidence that the presence of the NAD cap decreases the stability of the U1/HIV-1 pre-mRNA duplex. Additionally, we demonstrate that reducing the quantity of NAD-capped RNA by overexpressing the NAD RNA decapping enzyme DXO results in an increase in HIV-1 infectivity. This suggests that NAD capping is unfavorable for HIV-1 and plays a role in its infectivity.
Collapse
Affiliation(s)
- Barbora Benoni
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- First
Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czechia
| | - Jiří
František Potužník
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Faculty
of Science, Department of Cell Biology, Charles University, Viničná 7, 121 08 Prague 2, Czechia
| | - Anton Škríba
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Roberto Benoni
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Jana Trylcova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Matouš Tulpa
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Faculty
of Science, Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 121 08 Prague 2, Czechia
| | - Kristína Spustová
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Katarzyna Grab
- Division
of Biophysics, Faculty of Physics, University
of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Maria-Bianca Mititelu
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Faculty
of Science, Department of Cell Biology, Charles University, Viničná 7, 121 08 Prague 2, Czechia
| | - Jan Pačes
- Institute
of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czechia
| | - Jan Weber
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - David Stanek
- Institute
of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czechia
| | - Joanna Kowalska
- Division
of Biophysics, Faculty of Physics, University
of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Lucie Bednarova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Zuzana Keckesova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Pavel Vopalensky
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Lenka Gahurova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Department
of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czechia
| | - Hana Cahova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| |
Collapse
|
3
|
Yang L, Wu Y, Jin W, Mo N, Ye G, Su Z, Tang L, Wang Y, Li Y, Du J. The potential role of ferroptosis in COVID-19-related cardiovascular injury. Biomed Pharmacother 2023; 168:115637. [PMID: 37844358 DOI: 10.1016/j.biopha.2023.115637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged as a global health threat in 2019. An important feature of the disease is that multiorgan symptoms of SARS-CoV-2 infection persist after recovery. Evidence indicates that people who recovered from COVID-19, even those under the age of 65 years without cardiovascular risk factors such as smoking, obesity, hypertension, and diabetes, had a significantly increased risk of cardiovascular disease for up to one year after diagnosis. Therefore, it is important to closely monitor individuals who have recovered from COVID-19 for potential cardiovascular damage that may manifest at a later stage. Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by the production of reactive oxygen species (ROS) and increased lipid peroxide levels. Several studies have demonstrated that ferroptosis plays an important role in cancer, ischemia/reperfusion injury (I/RI), and other cardiovascular diseases. Altered iron metabolism, upregulation of reactive oxygen species, and glutathione peroxidase 4 inactivation are striking features of COVID-19-related cardiovascular injury. SARS-CoV-2 can cause cardiovascular ferroptosis, leading to cardiovascular damage. Understanding the mechanism of ferroptosis in COVID-19-related cardiovascular injuries will contribute to the development of treatment regimens for preventing or reducing COVID-19-related cardiovascular complications. In this article, we go over the pathophysiological underpinnings of SARS-CoV-2-induced acute and chronic cardiovascular injury, the function of ferroptosis, and prospective treatment approaches.
Collapse
Affiliation(s)
- Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Mo
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gaoqi Ye
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zixin Su
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Nkinsi NT, Galagan SR, Benzekri NA, Govere S, Drain PK. Food Insecurity at HIV Diagnosis Associated with Subsequent Viremia Amongst Adults Living with HIV in an Urban Township of South Africa. AIDS Behav 2023; 27:3687-3694. [PMID: 37249804 DOI: 10.1007/s10461-023-04085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
We assessed the temporal impact of food insecurity on 12-month antiretroviral (ART) adherence, retention in care, hospitalization, and HIV viremia (> 1000 copies/mL) in ART naïve adults presenting for HIV testing in Umlazi, South Africa. At the time of HIV testing and prior to ART initiation, we determined each participants' food security status using the validated Household Food Insecurity Access Scale (HFIAS). Following HIV testing and ART initiation, we then assessed the above outcomes of each study participant at 3-month intervals for a total of 12 months. Among 2,383 participants with HIV in this study, 253 (10.6%) experienced food insecurity. We found that food insecurity is associated with 20% higher adjusted prevalence odd ratios (aPOR) of having HIV viremia (> 1000 copies/mL) at 12 months following initial diagnosis (aPOR 1.2, 95% CI 1.1-1.4). We found no significant differences in ART adherence, retention in care, and hospitalization occurrences between the food secure and food insecure cohorts.
Collapse
Affiliation(s)
- Naomi T Nkinsi
- School of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
- Department of Global Health, University of Washington, Seattle, USA.
| | - Sean R Galagan
- Department of Global Health, University of Washington, Seattle, USA
| | | | | | - Paul K Drain
- School of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
- Department of Global Health, University of Washington, Seattle, USA
| |
Collapse
|
5
|
Feuz MB, Meyer-Ficca ML, Meyer RG. Beyond Pellagra-Research Models and Strategies Addressing the Enduring Clinical Relevance of NAD Deficiency in Aging and Disease. Cells 2023; 12:500. [PMID: 36766842 PMCID: PMC9913999 DOI: 10.3390/cells12030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Research into the functions of nicotinamide adenine dinucleotide (NAD) has intensified in recent years due to the insight that abnormally low levels of NAD are involved in many human pathologies including metabolic disorders, neurodegeneration, reproductive dysfunction, cancer, and aging. Consequently, the development and validation of novel NAD-boosting strategies has been of central interest, along with the development of models that accurately represent the complexity of human NAD dynamics and deficiency levels. In this review, we discuss pioneering research and show how modern researchers have long since moved past believing that pellagra is the overt and most dramatic clinical presentation of NAD deficiency. The current research is centered on common human health conditions associated with moderate, but clinically relevant, NAD deficiency. In vitro and in vivo research models that have been developed specifically to study NAD deficiency are reviewed here, along with emerging strategies to increase the intracellular NAD concentrations.
Collapse
Affiliation(s)
- Morgan B. Feuz
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Mirella L. Meyer-Ficca
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- College of Veterinary Medicine, Utah State University, Logan, UT 84322, USA
| | - Ralph G. Meyer
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
- College of Veterinary Medicine, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
6
|
Block T, Kuo J. Rationale for Nicotinamide Adenine Dinucleotide (NAD+) Metabolome Disruption as a Pathogenic Mechanism of Post-Acute COVID-19 Syndrome. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2022; 15:2632010X221106986. [PMID: 35769168 PMCID: PMC9234841 DOI: 10.1177/2632010x221106986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Many acute COVID-19 convalescents experience a persistent sequelae of infection, called post-acute COVID-19 syndrome (PACS). With incidence ranging between 31% and 69%, PACS is becoming increasingly acknowledged as a new disease state in the context of SARS-CoV-2 infection. As SARS-CoV-2 infection can affect several organ systems to varying degrees and durations, the cellular and molecular abnormalities contributing to PACS pathogenesis remain unclear. Despite our limited understanding of how SARS-CoV-2 infection promotes this persistent disease state, mitochondrial dysfunction has been increasingly recognized as a contributing factor to acute SARS-CoV-2 infection and, more recently, to PACS pathogenesis. The biological mechanisms contributing to this phenomena have not been well established in previous literature; however, in this review, we summarize the evidence that NAD+ metabolome disruption and subsequent mitochondrial dysfunction following SARS-CoV-2 genome integration may contribute to PACS biological pathogenesis. We also briefly examine the coordinated and complex relationship between increased oxidative stress, inflammation, and mitochondrial dysfunction and speculate as to how SARS-CoV-2-mediated NAD+ depletion may be causing these abnormalities in PACS. As such, we present evidence supporting the therapeutic potential of intravenous administration of NAD+ as a novel treatment intervention for PACS symptom management.
Collapse
|
7
|
Fratta Pasini AM, Stranieri C, Girelli D, Busti F, Cominacini L. Is Ferroptosis a Key Component of the Process Leading to Multiorgan Damage in COVID-19? Antioxidants (Basel) 2021; 10:1677. [PMID: 34829548 PMCID: PMC8615234 DOI: 10.3390/antiox10111677] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/08/2023] Open
Abstract
Even though COVID-19 is mostly well-known for affecting respiratory pathology, it can also result in several extrapulmonary manifestations, leading to multiorgan damage. A recent reported case of SARS-CoV-2 myocarditis with cardiogenic shock showed a signature of myocardial and kidney ferroptosis, a novel, iron-dependent programmed cell death. The term ferroptosis was coined in the last decade to describe the form of cell death induced by the small molecule erastin. As a specific inducer of ferroptosis, erastin inhibits cystine-glutamate antiporter system Xc-, blocking transportation into the cytoplasm of cystine, a precursor of glutathione (GSH) in exchange with glutamate and the consequent malfunction of GPX4. Ferroptosis is also promoted by intracellular iron overload and by the iron-dependent accumulation of polyunsaturated fatty acids (PUFA)-derived lipid peroxides. Since depletion of GSH, inactivation of GPX4, altered iron metabolism, and upregulation of PUFA peroxidation by reactive oxygen species are peculiar signs of COVID-19, there is the possibility that SARS-CoV-2 may trigger ferroptosis in the cells of multiple organs, thus contributing to multiorgan damage. Here, we review the molecular mechanisms of ferroptosis and its possible relationship with SARS-CoV-2 infection and multiorgan damage. Finally, we analyze the potential interventions that may combat ferroptosis and, therefore, reduce multiorgan damage.
Collapse
Affiliation(s)
- Anna Maria Fratta Pasini
- Department of Medicine, Section of Internal Medicine D, University of Verona, 37134 Verona, Italy; (C.S.); (D.G.); (F.B.); (L.C.)
| | | | | | | | | |
Collapse
|
8
|
Taylor EW, Radding W. Understanding Selenium and Glutathione as Antiviral Factors in COVID-19: Does the Viral M pro Protease Target Host Selenoproteins and Glutathione Synthesis? Front Nutr 2020; 7:143. [PMID: 32984400 PMCID: PMC7492384 DOI: 10.3389/fnut.2020.00143] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Glutathione peroxidases (GPX), a family of antioxidant selenoenzymes, functionally link selenium and glutathione, which both show correlations with clinical outcomes in COVID-19. Thus, it is highly significant that cytosolic GPX1 has been shown to interact with an inactive C145A mutant of Mpro, the main cysteine protease of SARS-CoV-2, but not with catalytically active wild-type Mpro. This seemingly anomalous result is what might be expected if GPX1 is a substrate for the active protease, leading to its fragmentation. We show that the GPX1 active site sequence is substantially similar to a known Mpro cleavage site, and is identified as a potential cysteine protease site by the Procleave algorithm. Proteolytic knockdown of GPX1 is highly consistent with previously documented effects of recombinant SARS-CoV Mpro in transfected cells, including increased reactive oxygen species and NF-κB activation. Because NF-κB in turn activates many pro-inflammatory cytokines, this mechanism could contribute to increased inflammation and cytokine storms observed in COVID-19. Using web-based protease cleavage site prediction tools, we show that Mpro may be targeting not only GPX1, but several other selenoproteins including SELENOF and thioredoxin reductase 1, as well as glutamate-cysteine ligase, the rate-limiting enzyme for glutathione synthesis. This hypothesized proteolytic knockdown of components of both the thioredoxin and glutaredoxin systems is consistent with a viral strategy to inhibit DNA synthesis, to increase the pool of ribonucleotides for RNA synthesis, thereby enhancing virion production. The resulting "collateral damage" of increased oxidative stress and inflammation would be exacerbated by dietary deficiencies of selenium and glutathione precursors.
Collapse
Affiliation(s)
- Ethan Will Taylor
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | | |
Collapse
|
9
|
Han F, Li G, Dai S, Huang J. Genome-wide metabolic model to improve understanding of CD4+ T cell metabolism, immunometabolism and application in drug design. MOLECULAR BIOSYSTEMS 2016; 12:431-43. [DOI: 10.1039/c5mb00480b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Model-based investigation of the metabolism and immunometabolism of CD4+ T cells (CD4T1670) and the application of CD4T1670 in drug development.
Collapse
Affiliation(s)
- Feifei Han
- State Key Laboratory of Genetic Resources and Evolution
- Kunming Institute of Zoology
- Chinese Academy of Sciences
- Kunming
- China
| | - Gonghua Li
- State Key Laboratory of Genetic Resources and Evolution
- Kunming Institute of Zoology
- Chinese Academy of Sciences
- Kunming
- China
| | - Shaoxing Dai
- State Key Laboratory of Genetic Resources and Evolution
- Kunming Institute of Zoology
- Chinese Academy of Sciences
- Kunming
- China
| | - Jingfei Huang
- State Key Laboratory of Genetic Resources and Evolution
- Kunming Institute of Zoology
- Chinese Academy of Sciences
- Kunming
- China
| |
Collapse
|
10
|
Bipath P, Levay PF, Viljoen M. The kynurenine pathway activities in a sub-Saharan HIV/AIDS population. BMC Infect Dis 2015; 15:346. [PMID: 26285873 PMCID: PMC4545362 DOI: 10.1186/s12879-015-1087-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tryptophan is an essential amino acid for the synthesis of proteins and important metabolites such as serotonin, melatonin, tryptamine and niacin. After protein synthesis, more than 90 % of tryptophan catabolism occurs along the kynurenine pathway. The inflammation-inducible enzyme indoleamine 2,3 dioxygenase (IDO) is responsible for the first rate-limiting step in the kynurenine pathway, i.e., oxidation of tryptophan to kynurenine. Excessive IDO activity in conditions such as HIV/AIDS may lead to tryptophan depletion and accumulation of metabolites downstream from kynurenine. Little is known about the kynurenine pathway of HIV/AIDS patients in sub-Saharan regions. This study, in a low income sub-Saharan HIV/AIDS population, examined the effects of activities in the kynurenine pathway on plasma levels of tryptophan, kynurenine and the neurotoxin quinolinic acid, and on de novo synthesis of nicotinamide. METHODS Plasma samples were obtained from a cohort of 105 HIV patients and 60 controls. Kynurenine pathway metabolites were analysed using gas chromatography - mass spectrometry. ELISA and flow cytometry were used to assess plasma inflammatory markers. RESULTS IDO activity, depletion of tryptophan, as well as accumulation of kynurenine and the neurotoxin quinolinic acid, were not only significantly greater in the patients than in the controls, but also markedly greater than in HIV/AIDS patients from developed countries. Tryptophan levels were 12.3 % higher, kynurenine levels 16.2 % lower, quinolinic acid levels 43.2 % lower and nicotinamide levels 27,2 % lower in patients on antiretroviral treatment than in antiretroviral-naïve patients. Patients' kynurenine pathway metabolites correlated with the levels of inflammatory markers, including that of the major IDO-inducer, interferon-gamma. Indications are that the rate of de novo synthesis of nicotinamide in the kynurenine pathway correlates with increases in quinolinic acid levels up to a point where saturation of the enzyme quinolinate phosphoribosyl transferase occurs. CONCLUSIONS Higher levels of inflammatory activity in this low income sub-Saharan HIV/AIDS population than in patients from developed countries lead to greater tryptophan depletion and greater accumulation of metabolites downstream from tryptophan with quinolinic acid levels often reaching levels associated with the development of HIV/AIDS-associated neurocognitive dysfunction. De novo synthesis of nicotinamide from quinolinic acid contributes to the maintenance of nicotinamide, and by implication NAD levels, in HIV/AIDS patients from low income populations. Antiretroviral treatment partially corrects disturbances in the kynurenine pathway.
Collapse
Affiliation(s)
- Priyesh Bipath
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Peter F Levay
- Department of Internal Medicine (Kalafong Hospital), School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Margaretha Viljoen
- Department of Psychiatry, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
11
|
Food supplementation among HIV-infected adults in Sub-Saharan Africa: impact on treatment adherence and weight gain. Proc Nutr Soc 2015; 74:517-25. [PMID: 25761769 DOI: 10.1017/s0029665115000063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sub-Saharan Africa has the highest proportion of undernourished people in the world, along with the highest number of people living with HIV and AIDS. Thus, as a result of high levels of food insecurity many HIV patients are also undernourished. The synergism between HIV and undernutrition leads to poor treatment adherence and high mortality rates. Undernutrition has a debilitating effect on the immune system due to key nutrient deficiencies and the overproduction of reactive species (oxidative stress), which causes rapid HIV progression and the onset of AIDS. Therapeutic food supplementation used in the treatment of severe acute malnutrition is being applied to HIV palliative care; however, little biochemical data exist to highlight its impact on oxidative stress and immune recovery. In addition, as most food supplements are imported by donor agencies, efforts are being put into local therapeutic food production such as the Food Multi-Mix concept to ensure sustainability. The purpose of this review is to highlight studies that examine the effectiveness of food supplementation in undernourished HIV patients in Sub-Saharan Africa; noting the parameters used to measure efficacy, as well as the long-term feasibility of supplementation.
Collapse
|
12
|
Antidepressants may lead to a decrease in niacin and NAD in patients with poor dietary intake. Med Hypotheses 2014; 84:178-82. [PMID: 25596911 DOI: 10.1016/j.mehy.2014.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/10/2014] [Accepted: 12/22/2014] [Indexed: 11/21/2022]
Abstract
The term niacin is the generic name for the two compounds nicotinic acid and nicotinamide, the major dietary precursors for two important coenzymes, nicotinamide adenine dinucleotide (NAD) and its phosphorylated form, NADP. Niacin is important for the maintenance of cellular integrity and energy production and is involved in more than 500 intracellular reactions. Deficiencies of niacin may contribute to neuropsychiatric and neurodegenerative disorders. Patients who develop nutritional deficiencies as a result of poor dietary intake, especially inadequate intake of proteins and vitamins, could potentially suffer from niacin deficiency and NAD depletion. However, de novo synthesis of niacin and NAD in the kynurenine pathway of tryptophan metabolism may compensate for impaired dietary intake. The rate of synthesis of NAD and niacin from tryptophan oxidation depends on the induction of the enzyme indoleamine 2,3-dioxygenase (IDO) by pro-inflammatory cytokines such as interferon-gamma. Niacin synthesis is not limited by a decrease in tryptophan and excessive IDO activity may therefore lead to a decline in tryptophan levels. Antidepressants have an anti-inflammatory effect, including reduction of interferon-gamma and therefore inhibition of IDO, the rate-limiting enzyme of the kynurenine pathway. In theory, this could account for increased serotonin as more tryptophan becomes available for serotonin synthesis. However, the downside may be that less NAD and niacin are synthesised downstream, which could exacerbate common psychiatric problems. It is our hypothesis that patients with poor dietary intake, who are treated with antidepressants, are at risk of developing niacin/NAD deficiency with possible development of associated neuropsychiatric symptoms. We therefore propose that niacin supplementation be considered in patients with inadequate diets who are treated with antidepressants. We believe that if this does not happen, a subclinical niacin deficiency may result, which would be difficult to detect as it would cause the same symptoms of the original illness (e.g. depression). Niacin deficiency should be considered and ruled out in all patients with treatment-resistant depression, who have a poor response to antidepressants. This is potentially a cost-effective and easy intervention, which could be examined in a randomized controlled trial.
Collapse
|