1
|
Bhat AA, Afzal M, Goyal A, Gupta G, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Paudel KR, Ali H, Sahu D, Prasher P, Singh SK, Dua K. The impact of formaldehyde exposure on lung inflammatory disorders: Insights into asthma, bronchitis, and pulmonary fibrosis. Chem Biol Interact 2024; 394:111002. [PMID: 38604395 DOI: 10.1016/j.cbi.2024.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Lung inflammatory disorders are a major global health burden, impacting millions of people and raising rates of morbidity and death across many demographic groups. An industrial chemical and common environmental contaminant, formaldehyde (FA) presents serious health concerns to the respiratory system, including the onset and aggravation of lung inflammatory disorders. Epidemiological studies have shown significant associations between FA exposure levels and the incidence and severity of several respiratory diseases. FA causes inflammation in the respiratory tract via immunological activation, oxidative stress, and airway remodelling, aggravating pre-existing pulmonary inflammation and compromising lung function. Additionally, FA functions as a respiratory sensitizer, causing allergic responses and hypersensitivity pneumonitis in sensitive people. Understanding the complicated processes behind formaldehyde-induced lung inflammation is critical for directing targeted strategies aimed at minimizing environmental exposures and alleviating the burden of formaldehyde-related lung illnesses on global respiratory health. This abstract explores the intricate relationship between FA exposure and lung inflammatory diseases, including asthma, bronchitis, allergic inflammation, lung injury and pulmonary fibrosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2050, Australia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Dipak Sahu
- Department of Pharmacology, Amity University, Raipur, Chhattisgarh, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
2
|
Dixon AE, Que LG. Interplay between Immune and Airway Smooth Muscle Cells in Obese Asthma. Am J Respir Crit Care Med 2023; 207:388-389. [PMID: 36219828 PMCID: PMC9940139 DOI: 10.1164/rccm.202210-1870ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Anne E Dixon
- Department of Medicine University of Vermont Burlington, Vermont
| | - Loretta G Que
- Department of Medicine Duke University Health System Durham, North Carolina
| |
Collapse
|
3
|
Lu X, Gong C, Lv K, Zheng L, Li B, Zhao Y, Lu H, Wei T, Huang J, Li R. Impacts of combined exposure to formaldehyde and PM 2.5 at ambient concentrations on airway inflammation in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120234. [PMID: 36195197 DOI: 10.1016/j.envpol.2022.120234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Asthma is a respiratory disease that can be exacerbated by certain environmental factors. Both formaldehyde (FA) and PM2.5, the most common indoor and outdoor air pollutants in mainland China, are closely associated with the onset and development of asthma. To date, however, there is very little report available on whether there is an exacerbating effect of combined exposure to FA and PM2.5 at ambient concentrations. In this study, asthmatic mice were exposed to 1 mg/m3 FA, 1 mg/kg PM2.5, or a combination of 0.5 mg/m3 FA and 0.5 mg/kg PM2.5, respectively. Results demonstrated that both levels of oxidative stress and inflammation were significantly increased, accompanied by an obvious decline in lung function. Further, the initial activation of p38 MAPK and NF-κB that intensified the immune imbalance of asthmatic mice were found to be visibly mitigated following the administration of SB203580, a p38 MAPK inhibitor. Noteworthily, it was found that combined exposure to the two at ambient concentrations could significantly worsen asthma than exposure to each of the two alone at twice the ambient concentration. This suggests that combined exposure to formaldehyde and PM2.5 at ambient concentrations may have a synergistic effect, thus causing more severe damage in asthmatic mice. In general, this work has revealed that the combined exposure to FA and PM2.5 at ambient concentrations can synergistically aggravate asthma via the p38 MAPK pathway in mice.
Collapse
Affiliation(s)
- Xianxian Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China; Department of Materials and Architectural Engineering, Hebei Institute of Mechanical and Electrical Technology, Xingtai, 054002, China
| | - Cunyi Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ke Lv
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lifang Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Beibei Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yuanteng Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Haonan Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Tingting Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jiawei Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
4
|
Nitta NA, Sato T, Komura M, Yoshikawa H, Suzuki Y, Mitsui A, Kuwasaki E, Takahashi F, Kodama Y, Seyama K, Takahashi K. Exposure to the heated tobacco product IQOS generates apoptosis-mediated pulmonary emphysema in murine lungs. Am J Physiol Lung Cell Mol Physiol 2022; 322:L699-L711. [PMID: 35380471 DOI: 10.1152/ajplung.00215.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Pulmonary emphysema is predominantly caused by chronic exposure to cigarette smoke (CS). Novel tobacco substitutes, such as heated tobacco products (HTPs), have emerged as healthier alternatives to cigarettes. IQOS, the most popular HTP in Japan, is advertised as harmless compared with conventional cigarettes. Although some studies have reported its toxicity, few in vivo studies have been conducted. Here, 12-wk-old C57BL6/J male mice were divided into three groups and exposed to air (as control), IQOS aerosol, or CS for 6 mo. After exposure, the weight gain was significantly suppressed in the IQOS and CS groups compared with the control (-4.93 g; IQOS vs. air and -5.504 g; CS vs. air). The serum cotinine level was significantly higher in the IQOS group than in the control group. The neutrophils and lymphocyte count increased in the bronchoalveolar lavage fluid of the IQOS and CS groups compared with those in the control group. Chronic IQOS exposure induced pulmonary emphysema similar to that observed in the CS group. Furthermore, expression levels of the genes involved in the apoptosis-related pathways were significantly upregulated in the lungs of the IQOS-exposed mice. Cytochrome c, cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase-1 were overexpressed in the IQOS group compared with the control. Single-stranded DNA and TdT-mediated dUTP nick-end labeling-positive alveolar septal cell count significantly increased in the IQOS group compared with the control. In conclusion, chronic exposure to IQOS aerosol induces pulmonary emphysema predominantly via apoptosis-related pathways. This suggests that HTPs are not completely safe tobacco products.
Collapse
Affiliation(s)
- Naoko Arano Nitta
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadashi Sato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Moegi Komura
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitomi Yoshikawa
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yohei Suzuki
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aki Mitsui
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eriko Kuwasaki
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzo Kodama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kuniaki Seyama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Kim JH, Jo S, Lee S, Yoo GM, Na HG, Choi YS, Bae CH, Song SY, Kim YD. Peroxiredoxin 2 Inhibits Lipopolysaccharide Induced Mucin Expression and Reactive Oxygen Species Production in Human Airway Epithelial Cells. KOREAN JOURNAL OF OTORHINOLARYNGOLOGY-HEAD AND NECK SURGERY 2021; 64:887-895. [DOI: 10.3342/kjorl-hns.2021.00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 07/25/2023]
Abstract
Background and Objectives Peroxiredoxin (Prx) is an antioxidant enzyme involved in signaling pathway. Prx2 is the most abundant in mammalian gray matter neurons and has protective role under oxidative stress. MUC5AC and MUC5B are typical mucin genes in human airway epithelial cells. Even if free radicals play a key role in chronic respiratory inflammatory diseases, the effects of the Prx2 on mucin expression and oxidative stress are not clearly known. The purpose of this study is to investigate the effect of Prx2 on lipopolysaccharide (LPS)-induced MUC5AC/5B expression and reactive oxygen species (ROS) in human airway epithelial cells.Subjects and Method In NCI-H292 cells and human nasal epithelial cells, the effects of Prx2 on LPS-induced MUC5AC/5B expression and ROS production were investigated using reverse transcriptase-polymerase chain reaction, real-time polymerase chain reaction, enzyme linked immunosorbent assay (ELISA) and flow cytometry analysis.Results MUC5AC, MUC5B mRNA expression and protein production were increased by LPS. ROS production was also increased by LPS. Prx2 suppressed the LPS-induced MUC5AC mRNA expression and protein production as well as ROS production. However, Prx2 did not inhibit MUC5B mRNA expression and protein production. N-acetylcysteine, diphenyleneiodonium, and apocynin also inhibited LPS-induced ROS production.Conclusion These results may show that Prx2 suppresses LPS-induced MUC5AC expression via ROS in human airway epithelial cells.
Collapse
|
6
|
Nazarparvar-Noshadi M, Ezzati Nazhad Dolatabadi J, Rasoulzadeh Y, Mohammadian Y, Shanehbandi D. Apoptosis and DNA damage induced by silica nanoparticles and formaldehyde in human lung epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18592-18601. [PMID: 32198691 DOI: 10.1007/s11356-020-08191-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Human exposure to silica nanoparticles (SNPs) and formaldehyde (FA) is increasing and this has raised some concerns over their possible toxic effects on the exposed working populations. Notwithstanding several studies in this area, the combined toxicological effects of these contaminants have not been yet studied. Therefore, this in vitro study was designed to evaluate the SNPs and FA combined toxicity on human lung epithelial cells (A549 cells). The cells were exposed to SNPs and FA separately and in combined form and the single and combined toxicity of SNPs and FA were evaluated by focusing on cellular viability, DNA damage, and apoptosis via MTT, DAPI staining, DNA ladder, and Annexin V-FITC apoptosis assays. The results showed a significant increase in cytotoxicity, DNA damage, and chromatin fragmentation and late apoptotic\necrotic rates in combined treated cells compared with SNPs and FA-treated cells (P value < 0.05). Two-factorial analysis showed an additive toxic interaction between SNPs and FA. Eventually, this can be deduced that workers exposed simultaneously to SNPs and FA may be at high risk compared with exposure to each other.
Collapse
Affiliation(s)
- Mehran Nazarparvar-Noshadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yahya Rasoulzadeh
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Zhang S, Zhang J, Cheng W, Chen H, Wang A, Liu Y, Hou H, Hu Q. Combined cell death of co-exposure to aldehyde mixtures on human bronchial epithelial BEAS-2B cells: Molecular insights into the joint action. CHEMOSPHERE 2020; 244:125482. [PMID: 31812766 DOI: 10.1016/j.chemosphere.2019.125482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Aldehydes are common air pollutants and metabolites of the organism, which widely exist in many in vivo (e.g. Alzheimer's disease) and in vitro (e.g. cigarette smoke) situations. Individual aldehydes have been studied well alone, while their combined toxicity is still obscure. Here, we examined the combined apoptosis of aldehyde mixtures in BEAS-2B cells at smoking-related environmental/physiologically relevant concentrations, and the potential mechanism was investigated further based on the related signaling pathway. Co-exposure to aldehyde mixtures demonstrated significant synergistic interaction on apoptosis in a concentration-dependent manner, which differed from the expectation based on single aldehydes. Moreover, formaldehyde significantly potentiated the induction of death receptor-5, caspase 8/10, cleaved caspase 3/7/9, pro-apoptotic proteins (Bim, Bad and Bax), depolarization of MMP (mitochondrial membrane potential) and AIF (apoptosis-inducing factor) induced by acrolein, and synergistically decreased expressions of pro-survival proteins (Bcl-2 and Bcl-XL) and poly ADP-ribose polymerase. Therefore, aldehyde mixture-induced synergistic apoptosis was mediated both by TRAIL death receptor and mitochondrial pathway. Additionally, reactive oxygen species, Ca2+ levels, DNA damage, and phosphorylated MDM2 were all synergistically induced by aldehyde mixtures, while total p53, phosphorylated p53 and phosphorylated AKT (serine/threonine kinase) were inhibited. Antioxidants N-acetylcysteine suppressed the aldehyde mixture-induced ROS, DNA damage and apoptosis, and blocked the TRAIL death receptor and mitochondrial pathway, while it did not rescue the p53 and AKT pathway. Briefly, aldehyde mixtures induced synergistic apoptosis even at smoking-related environmental/physiologically relevant concentrations, which could be enhanced through ROS-mediated death receptor/mitochondrial pathway, and the down-regulation of phosphorylated AKT.
Collapse
Affiliation(s)
- Sen Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China; Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Jingni Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China; Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Wanyan Cheng
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China; Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China
| | - An Wang
- Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, PR China.
| |
Collapse
|
8
|
Arslan-Acaroz D, Bayşu-Sozbilir N. Ameliorative effect of boric acid against formaldehyde-induced oxidative stress in A549 cell lines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4067-4074. [PMID: 31823256 DOI: 10.1007/s11356-019-06986-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Formaldehyde (HCHO) is a reactive agent and the most essential common carcinogenic environmental pollutant. The present study investigated the protective and ameliorative effects of boric acid (BA) against formaldehyde-induced oxidative stress in A549 cell lines. The first group served as a control, the second group was treated with only 100 μM formaldehyde, and the third, fourth, and fifth groups were treated with 2.5, 5, and 10 mM BA, respectively. The sixth, seventh, and eighth groups were treated with 2.5, 5, and 10 mM BA plus 100 μM formaldehyde, respectively. In A549 cell lines, formaldehyde treatment significantly decreased cell viability, glutathione level, and enzyme activities of superoxide dismutase and catalase; however, malondialdehyde levels of the cell lysate were found to increase compared with the control group. In addition, formaldehyde treatment did not significantly alter nitric oxide levels. Meanwhile, mRNA expression levels of Tnf-α, NFĸB, and caspase-3 significantly increased but the Bcl-XL level did not show significant alteration by formaldehyde treatment. In contrast, the BA treatment reversed the formaldehyde-induced alteration in A549 cell lines. Consequently, BA exhibited a protective effect in A549 cell line against formaldehyde-induced lipid peroxidation. Furthermore, it ameliorated the antioxidant status and mRNA expression levels of proinflammatory cytokines.
Collapse
Affiliation(s)
| | - Nalan Bayşu-Sozbilir
- Department of Biochemistry, Veterinary Faculty, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
9
|
Yu G, Zhang Y, Liu S, Fan L, Yang Y, Huang Y, Song J. Small interfering RNA targeting of peroxiredoxinⅡ gene enhances formaldehyde-induced toxicity in bone marrow cells isolated from BALB/c mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:89-95. [PMID: 31176251 DOI: 10.1016/j.ecoenv.2019.05.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUDS Formaldehyde (FA) is an important chemicals that can induce sick house syndrome and may be an incentive of childhood leukemia, however the exact mechanism is unclear. Oxidative stress may be an underlying reason of cancer occurring, while diverse antioxidants can protect the bone marrow cells (BMCs) from damaged. PeroxiredoxinⅡ (PrxⅡ) is an important member of the peroxiredoxin family, can remove reactive oxygen species (ROS), and is closely related with the occurrence of tumor. The present study aimed to detect a possible relationship between PrxⅡ gene and FA-induced bone marrow toxicity. METHODS The BMCs were taken out from BALB/c mice, then exposed to control and different doses of FA (50, 100, 200 μmol/L). The cell viability, ROS level and expressions of PrxⅡ gene were examined. Afterwards, we used a small interfering RNA (siRNA) to inhibit the expression of PrxⅡ gene, and chose 100 μmol/L FA for exposure dose, to examine the cell viability, ROS level, cell cycle, apoptotic rate, expressions of PrxⅡ gene in BMCs. RESULTS After a 24 h exposure to different doses of FA, the cell viability, expressions of PrxⅡ gene were decreased with the increasing of FA concentration, while the ROS level was increased. Inhibiting PrxⅡ gene's expression could enhance above FA-induced events. Additionally, siRNA targeting of PrxⅡcould aggravate cell cycle arrest to inhibit cell's growth and development, as well as increase apoptotic rates induced by FA. CONCLUSION These results demonstrated that PrxⅡ gene was involved in FA-induced bone marrow toxicity, and siRNA targeting of PrxⅡcould enhance this toxic process.
Collapse
Affiliation(s)
- Guangyan Yu
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China.
| | - Yixin Zhang
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China
| | - Shimeng Liu
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China
| | - Lida Fan
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China
| | - Yixue Yang
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China
| | - Yulu Huang
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China
| | - Jiayi Song
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China
| |
Collapse
|
10
|
Liu L, Huang Y, Feng X, Chen J, Duan Y. Overexpressed Hsp70 alleviated formaldehyde-induced apoptosis partly via PI3K/Akt signaling pathway in human bronchial epithelial cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:495-504. [PMID: 30600586 DOI: 10.1002/tox.22703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Formaldehyde (FA) is a ubiquitous environmental pollutant, which can induce apoptosis in lung cell and is related to the pathogenesis of asthma, pneumonia, and chronic obstructive pulmonary disease. Heat shock protein 70 (Hsp70) is an ATP-dependent molecular chaperone and exhibits an anti-apoptosis ability in a variety of cells. Previous studies reported that the expression of Hsp70 was induced when organisms were exposed to FA. Whether Hsp70 plays a role in the FA-induced apoptosis and the involved cell signaling pathway remain largely unknown. In this study, human bronchial epithelial cells with overexpressed Hsp70 and the control were exposed to different concentrations of FA (0, 40, 80, and 160 μmol/L) for 24 hours. Apoptosis and the expression levels of PI3K, Akt, p-Akt, MEK, p-MEK, and GLI2 were detected by Annexin-APC/7AAD double-labeled flow cytometry and western blot. The results showed that overexpression of Hsp70 decreased the apoptosis induced by FA and alleviated the decline of PI3k and p-Akt significantly. Inhibitor (LY 294002, a specific inhibitor of PI3K-Akt) test result indicated that PI3K-Akt signaling pathway was involved in the inhibition of FA-induced apoptosis by Hsp70 overexpression and also active in the maintenance of GLI2 level. However, it also suggested that other signaling pathways activated by overexpressed Hsp70 participated in this process, which was needed to be elucidated in further research.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yun Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiangling Feng
- Experimental Center for Preventive Medicine, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
11
|
Liu QP, Zhou DX, Lv MQ, Ge P, Li YX, Wang SJ. Formaldehyde inhalation triggers autophagy in rat lung tissues. Toxicol Ind Health 2018; 34:748233718796347. [PMID: 30360701 DOI: 10.1177/0748233718796347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Formaldehyde (FA), a ubiquitous environmental contaminant, has long been suspected of causing lung injury. However, the molecular and cellular mechanisms underlying this phenomenon remain elusive. The aim of this study was to elucidate the role of autophagy in lung injury induced by FA inhalation. In this study, lung weight coefficient, interleukin 8 in bronchoalveolar fluid, and histopathological examination were used to evaluate the lung injury. Moreover, electron microscopy, Western blotting for the ratio of LC3-II/LC3-I were used to detect autophagy in lung tissues. Our results indicated that the lung toxicity of FA inhalation is dose dependent. Lung weight coefficient, inflammatory response, and histopathological structure in the 0.5 mg/m3 FA exposure group showed no obvious changes compared with the control. However, exposure to 5 and 10 mg/m3 FA produced lung injury including pulmonary edema, histological changes, and inflammatory responses. Furthermore, the alterations of autophagy correlated with lung injury. Taken together, these data indicate that FA exposure triggers autophagy of alveolar epithelial cells, which might play a pivotal role in lung injury.
Collapse
Affiliation(s)
- Qiu-Ping Liu
- 1 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
- 2 Third Ward of VIP, 323 Hospital of PLA, Xi'an, China
| | - Dang-Xia Zhou
- 1 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
- 3 Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Mo-Qi Lv
- 1 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
- 3 Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Pan Ge
- 1 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Yi-Xin Li
- 1 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Shi-Jie Wang
- 1 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Cui Y, Li H, Wu S, Zhao R, Du D, Ding Y, Nie H, Ji HL. Formaldehyde impairs transepithelial sodium transport. Sci Rep 2016; 6:35857. [PMID: 27762337 PMCID: PMC5071906 DOI: 10.1038/srep35857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/06/2016] [Indexed: 01/26/2023] Open
Abstract
Unsaturated oxidative formaldehyde is a noxious aldehyde in cigarette smoke that causes edematous acute lung injury. However, the mechanistic effects of formaldehyde on lung fluid transport are still poorly understood. We examined how formaldehyde regulates human epithelial sodium channels (ENaC) in H441 and expressed in Xenopus oocytes and exposed mice in vivo. Our results showed that formaldehyde reduced mouse transalveolar fluid clearance in vivo. Formaldehyde caused a dose-dependent inhibition of amiloride-sensitive short-circuit Na+ currents in H441 monolayers and of αβγ-ENaC channel activity in oocytes. α-ENaC protein was reduced, whereas phosphorylation of the extracellular regulated protein kinases 1 and 2 (ERK1/2) increased significantly post exposure. Moreover, both α- and γ-ENaC transcripts were down-regulated. Reactive oxygen species (ROS) was elevated significantly by formaldehyde in addition to markedly augmented membrane permeability of oocytes. These data suggest that formaldehyde contributes to edematous acute lung injury by reducing transalveolar Na+ transport, through decreased ENaC activity and enhanced membrane depolarization, and by elevating ROS production over long-term exposure.
Collapse
Affiliation(s)
- Yong Cui
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huiming Li
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Sihui Wu
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Deyi Du
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Yan Ding
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Hongguang Nie
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning, China
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|
13
|
Fang J, Li DH, Yu XQ, Lv MQ, Bai LZ, Du LZ, Zhou DX. Formaldehyde exposure inhibits the expression of mammalian target of rapamycin in rat testis. Toxicol Ind Health 2016; 32:1882-1890. [PMID: 26229097 DOI: 10.1177/0748233715592992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Formaldehyde (FA), a ubiquitous environmental pollutant, has long been suspected of causing adverse male reproductive effects. However, the molecular and cellular mechanisms underlying this phenomenon remain elusive. The overall aim of this study is to clarify the role of mammalian target of rapamycin (mTOR) in male reproductive injuries induced by FA exposure, by which we can further understand the molecular mechanism of FA male reproductive toxicity. In this study, immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction analysis were used to detect the expression of mTOR molecule in testicular tissues. We found that FA exposure inhibits the expression of mTOR in a dose-dependent manner. Combined with our earlier finding, we found the decreasing expression of mTOR in testicular tissue were consistent with the changes of testicular structure and autophagy levels. In summary, our data suggested that mTOR molecule might be involved in male reproductive injuries induced by FA exposure.
Collapse
Affiliation(s)
- Jing Fang
- 1 Department of Gynecology and Obstetrics, First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, China.,2 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,3 Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Dong-Hui Li
- 4 Department of Oncology, The People's Hospital of Shaanxi Province, Xi'an, China
| | - Xiao-Qing Yu
- 5 Department of Gynecology and Obstetrics, Kangfu Hospital of Shaanxi Province, Xi'an, China
| | - Mo-Qi Lv
- 2 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,3 Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Li-Zhi Bai
- 2 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,3 Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Liang-Zhi Du
- 2 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,3 Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Dang-Xia Zhou
- 2 Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,3 Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| |
Collapse
|
14
|
Beneficial effects of vitamin C treatment on pregnant rats exposed to formaldehyde: Reversal of immunosuppression in the offspring. Toxicol Appl Pharmacol 2016; 300:77-81. [DOI: 10.1016/j.taap.2016.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/25/2016] [Accepted: 03/21/2016] [Indexed: 01/15/2023]
|
15
|
Bakar E, Ulucam E, Cerkezkayabekir A. Investigation of the protective effects of proanthocyanidin and vitamin E against the toxic effect caused by formaldehyde on the liver tissue. ENVIRONMENTAL TOXICOLOGY 2015; 30:1406-1415. [PMID: 24930571 DOI: 10.1002/tox.22010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
We aimed to investigate of protective role of proanthocyanidin (PA) and vitamin E (vit E) against to toxic effect of formaldehyde (FA). Twenty-eight Wistar albino rats were divided into four groups: control group, rats treated with FA intraperitoneal (i.p.) (10 mg/kg), FA + vit E intragastric (i.g.) (30 mg/kg), and FA + PA i.g. (100 mg/kg). We assayed superoxide dismutase (SOD), glutathione peroxidase (Gpx), myeloperoxidase (MPO) activity and levels of malondialdehyde (MDA) and total sialic acid (TSA) in liver. Liver tissue was taken in order to morphological analysis and hepatocytes apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay immunostaining. SOD decreased in FA and increased in FA + vit E and FA + PA (p < 0.05). Gpx didn't change in FA and increased in FA + PA (p < 0.05). No significant variation between the groups was found in MPO activity. MDA increased only in FA and decreased in FA + vit E and FA+PA (p < 0.05). TSA didn't alter in FA and FA + vit E but decreased in FA + PA (p < 0.05). Degeneration in hepatocytes and endothelial cells, cytoplasm losses, vacuolization, picnotic nuclei, and mononuclear cell infiltration were identified in FA. Degeneration in chromatin material, membrane damage in mitochondria and losses in mitochondrial cristae in hepatocytes were observed in FA. We found that partially recovery in liver as a result of FA + vit E and FA + PA. We have concluded that long term use should be investigated for complete explanation of PA's protective effects on FA toxicity.
Collapse
Affiliation(s)
- Elvan Bakar
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Trakya University, Edirne, Turkey
| | - Enis Ulucam
- Faculty of Medicine, Department of Anatomy, Trakya University, Edirne, Turkey
| | | |
Collapse
|
16
|
Nishimiya H, Yamada M, Ueda T, Sakurai K. N-acetyl cysteine alleviates inflammatory reaction of oral epithelial cells to poly (methyl methacrylate) extract. Acta Odontol Scand 2015; 73:616-25. [PMID: 25915728 DOI: 10.3109/00016357.2015.1021834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The purpose of this in vitro study was to determine whether the cytotoxicity of self-curing polymethyl methacrylate (PMMA) dental resin to oral epithelial cells was eliminated by mixing the antioxidant amino acid derivative, N-acetyl cysteine (NAC) with the material. MATERIALS AND METHODS Rat and human oral epithelial cells cultured on polystyrene were incubated in culture medium with or without extract from self-curing PMMA dental resin, with or without pre-mixing with NAC. On day 1, the cultures were evaluated for cellular damage, intracellular formaldehyde invasion, cellular redox status and pro-inflammatory cytokine production. Formaldehyde content and the amount of released NAC in the extract were evaluated. RESULTS Rat epithelial cells cultured with PMMA extract showed marked increases in lactate dehydrogenase (LDH) release, intracellular formaldehyde and lysosomal levels and reductions in attached cell number and the amount of E-cadherin compared with those in the culture without the extract; these adverse biological effects were alleviated or prevented by pre-mixing the resin with NAC. In human oral epithelial cells cultured with PMMA extract, the addition of NAC into the resin prevented the intracellular elevation of reactive oxygen species and the reduction in cellular glutathione levels. Human cell cultures with the extract produced higher levels of various pro-inflammatory cytokines than cultures without the extract; this was prevented by mixing the resin with NAC. The extract from PMMA pre-mixed with NAC contained a lower concentration of formaldehyde and a substantial amount of antioxidants. CONCLUSION The cytotoxicity of self-curing PMMA dental resin to oral epithelial cells was eliminated by mixing the resin with NAC.
Collapse
Affiliation(s)
- Hiroko Nishimiya
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College , Tokyo , Japan
| | | | | | | |
Collapse
|
17
|
Han SP, Zhou DX, Lin P, Qin Z, An L, Zheng LR, Lei L. Formaldehyde exposure induces autophagy in testicular tissues of adult male rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:323-331. [PMID: 24142868 DOI: 10.1002/tox.21910] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 06/02/2023]
Abstract
Formaldehyde, a ubiquitous environmental pollutant, has long been suspected of causing adverse male reproductive effects. However, the molecular and cellular mechanisms underlying this phenomenon remain elusive. The overall aim of this study is to clarify the role of autophagy in male reproductive injuries induced by formaldehyde exposure, by which we can further understand the molecular mechanism of spermatogenesis and develop new targets for prevention and treatment of male infertility. In this study, electron microscopy, Western blot, and RT-PCR analysis were used to detect autophagy in testicular tissues. Moreover, testicular weights, histopathology, and morphometry were used to evaluate the reproductive injuries of formaldehyde exposure. We found that formaldehyde exposure-induced autophagy in testicular tissues was dose dependent. Increasing autophagosomes in spermatogenetic cells was observed by electron microscopy in formaldehyde exposure group. In addition, RT-PCR and Western blot analysis showed the transcription levels of the LC3-II, as well as the conversion from LC3-I to LC3-II, an indicator of autophagy, significantly increased in testicular tissue of formaldehyde exposure group in a dose dependent manner when compared with those in control group. Furthermore, the alterations of autophage were basically consistent with the changes in testicular weight and morphologic findings. In summary, formaldehyde exposure triggered autophagy, and autophagy may be a scathing factor responsible for male reproductive impairment induced by formaldehyde.
Collapse
Affiliation(s)
- Shui-Ping Han
- Pathology Department, Medical School, Xi'an Jiaotong University, Xi-an City, Shaanxi Province, 710061, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Bakar E, Ulucam E, Cerkezkayabekir A. Protective effects of proanthocyanidin and vitamin E against toxic effects of formaldehyde in kidney tissue. Biotech Histochem 2014; 90:69-78. [DOI: 10.3109/10520295.2014.954620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
Yu G, Chen Q, Liu X, Guo C, Du H, Sun Z. Formaldehyde induces bone marrow toxicity in mice by inhibiting peroxiredoxin 2 expression. Mol Med Rep 2014; 10:1915-20. [PMID: 25109304 DOI: 10.3892/mmr.2014.2473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/05/2014] [Indexed: 11/05/2022] Open
Abstract
Peroxiredoxin 2 (Prx2), a member of the peroxiredoxin family, regulates numerous cellular processes through intracellular oxidative signal transduction pathways. Formaldehyde (FA)-induced toxic damage involves reactive oxygen species (ROS) that trigger subsequent toxic effects and inflammatory responses. The present study aimed to investigate the role of Prx2 in the development of bone marrow toxicity caused by FA and the mechanism underlying FA toxicity. According to the results of the preliminary investigations, the mice were divided into four groups (n=6 per group). One group was exposed to ambient air and the other three groups were exposed to different concentrations of FA (20, 40, 80 mg/m3) for 15 days in the respective inhalation chambers, for 2 h a day. At the end of the 15-day experimental period, all of the mice were sacrificed and bone marrow cells were obtained. Cell samples were used for the determination of pathology, glutathione peroxidase (GSH-Px) activity and myeloperoxidase (MPO) activity and protein expression; as well as for the determination of DNA damage and Prx2 expression. The results revealed an evident pathological change in the FA-treated groups, as compared with the controls. In the FA treatment group GSH-Px activity was decreased, while MPO activity and protein expression were increased. The rate of micronucleus and DNA damage in the FA-treated groups was also increased and was significantly different compared with the control, while the expression of Prx2 was decreased. The present study suggested that at certain concentrations, FA had a toxic effect on bone marrow cells and that changes in the Prx2 expression are involved in this process.
Collapse
Affiliation(s)
- Guangyan Yu
- Department of Preventative Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qiang Chen
- Department of Preventative Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaomei Liu
- Department of Preventative Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Caixia Guo
- Department of Hygenic Toxicology, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Haiying Du
- Department of Preventative Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhiwei Sun
- Department of Preventative Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
20
|
Integrated analysis of microRNA and mRNA expression profiles highlights alterations in modulation of the apoptosis-related pathway under nonanal exposure. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-013-0044-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
ONTD induces apoptosis of human hepatoma Bel-7402 cells via a MAPK-dependent mitochondrial pathway and the depletion of intracellular glutathione. Int J Biochem Cell Biol 2013; 45:2632-42. [DOI: 10.1016/j.biocel.2013.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 01/27/2023]
|
22
|
Tan X, Song Z. Picomole-level Formaldehyde Determination in Gaseous and Beer Samples Using Flow Injection Chemiluminescence Analysis. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Lim SK, Choi H, Park MJ, Kim DI, Kim JC, Kim GY, Jeong SY, Rodionov RN, Han HJ, Yoon KC, Park SH. The ER stress-mediated decrease in DDAH1 expression is involved in formaldehyde-induced apoptosis in lung epithelial cells. Food Chem Toxicol 2013; 62:763-9. [PMID: 24140967 DOI: 10.1016/j.fct.2013.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
Formaldehyde (FA) is toxic to the respiratory system, and nitric oxide (NO) dysfunction stimulates the onset of respiratory diseases. The involvement of dimethylarginine dimethylaminohydrolase (DDAH), the l-arginine analogue asymmetric dimethylarginine (ADMA) degrading enzyme, in FA-induced cell death in lung epithelial cells has not been investigated. In this study, we assessed the effect of FA on DDAH expression and endoplasmic reticulum (ER) stress in A549 cells. We also investigated the preventive effect of DDAH overexpression on ER stress and apoptosis in FA-induced cell death. FA decreased viability in A549 cells and decreased DDAH1 and DDAH2 mRNA and protein expression in a time-dependent manner (>4h). This coincided with increased phosphorylation of the ER stress proteins IRE1α, PERK, and eIF-2α, as well as increased expression of pro-apoptotic proteins such as Bax, C/EPB homologous protein (CHOP), cleaved PARP, and cleaved caspase-3, but decreased expression of the anti-apoptotic protein Bcl-2. ADMA treatment mimicked the effect of FA. Overexpression of DDAH1, but not DDAH2, prevented FA-induced decreases in cell viability, phosphorylation of IRE1α, PERK, and eIF2α, and expression of CHOP. Effects of DDAH1 overexpression, but not DDAH2 overexpression, restored FA-induced increases in Bax, CHOP, cleaved PARP, cleaved caspase-3 and decreases in Bcl-2. In conclusion, FA induces apoptosis of lung epithelial cells via a decrease of DDAH1 through ER stress.
Collapse
Affiliation(s)
- Seul Ki Lim
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain. Neurosci Bull 2012; 28:165-72. [PMID: 22466127 DOI: 10.1007/s12264-012-1211-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Our previous study showed that tumor tissue-derived formaldehyde at low concentrations plays an important role in bone cancer pain through activating transient receptor potential vanilloid subfamily member 1 (TRPV1). The present study further explored whether this tumor tissue-derived endogenous formaldehyde regulates TRPV1 expression in a rat model of bone cancer pain, and if so, what the possible signal pathways are during the development of this type of pain. METHODS A rat model of bone cancer pain was established by injecting living MRMT-1 tumor cells into the tibia. The formaldehyde levels were determined by high performance liquid chromatography, and the expression of TRPV1 was examined with Western blot and RT-PCR. In primary cultured dorsal root ganglion (DRG) neurons, the expression of TRPV1 was assessed after treatment with 100 µmol/L formaldehyde with or without pre-addition of PD98059 [an inhibitor for extracellular signal-regulated kinase], SB203580 (a p38 inhibitor), SP600125 [an inhibitor for c-Jun N-terminal kinase], BIM [a protein kinase C (PKC) inhibitor] or LY294002 [a phosphatidylinositol 3-kinase (PI3K) inhibitor]. RESULTS In the rat model of bone cancer pain, formaldehyde concentration increased in blood plasma, bone marrow and the spinal cord. TRPV1 protein expression was also increased in the DRG. In primary cultured DRG neurons, 100 μmol/L formaldehyde significantly increased the TRPV1 expression level. Pre-incubation with PD98059, SB203580, SP600125 or LY294002, but not BIM, inhibited the formaldehyde-induced increase of TRPV1 expression. CONCLUSION Formaldehyde at a very low concentration up-regulates TRPV1 expression through mitogen-activated protein kinase and PI3K, but not PKC, signaling pathways. These results further support our previous finding that TRPV1 in peripheral afferents plays a role in bone cancer pain.
Collapse
|
25
|
Shi YQ, Chen X, Dai J, Jiang ZF, Li N, Zhang BY, Zhang ZB. Selenium pretreatment attenuates formaldehyde-induced genotoxicity in A549 cell lines. Toxicol Ind Health 2012; 30:901-9. [DOI: 10.1177/0748233712466129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Formaldehyde is a major industrial chemical and has been extensively used in the manufacture of synthetic resins and chemicals. Numerous studies indicate that formaldehyde can induce various genotoxic effects in vitro and in vivo. A recent study indicated that formaldehyde impaired antioxidant cellular defences and enhanced lipid peroxidation. Selenium is an important antioxidant. We hypothesized that reactive oxygen species (ROS) and lipid peroxidation are involved in formaldehyde-induced genotoxicity in human lung cancer cell line, A549 cell line. To test the hypothesis, we investigated the effects of selenium on formaldehyde-induced genotoxicity in A549 cell lines. The results indicated that exposure to formaldehyde showed the induction of DNA–protein cross-links (DPCs). Formaldehyde significantly increased the malondialdehyde levels and decreased the activities of superoxide dismutase and glutathione peroxidase. In addition, the activations of necrosis factor-κB (NF-κB) and activator protein 1 (AP-1) were induced by the formaldehyde treatment. The pretreatment with selenium counteracted the formaldehyde-induced oxidative stress, ameliorated DPCs and attenuated the activation of NF-κB and AP-1 in A549 cell lines. All the results suggested that the pretreatment with selenium attenuated the formaldehyde-induced genotoxicity through its ROS scavenging and anti-DPCs effects in A549 cell lines.
Collapse
Affiliation(s)
- Yu-Qin Shi
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xin Chen
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Juan Dai
- Wuhan Center for Disease Prevention and Control, Wuhan, Hubei, People’s Republic of China
| | - Zhong-Fa Jiang
- Hubei Center for Disease Prevention and Control, Wuhan, Hubei, People’s Republic of China
| | - Ning Li
- Hubei Center for Disease Prevention and Control, Wuhan, Hubei, People’s Republic of China
| | - Ben-Yan Zhang
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Zhi-Bing Zhang
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
26
|
Abstract
OBJECTIVE To investigate whether paternal occupational exposure to formaldehyde (FA) affects the reproductive outcomes. METHODS Data were collected from 302 male workers occupationally exposed to FA and 305 referent controls through interview questionnaires. Formaldehyde exposure level was measured and calculated for every subject. Different reproductive outcomes were compared for two groups by logistic regression analyses. RESULTS A significant increased risk of prolonged time to pregnancy (P = 0.034; odds ratio, 2.828; 95% confidence interval, 1.081 to 7.406) and significant elevated risk of spontaneous abortion (P = 0.021; odds ratio, 1.916; 95% confidence interval, 1.103 to 3.329) were observed in wives of male workers occupationally exposed to FA after correction for confounding factors. Moreover, reproductive toxicity due to FA exposure is dose dependent. CONCLUSIONS This epidemiological study adds some evidence for the hypothesis that paternal FA occupation exposure has adverse effects on reproductive outcomes.
Collapse
|
27
|
Zhang BY, Shi YQ, Chen X, Dai J, Jiang ZF, Li N, Zhang ZB. Protective effect of curcumin against formaldehyde-induced genotoxicity in A549 Cell Lines. J Appl Toxicol 2012; 33:1468-73. [PMID: 23059809 DOI: 10.1002/jat.2814] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 11/09/2022]
Abstract
Formaldehyde is ubiquitous in the environment. It is known to be a genotoxic substance. We hypothesized that reactive oxygen species (ROS) and lipid peroxidation are involved in formaldehyde-induced genotoxicity in human lung cancer cell lines A549. To test this hypothesis, we investigated the effects of antioxidant on formaldehyde-induced genotoxicity in A549 Cell Lines. Formaldehyde exposure caused induction of DNA-protein cross-links (DPCs). Curcumin is an important antioxidant. Formaldehyde significantly increased malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity. In addition, the activation of NF-κB and AP-1 were induced by formaldehyde treatment. Pretreatment with curcumin counteracted formaldehyde-induced oxidative stress, ameliorated DPCs and attenuated activation of NF-κB and AP-1 in A549 Cell Lines. These results, taken together, suggest that formaldehyde induced genotoxicity through its ROS and lipid peroxidase activity and caused DPCs effects in A549 cells.
Collapse
Affiliation(s)
- Ben-Yan Zhang
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Looso M, Michel CS, Konzer A, Bruckskotten M, Borchardt T, Krüger M, Braun T. Spiked-in Pulsed in Vivo Labeling Identifies a New Member of the CCN Family in Regenerating Newt Hearts. J Proteome Res 2012; 11:4693-704. [DOI: 10.1021/pr300521p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mario Looso
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| | - Christian S. Michel
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| | - Anne Konzer
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| | - Marc Bruckskotten
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| | - Thilo Borchardt
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| | - Marcus Krüger
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| |
Collapse
|
29
|
Fitzpatrick AM, Jones DP, Brown LAS. Glutathione redox control of asthma: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012; 17:375-408. [PMID: 22304503 PMCID: PMC3353819 DOI: 10.1089/ars.2011.4198] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/22/2012] [Accepted: 01/22/2012] [Indexed: 12/11/2022]
Abstract
Asthma is a chronic inflammatory disorder of the airways associated with airway hyper-responsiveness and airflow limitation in response to specific triggers. Whereas inflammation is important for tissue regeneration and wound healing, the profound and sustained inflammatory response associated with asthma may result in airway remodeling that involves smooth muscle hypertrophy, epithelial goblet-cell hyperplasia, and permanent deposition of airway extracellular matrix proteins. Although the specific mechanisms responsible for asthma are still being unraveled, free radicals such as reactive oxygen species and reactive nitrogen species are important mediators of airway tissue damage that are increased in subjects with asthma. There is also a growing body of literature implicating disturbances in oxidation/reduction (redox) reactions and impaired antioxidant defenses as a risk factor for asthma development and asthma severity. Ultimately, these redox-related perturbations result in a vicious cycle of airway inflammation and injury that is not always amenable to current asthma therapy, particularly in cases of severe asthma. This review will discuss disruptions of redox signaling and control in asthma with a focus on the thiol, glutathione, and reduced (thiol) form (GSH). First, GSH synthesis, GSH distribution, and GSH function and homeostasis are discussed. We then review the literature related to GSH redox balance in health and asthma, with an emphasis on human studies. Finally, therapeutic opportunities to restore the GSH redox balance in subjects with asthma are discussed.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
30
|
Luo FC, Zhou J, Lv T, Qi L, Wang SD, Nakamura H, Yodoi J, Bai J. Induction of endoplasmic reticulum stress and the modulation of thioredoxin-1 in formaldehyde-induced neurotoxicity. Neurotoxicology 2012; 33:290-8. [DOI: 10.1016/j.neuro.2012.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 01/22/2012] [Accepted: 02/02/2012] [Indexed: 01/26/2023]
|
31
|
Hydrogen sulfide prevents formaldehyde-induced neurotoxicity to PC12 cells by attenuation of mitochondrial dysfunction and pro-apoptotic potential. Neurochem Int 2012; 61:16-24. [PMID: 22542418 DOI: 10.1016/j.neuint.2012.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 04/08/2012] [Accepted: 04/11/2012] [Indexed: 11/23/2022]
Abstract
Hydrogen sulfide (H(2)S) has been shown to act as a neuroprotectant and antioxidant. Numerous studies have demonstrated that exposure to formaldehyde (FA) causes neuronal damage and that oxidative stress is one of the most critical effects of FA exposure. Accumulation of FA is involved in the pathogenesis of Alzheimer's disease (AD). The aim of present study is to explore the inhibitory effects of H(2)S on FA-induced cytotoxicity and apoptosis and the molecular mechanisms underlying in PC12 cells. We show that sodium hydrosulfide (NaHS), a H(2)S donor, protects PC12 cells against FA-mediated cytotoxicity and apoptosis and that NaHS preserves the function of mitochondria by preventing FA-induced loss of mitochondrial membrane potential and release of cytochrome c in PC12 cells. Furthermore, NaHS blocks FA-exerted accumulation of intracellular reactive oxygen species (ROS), down-regulation of Bcl-2 expression, and up-regulation of Bax expression. These results indicate that H(2)S protects neuronal cells against neurotoxicity of FA by preserving mitochondrial function through attenuation of ROS accumulation, up-regulation of Bcl-2 level, and down-regulation of Bax expression. Our study suggests a promising future of H(2)S-based preventions and therapies for neuronal damage after FA exposure.
Collapse
|
32
|
Chae HZ, Oubrahim H, Park JW, Rhee SG, Chock PB. Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid Redox Signal 2012; 16:506-23. [PMID: 22114845 PMCID: PMC3270059 DOI: 10.1089/ars.2011.4260] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SIGNIFICANCE Reversible protein glutathionylation plays an important role in cellular regulation, signaling transduction, and antioxidant defense. This redox-sensitive mechanism is involved in regulating the functions of peroxiredoxins (Prxs), a family of ubiquitously expressed thiol-specific peroxidase enzymes. Glutathionylation of certain Prxs at their active-site cysteines not only provides reducing equivalents to support their peroxidase activity but also protects Prxs from irreversible hyperoxidation. Typical 2-Cys Prx also functions as a molecular chaperone when it exists as a decamer and/or higher molecular weight complexes. The hyperoxidized sulfinic derivative of 2-Cys Prx is reactivated by sulfiredoxin (Srx). In this review, the roles of glutathionylation in the regulation of Prxs are discussed with respect to their molecular structure and functions as antioxidants, molecular chaperones, and signal modulators. RECENT ADVANCES Recent findings reveal that glutathionylation regulates the quaternary structure of Prx. Glutathionylation of Prx I at Cys(83) converts the decameric Prx to its dimers with the loss of chaperone activity. The findings that dimer/oligomer structure specific Prx I binding proteins, e.g., phosphatase and tensin homolog (PTEN) and mammalian Ste20-like kinase-1 (MST1), regulate cell cycle and apoptosis, respectively, suggest a possible link between glutathionylation and those signaling pathways. CRITICAL ISSUES Knowing how glutathionylation affects the interaction between Prx I and its nearly 20 known interacting proteins, e.g., PTEN and MST1 kinase, would reveal new insights on the physiological functions of Prx. FUTURE DIRECTIONS In vitro studies reveal that Prx oligomerization is linked to its functional changes. However, in vivo dynamics, including the effect by glutathionylation, and its physiological significance remain to be investigated.
Collapse
Affiliation(s)
- Ho Zoon Chae
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea
| | | | | | | | | |
Collapse
|
33
|
Lecureur V, Arzel M, Ameziane S, Houlbert N, Le Vee M, Jouneau S, Fardel O. MAPK- and PKC/CREB-dependent induction of interleukin-11 by the environmental contaminant formaldehyde in human bronchial epithelial cells. Toxicology 2012; 292:13-22. [DOI: 10.1016/j.tox.2011.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/10/2011] [Accepted: 11/17/2011] [Indexed: 01/05/2023]
|
34
|
Antinociceptive and anti-inflammatory activities of nicotinamide and its isomers in different experimental models. Pharmacol Biochem Behav 2011; 99:782-8. [DOI: 10.1016/j.pbb.2011.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 12/31/2022]
|
35
|
Tang XQ, Ren YK, Chen RQ, Zhuang YY, Fang HR, Xu JH, Wang CY, Hu B. Formaldehyde induces neurotoxicity to PC12 cells involving inhibition of paraoxonase-1 expression and activity. Clin Exp Pharmacol Physiol 2011; 38:208-14. [PMID: 21261675 DOI: 10.1111/j.1440-1681.2011.05485.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1. Formaldehyde (FA) has been found to cause toxicity to neurons. However, its neurotoxic mechanisms have not yet been clarified. Increasing evidence has shown that oxidative damage is one of the most critical effects of formaldehyde exposure. Paraoxonase-1 (PON-1) is a pivotal endogenous anti-oxidant. Thus, we hypothesized that FA-mediated downregulation of PON1 is associated with its neurotoxicity. 2. In the present work, we used PC12 cells to study the neurotoxicity of FA and explore whether PON-1 is implicated in FA-induced neurotoxicity. 3. We found that FA has potent cytotoxic and apoptotic effects on PC12 cells. FA induces an accumulation of intracellular reactive oxygen species along with downregulation of Bcl-2 expression, as well as increased cytochrome c release. FA significantly suppressed the expression and activity of PON-1 in PC12 cells. Furthermore, H(2)S, an endogenous anti-oxidant gas, antagonizes FA-induced cytotoxicity as well as 2-hydroxyquinoline, a specific inhibitor of PON-1, which also induces cytotoxicity to PC12 cells. 4. The results of the present study provide, for the first time, evidence that the inhibitory effect on PON-1 expression and activity is involved in the neurotoxicity of FA, and suggest a promising role of PON-1 as a novel therapeutic strategy for FA-mediated toxicity.
Collapse
Affiliation(s)
- Xiao-Qing Tang
- Department of Physiology, Medical College, University of South China, Hengyang, Hunan, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dangxia Zhou, Jing Zhang, Haixu Wang. Assessment of the potential reproductive toxicity of long-term exposure of adult male rats to low-dose formaldehyde. Toxicol Ind Health 2011; 27:591-8. [DOI: 10.1177/0748233710393401] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Formaldehyde (FA), a ubiquitous environmental pollutant, is extensively used in hospitals, laboratories and many industrial settings. Previous studies have showed that short-term, high-dose FA exposure is toxic to male reproduction of mammals. In this paper, we evaluated the male reproductive toxicity of long-term, low-dose formaldehyde exposure in rats, and explored the potential mechanisms. A total of 30 Sprague-Dawley male rats were randomly allotted to three groups, rats were exposed to FA at a dose of 0 (control), 0.5, 2.46 mg/m3 respectively by inhalation for consecutive 60 days. The results indicated that the reproductive toxicity of FA is dose-dependent. Testicular, epididymal structure and function in rats of 0.5 mg/m3 FA exposure group showed no obvious difference compared with those in control group. However, sperm quantity and quality, testicular seminiferous tubular diameter, the activities of superoxide dismutase and glutathione peroxidase was significantly decreased whereas the level of malondialdehyde was significantly increased in rats of 2.46 mg/m3 FA exposure group compared with those in control group. Moreover, histopathological results showed atrophy of seminiferous tubules, decreases of spermatogenic cells and the lumina were oligozoospermic in testes of 2.46 mg/m3 FA exposure rats. In conclusion, the level of 0.5 mg/m 3 can be considered as a safe level for FA exposure, but long-term FA exposure at a dose of 2.46 mg/m3 has a harmful effect on male reproduction by inducing oxidative stress in male rats.
Collapse
Affiliation(s)
- Dangxia Zhou
- Pathology Department, Medical School, Xi'an Jiaotong University, Xi'an, China, , Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Jing Zhang
- Pathology Department, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Haixu Wang
- Research Center of Reproductive Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
37
|
Kastner PE, Casset A, Pons F. Formaldehyde interferes with airway epithelium integrity and functions in a dose- and time-dependent manner. Toxicol Lett 2010; 200:109-16. [PMID: 21087659 DOI: 10.1016/j.toxlet.2010.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 12/30/2022]
Abstract
Formaldehyde (HCHO) is a common indoor air pollutant. To assess its potential role and mechanism of action in asthma, we exposed the bronchial epithelial cell lines Calu-3 and 16HBE to HCHO (70-7000 μM) according to two exposure schedules (30 min and 24 h), before measuring cell viability, necrosis and apoptosis, reactive oxygen species production, cytokine release, as well as trans-epithelial electrical resistance (TEER) of cell monolayers. Whereas exposure to HCHO for 30 min had a limited effect on cell viability, exposure for 24h to 1400-7000 μM HCHO induced a pronounced dose-dependent cell death. The important decrease in cell viability observed after 24h exposure to the highest concentrations of HCHO (1400-7000 μM) was accompanied by important LDH release and ROS production, whereas a 4h exposure to lower HCHO concentrations (350 μM) induced cell apoptosis. Also, exposure to HCHO for 30 min dose-dependently inhibited basal and lipopolysaccharide-induced interleukin-6 (IL-6) and IL-8 production by bronchial epithelial cells. As well, HCHO triggered a dose- and time-dependent decrease in TEER of Calu-3 cell monolayers. The present work demonstrates that HCHO interferes with airway epithelium integrity and functions, and may thus modulate the onset and the severity of asthma. However, importantly, conditions of exposure to HCHO, e.g. level and duration, are determinant in the nature of the effects triggered by the pollutant.
Collapse
Affiliation(s)
- Pierre Edouard Kastner
- Laboratoire de Conception et Application de Molécules Boactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, BP 60024, 67401 Illkirch Cedex, France
| | | | | |
Collapse
|