1
|
Effect of preconditioning on propofol-induced neurotoxicity during the developmental period. PLoS One 2022; 17:e0273219. [PMID: 35984772 PMCID: PMC9390907 DOI: 10.1371/journal.pone.0273219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
At therapeutic concentrations, propofol (PPF), an anesthetic agent, significantly elevates intracellular calcium concentration ([Ca2 +]i) and induces neural death during the developmental period. Preconditioning enables specialized tissues to tolerate major insults better compared with tissues that have already been exposed to sublethal insults. Here, we investigated whether the neurotoxicity induced by clinical concentrations of PPF could be alleviated by prior exposure to sublethal amounts of PPF. Cortical neurons from embryonic day (E) 17 Wistar rat fetuses were cultured in vitro, and on day in vitro (DIV) 2, the cells were preconditioned by exposure to PPF (PPF-PC) at either 100 nM or 1 μM for 24 h. For morphological observations, cells were exposed to clinical concentrations of PPF (10 μM or 100 μM) for 24 h and the survival ratio (SR) was calculated. Calcium imaging revealed significant PPF-induced [Ca2+]i elevation in cells on DIV 4 regardless of PPF-PC. Additionally, PPF-PC did not alleviate neural cell death induced by PPF under any condition. Our findings indicate that PPF-PC does not alleviate PPF-induced neurotoxicity during the developmental period.
Collapse
|
2
|
Lei S, Lu P, Lu Y, Zheng J, Li W, Wang N, Zhang H, Li R, Wang K, Wen J, Wei H, Zhang Y, Qiu Z, Xu J, Lv H, Chen X, Liu Y, Zhang P. Dexmedetomidine Alleviates Neurogenesis Damage Following Neonatal Midazolam Exposure in Rats through JNK and P38 MAPK Pathways. ACS Chem Neurosci 2020; 11:579-591. [PMID: 31999428 DOI: 10.1021/acschemneuro.9b00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Midazolam, a widely used anesthetic, inhibits proliferation of neural stem cells (NSCs) and induces neuroapoptosis in neonates. Dexmedetomidine, an effective auxiliary medicine in clinical anesthesia, protects the developing brain against volatile anesthetic-induced neuroapoptosis. Whether dexmedetomidine protects against neurogenesis damage induced by midazolam remains unknown. This study aims to clarify the protective effect of dexmedetomidine on midazolam-induced neurogenesis damage and explore its potential mechanism. Postnatal 7-day-old Sprague-Dawley (SD) rats and cultured NSCs were treated with either normal saline, midazolam, or dexmedetomidine combined with midazolam. The rats were sacrificed at 1, 3, and 7 days after treatment. Cell proliferation was assessed by 5-bromodeoxyurdine (BrdU) incorporation. Cell viability was determined using MTT assay. Cell differentiation and apoptosis were detected by immunofluorescent staining and terminal dUTP nick-end labeling (TUNEL), respectively. The protein levels of p-JNK, p-P38, and cleaved caspase-3 were quantified using Western blotting. Midazolam decreased cell proliferation and increased cell apoptosis in the subventricular zone (SVZ), the subgranular zone (SGZ) of the hippocampus, and cultured NSCs. Moreover, midazolam decreased cell viability and increased the expression of p-JNK and p-P38 in cultured NSCs. Co-treatment with dexmedetomidine attenuated midazolam-induced changes in cell proliferation, viability, apoptosis, and protein expression of p-JNK and p-P38 in cultured NSCs. Midazolam and dexmedetomidine did not affect the differentiation of the cultured NSCs. These results indicate that dexmedetomidine alleviated midazolam-induced neurogenesis damage via JNK and P38 MAPK pathways.
Collapse
Affiliation(s)
- Shan Lei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Pan Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yang Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Juan Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Weisong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Ning Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Hong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jieqiong Wen
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yuanyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhengguo Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Jing Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Haixia Lv
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi’an Jiaotong University, Xi’an 710016, China
| | - Xinlin Chen
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi’an Jiaotong University, Xi’an 710016, China
| | - Yong Liu
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi’an Jiaotong University, Xi’an 710016, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
3
|
Raviraj D, Engelhardt T, Hansen TG. Anaesthesia for the Growing Brain. Curr Pharm Des 2019; 25:2165-2170. [DOI: 10.2174/1381612825666190702151030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/20/2019] [Indexed: 11/22/2022]
Abstract
Despite the long history of paediatric anaesthesia, there is still much to be discovered regarding how
exposure to anaesthesia affects the developing brain. Given that commonly used anaesthetic agents are thought to
exert their effect via N-Methyl-D-Aspartate (NMDA) and gamma-aminobutyric acid A (GABAA) receptors, it is
biologically plausible that exposure during periods of vulnerable brain development may affect long term outcome.
There are numerous animal studies which suggest lasting neurological changes. However, whether this risk
also applies to humans is unclear given the varying physiological development of different species and humans.
Human studies are emerging and ongoing and their results are producing conflicting data. The purpose of this
review is to summarize the currently available evidence and consider how this may be used to minimize harm to
the paediatric population undergoing anaesthesia.
Collapse
Affiliation(s)
- Divya Raviraj
- Royal Aberdeen Children's Hospital, School of Medicine and Dentistry University of Aberdeen, Scotland, United Kingdom
| | - Thomas Engelhardt
- Royal Aberdeen Children's Hospital, School of Medicine and Dentistry University of Aberdeen, Scotland, United Kingdom
| | - Tom G. Hansen
- Department of Anaesthesia & Intensive Care - Paediatric Section, Odense University Hospital, & University of Southern Denmark, Clinical Institute - Anaesthesiology, Odense, Denmark
| |
Collapse
|
4
|
Early Developmental Exposure to Repetitive Long Duration of Midazolam Sedation Causes Behavioral and Synaptic Alterations in a Rodent Model of Neurodevelopment. J Neurosurg Anesthesiol 2019; 31:151-162. [PMID: 30767941 DOI: 10.1097/ana.0000000000000541] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is a large body of preclinical literature suggesting that exposure to general anesthetic agents during early life may have harmful effects on brain development. Patients in intensive care settings are often treated for prolonged periods with sedative medications, many of which have mechanisms of action that are similar to general anesthetics. Using in vivo studies of the mouse hippocampus and an in vitro rat cortical neuron model we asked whether there is evidence that repeated, long duration exposure to midazolam, a commonly used sedative in pediatric intensive care practice, has the potential to cause lasting harm to the developing brain. We found that mice that underwent midazolam sedation in early postnatal life exhibited deficits in the performance on Y-maze and fear-conditioning testing at young adult ages. Labeling with a nucleoside analog revealed a reduction in the rate of adult neurogenesis in the hippocampal dentate gyrus, a brain region that has been shown to be vulnerable to developmental anesthetic neurotoxicity. In addition, using immunohistochemistry for synaptic markers we found that the number of presynaptic terminals in the dentate gyrus was reduced, while the number of excitatory postsynaptic terminals was increased. These findings were replicated in a midazolam sedation exposure model in neurons in culture. We conclude that repeated, long duration exposure to midazolam during early development has the potential to result in persistent alterations in the structure and function of the brain.
Collapse
|
5
|
Sinner B, Steiner J, Malsy M, Graf BM, Bundscherer A. The positive allosteric modulation of GABA A receptors mRNA in immature hippocampal rat neurons by midazolam affects receptor expression and induces apoptosis. Int J Neurosci 2019; 129:986-994. [PMID: 30957600 DOI: 10.1080/00207454.2019.1604524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Numerous experimental studies show that anesthetics are potentially toxic to the immature brain. Even though benzodiazepines are widely used in pediatric anesthesia and intensive care medicine, only a few studies examine the effects of these drugs on immature neurons. Methods: Hippocampal neuronal cell cultures of embryonic Wistar rats (15 days in culture) were incubated with midazolam 100 or 300 nM for either 30 min or 4 h. The time course of the mRNA expression of the glutamate receptors subunits NR1, NR2A and NR2B of the NMDA receptor, the GluA-1 and A-2 subunits of the AMPA receptor as well as the alpha 1 subunit of the GABAA receptor were examined by PCR. Apoptosis was detected using Western blot analysis for BAX, Bcl-2 and Caspase-3. Results: Midazolam at 100 and 300 nM applied for 30 min and 100 nM for 4 h affected glutamate receptor and GABAA receptor subunit expression. However, these effects were reversible within 72 h following washout. When 300 nM midazolam was applied for 4 h a significant increase in the NR 1 and NR 2A mRNA subunit expression could be detected. The increase in NR 2B receptor subunit expression as well as the GluA1 subunit expression was not reversible within 72 h following washout. This increase in mRNA glutamate receptor subunit expression was associated with a significant increase in neuronal apoptosis. Conclusion: In immature neurons midazolam altered GABA and glutamate mRNA receptor subunit expression. Prolonged increase in midazolam-induced glutamate receptor expression was associated with apoptosis.
Collapse
Affiliation(s)
- Barbara Sinner
- Department of Anesthesiology, University Hospital Regensburg , Regensburg , Germany
| | - Julia Steiner
- Department of Anesthesiology, University Hospital Regensburg , Regensburg , Germany
| | - Manuela Malsy
- Department of Anesthesiology, University Hospital Regensburg , Regensburg , Germany
| | - Bernhard M Graf
- Department of Anesthesiology, University Hospital Regensburg , Regensburg , Germany
| | - Anika Bundscherer
- Department of Anesthesiology, University Hospital Regensburg , Regensburg , Germany
| |
Collapse
|
6
|
Shibuta S, Morita T, Kosaka J. Intravenous anesthetic-induced calcium dysregulation and neurotoxic shift with age during development in primary cultured neurons. Neurotoxicology 2018; 69:320-329. [PMID: 30107222 DOI: 10.1016/j.neuro.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/29/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
Anesthetic-induced neurotoxicity in the developing brain is a concern. This neurotoxicity is closely related to anesthetic exposure time, dose, and developmental stages. Using calcium imaging and morphological examinations in vitro, we sought to determine whether intravenous anesthetic-induced direct neurotoxicity varies according to different stages of the days in vitro (DIV) of neurons in primary culture. Cortical neurons from E17 Wistar rats were prepared. On DIV 3, 7, and 13, cells were exposed to the intravenous anesthetics thiopental sodium (TPS), midazolam (MDZ), or propofol (PPF), to investigate direct neurotoxicity using morphological experiments. Furthermore, using calcium imaging, the anesthetic-induced intracellular calcium concentration ([Ca2+]i) elevation was monitored in cells on DIV 4, 8, and 13. All anesthetics elicited significant [Ca2+]i increases on DIV 4. While TPS (100 μM) and MDZ (10 μM) did not alter neuronal death, PPF (10 μM and 100 μM) decreased the survival ratio (SR) significantly. On DIV 8, TPS and MDZ did not elicit [Ca2+]i elevation or SR decrease, while PPF still induced [Ca2+]i elevation (both at 10 μM and 100 μM) and significant SR decrease at 100 μM (0.76 ± 0.03; P < 0.05), but not at 10 μM (0.91 ± 0.03). Such anesthetic-induced [Ca2+]i elevation and SR decrease were not observed on DIV 13-14 for any of the anesthetic drugs. Our study indicates that more caution may be exercised when using PPF compared to TPS or MDZ during development.
Collapse
Affiliation(s)
- Satoshi Shibuta
- Department of Anesthesiology and Intensive Care Medicine, International University of Health and Welfare, Narita, Chiba, Japan; Department of Anesthesiology and Intensive Care Medicine, Osaka University, Suita, Osaka, Japan.
| | - Tomotaka Morita
- Department of Anesthesiology and Intensive Care Medicine, Osaka University, Suita, Osaka, Japan.
| | - Jun Kosaka
- Department of Anatomy, International University of Health and Welfare, Narita, Chiba, Japan.
| |
Collapse
|
7
|
Molecular Mechanisms of Anesthetic Neurotoxicity: A Review of the Current Literature. J Neurosurg Anesthesiol 2017; 28:361-372. [PMID: 27564556 DOI: 10.1097/ana.0000000000000348] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Data from epidemiologic studies and animal models have raised a concern that exposure to anesthetic agents during early postnatal life may cause lasting impairments in cognitive function. It is hypothesized that this is due to disruptions in brain development, but the mechanism underlying this toxic effect remains unknown. Ongoing research, particularly in rodents, has begun to address this question. In this review we examine currently postulated molecular mechanisms of anesthetic toxicity in the developing brain, including effects on cell death pathways, growth factor signaling systems, NMDA and GABA receptors, mitochondria, and epigenetic factors. The level of evidence for each putative mechanism is critically evaluated, and we attempt to draw connections between them where it is possible to do so. Although there are many promising avenues of research, at this time no consensus can be reached as to a definitive mechanism of injury.
Collapse
|
8
|
Insights into the Roles of Midazolam in Cancer Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3826506. [PMID: 28706559 PMCID: PMC5494572 DOI: 10.1155/2017/3826506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 12/24/2022]
Abstract
With its high worldwide mortality and morbidity, cancer has gained increasing attention and novel anticancer drugs have become the focus for cancer research. Recently, studies have shown that most anesthetic agents can influence the activity of tumor cells. Midazolam is a γ-aminobutyric acid A (GABAA) receptor agonist, used widely for preoperative sedation and as an adjuvant during neuraxial blockade. Some studies have indicated the potential for midazolam as a novel therapeutic cancer drug; however, the mechanism by which midazolam affects cancer cells needs to be clarified. This systematic review aims to summarize the progress in assessing the molecular mechanism of midazolam as an anticancer agent.
Collapse
|
9
|
Shibuta S, Morita T, Kosaka J, Kamibayashi T, Fujino Y. Only extra-high dose of ketamine affects l-glutamate-induced intracellular Ca2+ elevation and neurotoxicity. Neurosci Res 2015; 98:9-16. [DOI: 10.1016/j.neures.2015.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 11/25/2022]
|
10
|
Sinner B, Friedrich O, Lindner R, Bundscherer A, Graf BM. Long-term NMDA receptor inhibition affects NMDA receptor expression and alters glutamatergic activity in developing rat hippocampal neurons. Toxicology 2015; 333:147-155. [DOI: 10.1016/j.tox.2015.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/10/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
|
11
|
Dittmar MS, Petermichl W, Lindner R, Sinner B, Graf BM, Schlachetzki F, Gruber M. In Vitro Induction of Endothelial Apoptosis of the Post-Hypoxic Blood-Brain Barrier by Isoflurane but Not by Sevoflurane and Midazolam. PLoS One 2015; 10:e0130408. [PMID: 26091107 PMCID: PMC4475016 DOI: 10.1371/journal.pone.0130408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/20/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The effects of anesthetics on the injured brain continue to be the subject of controversial discussion. Since isoflurane has recently been shown to induce apoptosis of cerebral endothelial cells, this study compared different anesthetic compounds regarding their potential to induce cerebro-vascular apoptosis. METHODS The in vitro model of the blood-brain barrier used in this study consisted of astrocyte-conditioned human umbilical vein endothelial cells (AC-HUVEC) has been used. After 24 h of deep hypoxia and reoxygenation or control treatment, AC-HUVEC were exposed to 0, 0.5, 1.0, or 2.0 times the minimum alveolar concentration of isoflurane or sevoflurane, or 0, 75, 150, or 300 nM of midazolam for 2 h. After 24 h, AC-HUVEC were harvested, and the degree of apoptosis was assessed by means of Western blots for the Bax and Bcl-2 ratio and, for controls and the highest concentration groups, terminal deoxynucleotidyl-mediated dUTP-biotin nick end labeling (TUNEL). RESULTS Without hypoxic pretreatment, 2.0 MAC of isoflurane slightly increased TUNEL intensity compared to control and sevoflurane, but without any significant changes in the Bax and Bcl-2 ratio. After hypoxic pretreatment, exposure to isoflurane led to a multifold increase in the Bax and Bcl-2 ratio in a dose dependent manner, which was also significantly higher than the ratio observed in the 2 MAC sevoflurane group. TUNEL intensity in the post-hypoxic 2 MAC isoflurane group was increased by a factor of 11 vs. control and by 40 vs. sevoflurane. Sevoflurane and midazolam did not significantly alter these markers of apoptosis, when compared to the control group. CONCLUSIONS Isoflurane administered after hypoxia elevates markers of apoptosis in endothelial cells transdifferentiated to the cerebro-vascular endothelium. Endothelial apoptosis may be a previously underestimated mechanism of anesthetic neurotoxicity. Administration of high concentrations of isoflurane in experimental settings may have negative effects on the blood-brain barrier.
Collapse
Affiliation(s)
- Michael S. Dittmar
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany
- * E-mail:
| | - Walter Petermichl
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany
| | - Regina Lindner
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany
| | - Barbara Sinner
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany
| | - Bernhard M. Graf
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany
| | - Felix Schlachetzki
- Department of Neurology, Bezirksklinikum Regensburg, University of Regensburg, Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, Regensburg University Medical Center, Regensburg, Germany
| |
Collapse
|
12
|
Oliveira-Pinto J, Paes-Branco D, Cristina-Rodrigues F, Krahe TE, Manhães AC, Abreu-Villaça Y, Filgueiras CC. GABAA overactivation potentiates the effects of NMDA blockade during the brain growth spurt in eliciting locomotor hyperactivity in juvenile mice. Neurotoxicol Teratol 2015; 50:43-52. [PMID: 26056730 DOI: 10.1016/j.ntt.2015.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/25/2015] [Accepted: 05/31/2015] [Indexed: 10/23/2022]
Abstract
Both NMDA receptor blockade and GABAA receptor overactivation during the brain growth spurt may contribute to the hyperactivity phenotype reminiscent of attention-deficit/hyperactivity disorder. Here, we evaluated the effects of exposure to MK801 (a NMDA antagonist) and/or to muscimol (a GABAA agonist) during the brain growth spurt on locomotor activity of juvenile Swiss mice. This study was carried out in two separate experiments. In the first experiment, pups received a single i.p. injection of either saline solution (SAL), MK801 (MK, 0.1, 0.3 or 0.5 mg/kg) or muscimol (MU, 0.02, 0.1 or 0.5 mg/kg) at the second postnatal day (PND2), and PNDs 4, 6 and 8. In the second experiment, we investigated the effects of a combined injection of MK (0.1 mg/kg) and MU (doses: 0.02, 0.1 or 0.5 mg/kg) following the same injection schedule of the first experiment. In both experiments, locomotor activity was assessed for 15 min at PND25. While MK promoted a dose-dependent increase in locomotor activity, exposure to MU failed to elicit significant effects. The combined exposure to the highest dose of MU and the lowest dose of MK induced marked hyperactivity. Moreover, the combination of the low dose of MK and the high dose of MU resulted in a reduced activity in the center of the open field, suggesting an increased anxiety-like behavior. These findings suggest that, during the brain growth spurt, the blockade of NMDA receptors induces juvenile locomotor hyperactivity whereas hyperactivation of GABAA receptors does not. However, GABAA overactivation during this period potentiates the effects of NMDA blockade in inducing locomotor hyperactivity.
Collapse
Affiliation(s)
- Juliana Oliveira-Pinto
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Danielle Paes-Branco
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Fabiana Cristina-Rodrigues
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Thomas E Krahe
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Cláudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil.
| |
Collapse
|
13
|
Sinner B, Becke K, Engelhard K. General anaesthetics and the developing brain: an overview. Anaesthesia 2014; 69:1009-22. [DOI: 10.1111/anae.12637] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2014] [Indexed: 12/17/2022]
Affiliation(s)
- B. Sinner
- Department of Anaesthesiology; University of Regensburg; Regensburg Germany
| | - K. Becke
- Department of Anesthesiology and Intensive Care; Cnopf Childrens’ Hospital/Hospital Hallerwiese; Nuremberg Germany
| | - K. Engelhard
- Department of Anaesthesiology; University Medical Center of the Johannes Gutenberg University; Mainz Germany
| |
Collapse
|
14
|
Wei H, Inan S. Dual effects of neuroprotection and neurotoxicity by general anesthetics: role of intracellular calcium homeostasis. Prog Neuropsychopharmacol Biol Psychiatry 2013; 47:156-61. [PMID: 23721657 PMCID: PMC3791176 DOI: 10.1016/j.pnpbp.2013.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/18/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022]
Abstract
Although general anesthetics have long been considered neuroprotective, there are growing concerns about neurotoxicity. Preclinical studies clearly demonstrated that commonly used general anesthetics are both neuroprotective and neurotoxic, with unclear mechanisms. Recent studies suggest that differential activation of inositol 1,4,5-trisphosphate receptors, a calcium release channel located on the membrane of endoplasmic reticulum (ER), play important role on determining the fate of neuroprotection or neurotoxicity by general anesthetics. General anesthetics at low concentrations for short duration are sublethal stress factors which induce endogenous neuroprotective mechanisms and provide neuroprotection via adequate activation of InsP3R and moderate calcium release from ER. On the other hand, general anesthetics at high concentrations for prolonged duration are lethal stress factors which induce neuronal damage by over activation of InsP3R and excessive and abnormal Ca(2+) release from ER. This review emphasizes the dual effects of both neuroprotection and neurotoxicity via differential regulation of intracellular Ca(2+) homeostasis by commonly used general anesthetics and recommends strategy to maximize neuroprotective but minimize neurotoxic effects of general anesthetics.
Collapse
Affiliation(s)
- Huafeng Wei
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
15
|
Patkai J, Zana-Taieb E, Didier C, Jarreau PH, Lopez E. Aspects fondamentaux de la toxicite éventuelle des drogues anesthésiques. Arch Pediatr 2013; 20:1059-66. [DOI: 10.1016/j.arcped.2013.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023]
|
16
|
Mishra SK, Kang JH, Lee CW, Oh SH, Ryu JS, Bae YS, Kim HM. Midazolam induces cellular apoptosis in human cancer cells and inhibits tumor growth in xenograft mice. Mol Cells 2013; 36:219-26. [PMID: 24008365 PMCID: PMC3887981 DOI: 10.1007/s10059-013-0050-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022] Open
Abstract
Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosisinducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties.
Collapse
Affiliation(s)
| | - Ju-Hee Kang
- Division of Cancer Biology, National Cancer Center, Goyang 410-769, Korea
- Department of Food and Nutrition, Division of Natural Sciences, Chung-Ang University, Ansung 456-756, Korea
| | - Chang Woo Lee
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 363-883, Korea
| | - Seung Hyun Oh
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-840, Korea
| | - Jun Sun Ryu
- Head and Neck Oncology Clinic, Center for Specific Organs Cancer, Center for Thyroid Cancer, National Cancer Center, Goyang 410-769, Korea
| | - Yun Soo Bae
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
17
|
Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, John Mann J. Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 2013; 38:1068-77. [PMID: 23303074 PMCID: PMC3629406 DOI: 10.1038/npp.2013.5] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Smaller hippocampal volume is reported in major depressive disorder (MDD). We hypothesize that it may be related to fewer granule neurons (GN) in the dentate gyrus (DG), a defect possibly reversible with antidepressants. We studied age-, sex-, and postmortem interval-matched groups: no major psychopathology (controls); unmedicated-MDD; and MDD treated with serotonin reuptake inhibitors (MDD*SSRI) or tricyclics (MDD*TCA). Frozen right hippocampi were fixed, sectioned (50 μm), immunostained with neuronal nuclear marker (NeuN), and counterstained with hematoxylin. GN and glial number, and DG and granule cell layer (GCL) volumes were stereologically estimated. Fewer GNs in the anterior DG were present in unmedicated-MDDs compared with controls (p=0.013). Younger age of MDD onset correlated with fewer GNs (p=0.021). Unmedicated-MDDs had fewer mid-DG GNs than MDD*SSRIs (p=0.028) and controls (p=0.032). Anterior GCL glial number did not differ between groups. Anterior/mid GCL volume was smaller in unmedicated-MDDs vs controls (p=0.008) and larger in MDD*SSRIs vs unmedicated-MDDs (p<0.001), MDD*TCAs (p<0.001), and controls (p<0.001). Anterior GCL volume and GN number (r=0.594, p=0.001), and mid DG volume and GN number (r=0.398, p=0.044) were correlated. Anterior DG capillary density correlated with GN number (p=0.027), and with GCL (p=0.024) and DG (r=0.400, p=0.047) volumes. Posterior DG volume and GN number did not differ between groups. Fewer GNs in unmedicated-MDD without fewer neuronal progenitor cells, as previously reported, suggests a cell maturation or survival defect, perhaps related to MDD duration. This may contribute to a smaller hippocampus and is potentially reversed by SSRIs. Postmortem studies are correlative and animal studies are needed to test implied causal relationships.
Collapse
Affiliation(s)
- Maura Boldrini
- Department of Psychiatry, Columbia University, New York, NY, USA.
| | - Adrienne N Santiago
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - René Hen
- Department of Psychiatry, Columbia University, New York, NY, USA,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA,Department of Neuroscience, New York, NY, USA,Department of Pharmacology, New York, NY, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY, USA,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA,Macedonian Academy of Sciences and Arts, Republic of Macedonia, New York, NY, USA
| | - Gorazd B Rosoklija
- Department of Psychiatry, Columbia University, New York, NY, USA,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA,Macedonian Academy of Sciences and Arts, Republic of Macedonia, New York, NY, USA
| | - Hadassah Tamir
- Department of Psychiatry, Columbia University, New York, NY, USA,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Victoria Arango
- Department of Psychiatry, Columbia University, New York, NY, USA,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, USA,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
18
|
|
19
|
Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol Psychiatry 2012; 72:562-71. [PMID: 22652019 PMCID: PMC3438317 DOI: 10.1016/j.biopsych.2012.04.024] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/29/2012] [Accepted: 04/20/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND Adult neurogenesis is coupled to angiogenesis in neurogenic niches in the dentate gyrus (DG) and increased by antidepressants in rodents. We hypothesized that, in major depressive disorder (MDD), antidepressants increase neural progenitor cells (NPCs) and capillaries in the human DG. METHODS Neural progenitor cells and capillaries, detected on hippocampal sections by immunohistochemistry for neural stem cell protein, were quantified by stereology in matched MDDs (untreated, n = 12), MDD treated with selective serotonin reuptake inhibitors (MDD*SSRI, n = 6) or tricyclic antidepressants (MDD*TCA, n = 6), and nonpsychiatric control subjects (n = 12), all confirmed by psychological autopsy. RESULTS The MDD*SSRI had a larger capillary area and more NPCs versus MDDs (p = .034 and p = .008, respectively) and control subjects (p = .010 and p = .002, respectively) in the whole DG, more NPCs in the anterior (pes, p = .042) and central (midbody, p = .004) DG, and greater capillary area in the pes (p = .002) and midbody (p = .021). The NPC number and capillary area correlated positively in the whole sample (R2 = .454, p < .001) and in treated subjects (R2 = .749, p = .001). We found no NPCs or antidepressant-related angiogenesis in CA1 and parahippocampal gyrus. The DG volume correlated positively with NPC number (p = .004) and capillary area (p < .001) and differed between groups in whole hippocampus (p = .013) and midbody (p = .036). Age negatively correlated with NPC number (p = .042), capillary area (p = .037), and bifurcations (p = .030). No gender effect was detected. CONCLUSIONS Antidepressants increase human hippocampal NPCs and angiogenesis selectively in the anterior and mid DG. These results raise the possibility of a causal relationship between angiogenesis and neurogenesis, as seen in other proliferating tissues, and support their possible role in the mechanism of action of antidepressants.
Collapse
|
20
|
Lei X, Guo Q, Zhang J. Mechanistic insights into neurotoxicity induced by anesthetics in the developing brain. Int J Mol Sci 2012; 13:6772-6799. [PMID: 22837663 PMCID: PMC3397495 DOI: 10.3390/ijms13066772] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/12/2012] [Accepted: 05/25/2012] [Indexed: 11/16/2022] Open
Abstract
Compelling evidence has shown that exposure to anesthetics used in the clinic can cause neurodegeneration in the mammalian developing brain, but the basis of this is not clear. Neurotoxicity induced by exposure to anesthestics in early life involves neuroapoptosis and impairment of neurodevelopmental processes such as neurogenesis, synaptogenesis and immature glial development. These effects may subsequently contribute to behavior abnormalities in later life. In this paper, we reviewed the possible mechanisms of anesthetic-induced neurotoxicity based on new in vitro and in vivo findings. Also, we discussed ways to protect against anesthetic-induced neurotoxicity and their implications for exploring cellular and molecular mechanisms of neuroprotection. These findings help in improving our understanding of developmental neurotoxicology and in avoiding adverse neurological outcomes in anesthesia practice.
Collapse
Affiliation(s)
- Xi Lei
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mail:
| | - Qihao Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mail:
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-21-52887693; Fax: +86-21-52887690
| |
Collapse
|