1
|
Sun Y, Jing P, Gan H, Wang X, Zhu X, Fan J, Li H, Zhang Z, Lin JCJ, Gu Z. Evaluation of an ex vivo fibrogenesis model using human lung slices prepared from small tissues. Eur J Med Res 2023; 28:143. [PMID: 36998092 PMCID: PMC10061769 DOI: 10.1186/s40001-023-01104-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND In recent years, there have been breakthroughs in the preclinical research of respiratory diseases, such as organoids and organ tissue chip models, but they still cannot provide insight into human respiratory diseases well. Human lung slices model provides a promising in vitro model for the study of respiratory diseases because of its preservation of lung structure and major cell types. METHODS Human lung slices were manually prepared from small pieces of lung tissues obtained from lung cancer patients subjected to lung surgery. To evaluate the suitability of this model for lung fibrosis research, lung slices were treated with CdCl2 (30 μM), TGF-β1 (1 ng/ml) or CdCl2 plus TGF-β1 for 3 days followed by toxicity assessment, gene expression analysis and histopathological observations. RESULTS CdCl2 treatment resulted in a concentration-dependent toxicity profile evidenced by MTT assay as well as histopathological observations. In comparison with the untreated group, CdCl2 and TGF-β1 significantly induces MMP2 and MMP9 gene expression but not MMP1. Interestingly, CdCl2 plus TGF-β1 significantly induces the expression of MMP1 but not MMP2, MMP7 or MMP9. Microscopic observations reveal the pathogenesis of interstitial lung fibrosis in the lung slices of all groups; however, CdCl2 plus TGF-β1 treatment leads to a greater alveolar septa thickness and the formation of fibroblast foci-like pathological features. The lung slice model is in short of blood supply and the inflammatory/immune-responses are considered minimal. CONCLUSIONS The results are in favor of the hypothesis that idiopathic pulmonary fibrosis (IPF) is mediated by tissue damage and abnormal repair. Induction of MMP1 gene expression and fibroblast foci-like pathogenesis suggest that this model might represent an early stage of IPF.
Collapse
Affiliation(s)
- Ying Sun
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Pengyu Jing
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Helina Gan
- Fibroscience LLC, 8037 Glengarriff Rd., Clemmons, NC, 27012, USA
| | - Xuejiao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ximing Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jiangjiang Fan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Haichao Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | | | - Zhongping Gu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
2
|
Das M, Saha A. Probe on Various Experimental Cigarette Smoke Subjection Structure. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Different methods of subjection to smoke from experimental cigarettes are essential for understanding tobacco smoke. The major toxicants found in tobacco are acetaldehyde, acetone, acrolein, acrylonitrile, ammonia, benzene, cadmium, catechol, chromium, cyanide hydrogen, arsenic, nickel, nitric oxide, nicotine last but not least, mono-oxide gases. While experts say, cigarette smoke contains more than 4000 different compounds. These are substantially toxic and can destroy cells, and many of them are carcinogenic. Various smoke-exposure devices are used for in-vitro tobacco smoke generation, dilution, and distribution.
Such devices are used widely by well-known manufacturers or can be tailor-made setups. We can set up different in-vitro models to better treat smoke-related diseases using these subjection structures. The fundamental goal will be to build a tobacco-free society of available subjection systems. Some have been identified and established as biological endpoints in some published scientific literature. In the scientific field, many new technologies are coming out and showing their presence. There are many systems of exposure to cigarette smoke in vitro which offer a more flexible approach to the challenges of exposure to tobacco smoke. This review covers some topics such as the description of available new subjection structures and reviews their work, setting up and application for Scenarios of in-vitro treatment. The benefits and disadvantages of both subjection mechanisms and the similarities between the setups and the data extracted from these structures. Measuring the smoke dose is also discussed here as an important field of research, particularly in the preclinical phase.
Keywords: Cigarette smoke; Cigarette Subjection Structures; Cigarette Subjection Mechanisms; Cigarette Subjection Advantages; Cigarette Subjection Use; Cigarette Subjection Modern advancements.
Collapse
Affiliation(s)
- Moulima Das
- M.Pharm Grad., Pharmacology, NSHM College Of Pharmaceutical Technology, NSHM Knowledge Campus, B.L. Rd., Kolkata - 700053, WB
| | - Anupam Saha
- M.Pharm Grad., Pharmacology, NSHM College Of Pharmaceutical Technology, NSHM Knowledge Campus, B.L. Rd., Kolkata - 700053, WB
| |
Collapse
|
3
|
Obernolte H, Niehof M, Braubach P, Fieguth HG, Jonigk D, Pfennig O, Tschernig T, Warnecke G, Braun A, Sewald K. Cigarette smoke alters inflammatory genes and the extracellular matrix - investigations on viable sections of peripheral human lungs. Cell Tissue Res 2021; 387:249-260. [PMID: 34820703 PMCID: PMC8821047 DOI: 10.1007/s00441-021-03553-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex chronic respiratory disorder often caused by cigarette smoke. Cigarette smoke contains hundreds of toxic substances. In our study, we wanted to identify initial mechanisms of cigarette smoke induced changes in the distal lung. Viable slices of human lungs were exposed 24 h to cigarette smoke condensate, and the dose–response profile was analyzed. Non-toxic condensate concentrations and lipopolysaccharide were used for further experiments. COPD-related protein and gene expression was measured. Cigarette smoke condensate did not induce pro-inflammatory cytokines and most inflammation-associated genes. In contrast, lipopolysaccharide significantly induced IL-1α, IL-1β, TNF-α and IL-8 (proteins) and IL1B, IL6, and TNF (genes). Interestingly, cigarette smoke condensate induced metabolism- and extracellular matrix–associated proteins and genes, which were not influenced by lipopolysaccharide. Also, a significant regulation of CYP1A1 and CYP1B1, as well as MMP9 and MMP9/TIMP1 ratio, was observed which resembles typical findings in COPD. In conclusion, our data show that cigarette smoke and lipopolysaccharide induce significant responses in human lung tissue ex vivo, giving first hints that COPD starts early in smoking history.
Collapse
Affiliation(s)
- Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Monika Niehof
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | | | - Danny Jonigk
- Institute for Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Olaf Pfennig
- KRH Klinikum Siloah-Oststadt-Heidehaus, Hannover, Germany
| | - Thomas Tschernig
- Institute for Anatomy and Cell Biology, Saarland University, Homburg Saar, Germany
| | - Gregor Warnecke
- Division of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
4
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
5
|
Keyser BM, Leverette R, Hollings M, Seymour A, Reeve L, Fields W. Investigation of multiple whole smoke dosimetry techniques using a VITROCELL®VC10® smoke exposure system. Toxicol Rep 2019; 6:1281-1288. [PMID: 31828014 PMCID: PMC6889780 DOI: 10.1016/j.toxrep.2019.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 10/31/2022] Open
Abstract
The Vitrocell® VC10® smoke exposure system offers multiple platforms for air liquid interface (ALI) and air agar interface (AAI) exposure that mimic in vivo conditions for assessing toxicological impact of whole smoke using in vitro assays. The aim of this study was to investigate and compare multiple dosimetry techniques that may be employed during combustible cigarette whole smoke exposure using the Vitrocell® VC10® smoking robot. The following techniques were assessed: (1) quartz crystal microbalances (QCMs), (2) aerosol photometers (using area under curve, AUC), and (3) fluorescence of anhydrous dimethyl sulfoxide (DMSO)-captured smoke constituents. Results showed that each of the dosimetry techniques was able to distinguish different levels of whole smoke airflow in a concentration-related manner. When compared to each other, the three techniques showed a high level of consistency and all were considered efficient tools in quantifying dose during an exposure, although higher variation was observed at the higher airflows tested. Overall, the dosimetry tools investigated here provide effective measures of the whole smoke concentrations tested during the exposure.
Collapse
Affiliation(s)
- Brian M. Keyser
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC, 27101, USA1
| | - Robert Leverette
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC, 27101, USA1
| | | | | | | | - Wanda Fields
- RAI Services Company, Scientific & Regulatory Affairs, 401 North Main Street, Winston-Salem, NC, 27101, USA1
| |
Collapse
|
6
|
Clippinger AJ, Allen D, Jarabek AM, Corvaro M, Gaça M, Gehen S, Hotchkiss JA, Patlewicz G, Melbourne J, Hinderliter P, Yoon M, Huh D, Lowit A, Buckley B, Bartels M, BéruBé K, Wilson DM, Indans I, Vinken M. Alternative approaches for acute inhalation toxicity testing to address global regulatory and non-regulatory data requirements: An international workshop report. Toxicol In Vitro 2017; 48:53-70. [PMID: 29277654 DOI: 10.1016/j.tiv.2017.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022]
Abstract
Inhalation toxicity testing, which provides the basis for hazard labeling and risk management of chemicals with potential exposure to the respiratory tract, has traditionally been conducted using animals. Significant research efforts have been directed at the development of mechanistically based, non-animal testing approaches that hold promise to provide human-relevant data and an enhanced understanding of toxicity mechanisms. A September 2016 workshop, "Alternative Approaches for Acute Inhalation Toxicity Testing to Address Global Regulatory and Non-Regulatory Data Requirements", explored current testing requirements and ongoing efforts to achieve global regulatory acceptance for non-animal testing approaches. The importance of using integrated approaches that combine existing data with in vitro and/or computational approaches to generate new data was discussed. Approaches were also proposed to develop a strategy for identifying and overcoming obstacles to replacing animal tests. Attendees noted the importance of dosimetry considerations and of understanding mechanisms of acute toxicity, which could be facilitated by the development of adverse outcome pathways. Recommendations were made to (1) develop a database of existing acute inhalation toxicity data; (2) prepare a state-of-the-science review of dosimetry determinants, mechanisms of toxicity, and existing approaches to assess acute inhalation toxicity; (3) identify and optimize in silico models; and (4) develop a decision tree/testing strategy, considering physicochemical properties and dosimetry, and conduct proof-of-concept testing. Working groups have been established to implement these recommendations.
Collapse
Affiliation(s)
| | - David Allen
- Integrated Laboratory Systems, contractor supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, United States
| | - Annie M Jarabek
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Research Triangle Park, NC, United States
| | | | | | - Sean Gehen
- Dow AgroSciences, Indianapolis, IN, United States
| | | | - Grace Patlewicz
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, Research Triangle Park, NC, United States
| | | | | | - Miyoung Yoon
- Scitovation LLC, Research Triangle Park, NC, United States
| | - Dongeun Huh
- University of Pennsylvania, Philadelphia, PA, United States
| | - Anna Lowit
- U.S. Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention, Office of Pesticide Programs, Washington, DC, United States
| | - Barbara Buckley
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Research Triangle Park, NC, United States
| | | | - Kelly BéruBé
- Cardiff University, School of Biosciences, Cardiff, Wales, UK
| | | | | | | |
Collapse
|
7
|
Mertens TCJ, Karmouty-Quintana H, Taube C, Hiemstra PS. Use of airway epithelial cell culture to unravel the pathogenesis and study treatment in obstructive airway diseases. Pulm Pharmacol Ther 2017; 45:101-113. [PMID: 28502841 DOI: 10.1016/j.pupt.2017.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are considered as two distinct obstructive diseases. Both chronic diseases share a component of airway epithelial dysfunction. The airway epithelium is localized to deal with inhaled substances, and functions as a barrier preventing penetration of such substances into the body. In addition, the epithelium is involved in the regulation of both innate and adaptive immune responses following inhalation of particles, allergens and pathogens. Through triggering and inducing immune responses, airway epithelial cells contribute to the pathogenesis of both asthma and COPD. Various in vitro research models have been described to study airway epithelial cell dysfunction in asthma and COPD. However, various considerations and cautions have to be taken into account when designing such in vitro experiments. Epithelial features of asthma and COPD can be modelled by using a variety of disease-related invoking substances either alone or in combination, and by the use of primary cells isolated from patients. Differentiation is a hallmark of airway epithelial cells, and therefore models should include the ability of cells to differentiate, as can be achieved in air-liquid interface models. More recently developed in vitro models, including precision cut lung slices, lung-on-a-chip, organoids and human induced pluripotent stem cells derived cultures, provide novel state-of-the-art alternatives to the conventional in vitro models. Furthermore, advanced models in which cells are exposed to respiratory pathogens, aerosolized medications and inhaled toxic substances such as cigarette smoke and air pollution are increasingly used to model e.g. acute exacerbations. These exposure models are relevant to study how epithelial features of asthma and COPD are affected and provide a useful tool to study the effect of drugs used in treatment of asthma and COPD. These new developments are expected to contribute to a better understanding of the complex gene-environment interactions that contribute to development and progression of asthma and COPD.
Collapse
Affiliation(s)
- Tinne C J Mertens
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Massarsky A, Bone AJ, Dong W, Hinton DE, Prasad GL, Di Giulio RT. AHR2 morpholino knockdown reduces the toxicity of total particulate matter to zebrafish embryos. Toxicol Appl Pharmacol 2016; 309:63-76. [PMID: 27576004 DOI: 10.1016/j.taap.2016.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/26/2022]
Abstract
The zebrafish embryo has been proposed as a 'bridge model' to study the effects of cigarette smoke on early development. Previous studies showed that exposure to total particulate matter (TPM) led to adverse effects in developing zebrafish, and suggested that the antioxidant and aryl hydrocarbon receptor (AHR) pathways play important roles. This study investigated the roles of these two pathways in mediating TPM toxicity. The study consisted of four experiments. In experiment I, zebrafish embryos were exposed from 6h post fertilization (hpf) until 96hpf to TPM0.5 and TPM1.0 (corresponding to 0.5 and 1.0μg/mL equi-nicotine units) in the presence or absence of an antioxidant (N-acetyl cysteine/NAC) or a pro-oxidant (buthionine sulfoximine/BSO). In experiment II, TPM exposures were performed in embryos that were microinjected with nuclear factor erythroid 2-related factor 2 (Nrf2), AHR2, cytochrome P450 1A (CYP1A), or CYP1B1 morpholinos, and deformities were assessed. In experiment III, embryos were exposed to TPM, and embryos/larvae were collected at 24, 48, 72, and 96hpf to assess several genes associated with the antioxidant and AHR pathways. Lastly, experiment IV assessed the activity and protein levels of CYP1A and CYP1B1 after exposure to TPM. We demonstrate that the incidence of TPM-induced deformities was generally not affected by NAC/BSO treatments or Nrf2 knockdown. In contrast, AHR2 knockdown reduced, while CYP1A or CYP1B1 knockdowns elevated the incidence of some deformities. Moreover, as shown by gene expression the AHR pathway, but not the antioxidant pathway, was induced in response to TPM exposure, providing further evidence for its importance in mediating TPM toxicity.
Collapse
Affiliation(s)
- Andrey Massarsky
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | - Audrey J Bone
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Wu Dong
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; School of Animal Science and Technology, Inner Mongolia Provincial Key Laboratory for Toxicants and Animal Disease, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028000, China
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - G L Prasad
- RAI Services Company, Winston-Salem, NC 27101, USA
| | | |
Collapse
|
9
|
Youssef G, Wallace WAH, Dagleish MP, Cousens C, Griffiths DJ. Ovine pulmonary adenocarcinoma: a large animal model for human lung cancer. ILAR J 2016; 56:99-115. [PMID: 25991702 DOI: 10.1093/ilar/ilv014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Recent progress in understanding the molecular pathogenesis of this disease has resulted in novel therapeutic strategies targeting specific groups of patients. Further studies are required to provide additional advances in diagnosis and treatment. Animal models are valuable tools for studying oncogenesis in lung cancer, particularly during the early stages of disease where tissues are rarely available from human cases. Mice have traditionally been used for studying lung cancer in vivo, and a variety of spontaneous and transgenic models are available. However, it is recognized that other species may also be informative for studies of cancer. Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer of sheep caused by retrovirus infection and has several features in common with adenocarcinoma of humans, including a similar histological appearance and activation of common cell signaling pathways. Additionally, the size and organization of human lungs are much closer to those of sheep lungs than to those of mice, which facilitates experimental approaches in sheep that are not available in mice. Thus OPA presents opportunities for studying lung tumor development that can complement conventional murine models. Here we describe the potential applications of OPA as a model for human lung adenocarcinoma with an emphasis on the various in vivo and in vitro experimental systems available.
Collapse
Affiliation(s)
- Gehad Youssef
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - William A H Wallace
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Mark P Dagleish
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Chris Cousens
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - David J Griffiths
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| |
Collapse
|
10
|
Thorne D, Kilford J, Payne R, Haswell L, Dalrymple A, Meredith C, Dillon D. Development of a BALB/c 3T3 neutral red uptake cytotoxicity test using a mainstream cigarette smoke exposure system. BMC Res Notes 2014; 7:367. [PMID: 24935030 PMCID: PMC4067082 DOI: 10.1186/1756-0500-7-367] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/12/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Tobacco smoke toxicity has traditionally been assessed using the particulate fraction under submerged culture conditions which omits the vapour phase elements from any subsequent analysis. Therefore, methodologies that assess the full interactions and complexities of tobacco smoke are required. Here we describe the adaption of a modified BALB/c 3T3 neutral red uptake (NRU) cytotoxicity test methodology, which is based on the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) protocol for in vitro acute toxicity testing. The methodology described takes into account the synergies of both the particulate and vapour phase of tobacco smoke. This is of particular importance as both phases have been independently shown to induce in vitro cellular cytotoxicity. FINDINGS The findings from this study indicate that mainstream tobacco smoke and the gas vapour phase (GVP), generated using the Vitrocell® VC 10 smoke exposure system, have distinct and significantly different toxicity profiles. Within the system tested, mainstream tobacco smoke produced a dilution IC50 (dilution (L/min) at which 50% cytotoxicity is observed) of 6.02 L/min, whereas the GVP produced a dilution IC50 of 3.20 L/min. In addition, we also demonstrated significant dose-for-dose differences between mainstream cigarette smoke and the GVP fraction (P < 0.05). This demonstrates the importance of testing the entire tobacco smoke aerosol and not just the particulate fraction, as has been the historical preference. CONCLUSIONS We have adapted the NRU methodology based on the ICCVAM protocol to capture the full interactions and complexities of tobacco smoke. This methodology could also be used to assess the performance of traditional cigarettes, blend and filter technologies, tobacco smoke fractions and individual test aerosols.
Collapse
Affiliation(s)
- David Thorne
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK
| | - Joanne Kilford
- Covance Laboratories Ltd, Otley Road, Harrogate, North Yorkshire HG3 1PY, UK
| | - Rebecca Payne
- Covance Laboratories Ltd, Otley Road, Harrogate, North Yorkshire HG3 1PY, UK
| | - Linsey Haswell
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK
| | - Annette Dalrymple
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK
| | - Clive Meredith
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK
| | - Deborah Dillon
- British American Tobacco, Group R&D, Southampton, Hampshire SO15 8TL, UK
| |
Collapse
|
11
|
Thorne D, Adamson J. A review of in vitro cigarette smoke exposure systems. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2013; 65:1183-93. [PMID: 23850067 DOI: 10.1016/j.etp.2013.06.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/10/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022]
Abstract
In vitro test methods may be vital in understanding tobacco smoke, the main toxicants responsible for adverse health effects, and elucidating disease mechanisms. There is a variety of 'whole smoke' exposure systems available for the generation, dilution and delivery of tobacco smoke in vitro; these systems can be procured commercially from well-known suppliers or can be bespoke set-ups. These exposure technologies aim to ensure that there are limited changes in the tobacco smoke aerosol from generation to exposure. As the smoke aerosol is freshly generated, interactions in the smoke fractions are captured in any subsequent in vitro analysis. Of the commercially available systems, some have been characterised more than others in terms of published scientific literature and developed biological endpoints. Others are relatively new to the scientific field and are still establishing their presence. In addition, bespoke systems are widely used and offer a more flexible approach to the challenges of tobacco smoke exposure. In this review, the authors present a summary of the major tobacco smoke exposure systems available and critically review their function, set-up and application for in vitro exposure scenarios. All whole smoke exposure systems have benefits and limitations, often making it difficult to make comparisons between set-ups and the data obtained from such diverse systems. This is where exposure and dose measurements can add value and may be able to provide a platform on which comparisons can be made. The measurement of smoke dose, as an emerging field of research, is therefore also discussed and how it may provide valuable and additional data to support existing whole smoke exposure set-ups and aid validation efforts.
Collapse
Affiliation(s)
- David Thorne
- British American Tobacco, Group R&D, Southampton SO15 8TL, UK.
| | | |
Collapse
|
12
|
Rom O, Kaisari S, Aizenbud D, Reznick AZ. Cigarette smoke and muscle catabolism in C2 myotubes. Mech Ageing Dev 2013; 134:24-34. [DOI: 10.1016/j.mad.2012.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/24/2012] [Accepted: 11/16/2012] [Indexed: 12/25/2022]
|
13
|
Quantification of cigarette smoke particle deposition in vitro using a triplicate quartz crystal microbalance exposure chamber. BIOMED RESEARCH INTERNATIONAL 2012; 2013:685074. [PMID: 23484139 PMCID: PMC3591143 DOI: 10.1155/2013/685074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/22/2012] [Indexed: 11/30/2022]
Abstract
There are a variety of smoke exposure systems available to the tobacco industry and respiratory toxicology research groups, each with their own way of diluting/delivering smoke to cell cultures. Thus a simple technique to measure dose in vitro needs to be utilised. Dosimetry—assessment of dose—is a key element in linking the biological effects of smoke generated by various exposure systems. Microbalance technology is presented as a dosimetry tool and a way of measuring whole smoke dose. Described here is a new tool to quantify diluted smoke particulate deposition in vitro. The triplicate quartz crystal microbalance (QCM) chamber measured real-time deposition of smoke at a range of dilutions 1 : 5–1 : 400 (smoke : air). Mass was read in triplicate by 3 identical QCMs installed into one in vitro exposure chamber, each in the location in which a cell culture would be exposed to smoke at the air-liquid interface. This resulted in quantification of deposited particulate matter in the range 0.21–28.00 μg/cm2. Results demonstrated that the QCM could discriminate mass between dilutions and was able to give information of regional deposition where cell cultures would usually be exposed within the chamber. Our aim is to use the QCM to support the preclinical (in vitro) evaluation of tobacco products.
Collapse
|
14
|
Cuzić S, Bosnar M, Kramarić MD, Ferencić Z, Marković D, Glojnarić I, Eraković Haber V. Claudin-3 and Clara cell 10 kDa protein as early signals of cigarette smoke-induced epithelial injury along alveolar ducts. Toxicol Pathol 2012; 40:1169-87. [PMID: 22659244 DOI: 10.1177/0192623312448937] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smoking-associated chronic obstructive pulmonary disease is characterized by inflammation, changes affecting small airways, and development of emphysema. Various short- and long-term models have been introduced to investigate these processes. The aim of the present study was to identify markers of early epithelial injury/adaptation in a short-term animal model of cigarette smoke exposure. Initially, male BALB/c mice were exposed to smoke from one to five cigarettes and lung changes were assessed 4 and 24 hr after smoking cessation. Subsequently, animals were exposed to smoke from five cigarettes for 2 consecutive days and lungs investigated daily until the seventh postexposure day. Lung homogenates cytokines were determined, bronchioloalveolar fluid cells were counted, and lung tissue was analyzed by immunohistochemistry. Exposure to smoke from a single cigarette induced slight pulmonary neutrophilia. Smoke from two cigarettes additionally induced de novo expression of tight junction protein, claudin-3, by alveolar duct (AD) epithelial cells. Further increases in smoke exposure induced epithelial changes in airway progenitor regions. During the recovery period, the severity/frequency of epithelial reactions slowly decreased, coinciding with the switch from acute to a chronic inflammatory reaction. Claudin-3 and Clara cell 10 kDa protein were identified as possible markers of early tobacco smoke-induced epithelial injury along ADs.
Collapse
Affiliation(s)
- Snjezana Cuzić
- GlaxoSmithKline Research Centre Zagreb Limited, Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Morin JP, Baste JM, Gay A, Crochemore C, Corbière C, Monteil C. Precision cut lung slices as an efficient tool for in vitro lung physio-pharmacotoxicology studies. Xenobiotica 2012; 43:63-72. [DOI: 10.3109/00498254.2012.727043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|