1
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Brief Maternal Separation Inoculates Against the Effects of Social Stress on Depression-Like Behavior and Cocaine Reward in Mice. Front Pharmacol 2022; 13:825522. [PMID: 35359840 PMCID: PMC8961977 DOI: 10.3389/fphar.2022.825522] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to intermittent repeated social defeat (IRSD) increases the vulnerability of mice to the rewarding effects of cocaine in the conditioned place preference (CPP) paradigm. According to the "inoculation of stress" hypothesis, a brief period of maternal separation (MS) can provide protection against the negative effects of IRSD. The aim of the present study was to assess whether exposure to a brief episode of MS prevents the subsequent short-term effects of IRSD on depression- and anxiety-like behaviors and to explore its long-term effects on cocaine CPP in mice. Four groups of male C57BL/6 mice were employed; two groups were separated from their mother [6 h on postnatal day (PND) 9], while the other two groups were not (controls). On PND 47, 50, 53 and 56, mice that had experienced MS were exposed to social defeat in the cage of an aggressive resident mouse (MS + IRSD group) or were allowed to explore an empty cage (MS + EXPL group). The same procedure was performed with control mice that had not experienced MS (CONTROL + IRSD and CONTROL + EXPL groups). On PND57-58, all the mice performed the elevated plus maze and the hole-board, social interaction and splash tests. Three weeks after the last episode of defeat, all the mice underwent the CPP procedure with cocaine (1 mg/kg). Irrespective of whether or not MS had taken place, a reduction in open arms measures, dips, and social interaction was observed in mice that experienced IRSD. A higher latency of grooming and acquisition of cocaine-induced CPP were observed only in mice exposed to IRSD alone (CONTROL + IRSD). These results suggest that exposure to a brief episode of stress early in life increases the subsequent resilience of animals to the effects of social stress on vulnerability to cocaine.
Collapse
Affiliation(s)
- C Calpe-López
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - M A Martínez-Caballero
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - M P García-Pardo
- Department of Psychology and Sociology, Faculty of Social Sciences, University of Zaragoza, Teruel, Spain
| | - M A Aguilar
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Sexually Dimorphic Expression of Fear-conditioned Analgesia in Rats and Associated Alterations in the Endocannabinoid System in the Periaqueductal Grey. Neuroscience 2021; 480:117-130. [PMID: 34774710 DOI: 10.1016/j.neuroscience.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022]
Abstract
The endocannabinoid system within the periaqueductal grey (PAG) has been implicated in fear-conditioned analgesia (FCA), the profound suppression of pain upon re-exposure to a context previously paired with an aversive stimulus. Since the endocannabinoid and nociceptive systems exhibit sexual dimorphism, the aim of the present study was to assess possible sex differences in the expression of FCA, fear in the presence of nociceptive tone, and associated sex-dependent alterations in the endocannabinoid system within the PAG. Male and female Sprague-Dawley rats received footshock (10 × 1s; 0.4 mA; every 60 s) or no-footshock in a conditioning arena and 23.5 h later received intraplantar injection of formalin (2.5%) under brief isoflourane anaesthetic into the right hind paw. Nociceptive and fear-related behaviours were assessed 30 min later. Levels of endocannabinoids, N-acylethanolamines and neurotransmitters in the PAG were assessed by LC-MS/MS and expression of endocannabinoid system-related proteins by Western immunoblotting. Male, but not female, rats exhibited robust FCA and greater expression of fear-related behaviours than females. Fear-conditioned formalin-treated males, but not females, had higher levels of N-oleoylethanolamine (OEA) and γ-aminobutyric acid (GABA) in the PAG, compared with non-fear-conditioned controls. There was no effect of fear conditioning on the levels of FAAH or CB1 receptor expression (CB1R) in the PAG of male or female formalin-treated rats. Non-fear-conditioned females had higher levels of CB1R and PPARγ expression than non-fear-conditioned male counterparts. In summary, our results provide evidence of sexual dimorphism in the expression of FCA and fear-related behaviours, and associated alterations in components of the endocannabinoid system and GABA within the PAG.
Collapse
|
3
|
Stark T, Di Martino S, Drago F, Wotjak CT, Micale V. Phytocannabinoids and schizophrenia: Focus on adolescence as a critical window of enhanced vulnerability and opportunity for treatment. Pharmacol Res 2021; 174:105938. [PMID: 34655773 DOI: 10.1016/j.phrs.2021.105938] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
The recent shift in socio-political debates and growing liberalization of Cannabis use across the globe has raised concern regarding its impact on vulnerable populations such as adolescents. Concurrent with declining perception of Cannabis harms, more adolescents are using it daily in several countries and consuming marijuana strains with high content of psychotropic delta (9)-tetrahydrocannabinol (THC). These dual, related trends seem to facilitate the development of compromised social and cognitive performance at adulthood, which are described in preclinical and human studies. Cannabis exerts its effects via altering signalling within the endocannabinoid system (ECS), which modulates the stress circuitry during the neurodevelopment. In this context early interventions appear to circumvent the emergence of adult neurodevelopmental deficits. Accordingly, Cannabis sativa second-most abundant compound, cannabidiol (CBD), emerges as a potential therapeutic agent to treat neuropsychiatric disorders. We first focus on human and preclinical studies on the long-term effects induced by adolescent THC exposure as a "critical window" of enhanced neurophysiological vulnerability, which could be involved in the pathophysiology of schizophrenia and related primary psychotic disorders. Then, we focus on adolescence as a "window of opportunity" for early pharmacological treatment, as novel risk reduction strategy for neurodevelopmental disorders. Thus, we review current preclinical and clinical evidence regarding the efficacy of CBD in terms of positive, negative and cognitive symptoms treatment, safety profile, and molecular targets.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carsten T Wotjak
- Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach an der Riss, Germany
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
4
|
Čater M, Majdič G. How early maternal deprivation changes the brain and behavior? Eur J Neurosci 2021; 55:2058-2075. [PMID: 33870558 DOI: 10.1111/ejn.15238] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Early life stress can adversely influence brain development and reprogram brain function and consequently behavior in adult life. Adequate maternal care in early childhood is therefore particularly important for the normal brain development, and adverse early life experiences can lead to altered emotional, behavioral, and neuroendocrine stress responses in the adulthood. As a form of neonatal stress, maternal deprivation/separation is often used in behavioral studies to examine the effects of early life stress and for modeling the development of certain psychiatric disorders and brain pathologies in animal models. The temporary loss of maternal care during the critical postpartum periods remodels the offspring's brain and provokes long-term effects on learning and cognition, the development of mental disorders, aggression, and an increased tendency for the drug abuse. Early life stress through maternal deprivation affects neuroendocrine responses to stress in adolescence and adulthood by dysregulating the hypothalamic-pituitary-adrenal axis and permanently disrupts stress resilience. In this review, we focused on how improper maternal care during early postnatal life affects brain development resulting in modified behavior later in life.
Collapse
Affiliation(s)
- Maša Čater
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
5
|
Martín-Sánchez A, García-Baos A, Castro-Zavala A, Alegre-Zurano L, Valverde O. Early-life stress exacerbates the effects of WIN55,212-2 and modulates the cannabinoid receptor type 1 expression. Neuropharmacology 2021; 184:108416. [PMID: 33271186 DOI: 10.1016/j.neuropharm.2020.108416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/06/2023]
Abstract
Early-life stress induces an abnormal brain development and increases the risk of psychiatric diseases, including depression, anxiety and substance use disorders. We have developed a reliable model for maternal neglect, named maternal separation with early weaning (MSEW) in CD1 mice. In the present study, we evaluated the long-term effects on anxiety-like behaviours, nociception as well as the Iba1-positive microglial cells in this model in comparison to standard nest (SN) mice. Moreover, we investigated whether MSEW alters the cannabinoid agonist WIN55,212-2 effects regarding reward, spatial and emotional memories, tolerance to different cannabinoid responses, and physical dependence. Adult male offspring of MSEW group showed impaired responses on spatial and emotional memories after a repeated WIN55,212-2 treatment. These behavioural impairments were associated with an increase in basolateral amygdala and hippocampal CB1-expressing fibres and higher number of CB1-containing cells in cerebellum. Additionally, MSEW promotes a higher number of Iba1-positive microglial cells in basolateral amygdala and cerebellum. As for the cannabinoid-induced effects, rearing conditions did not influence the rewarding effects of WIN55,212-2 in the conditioned place preference paradigm. However, MSEW mice showed a delay in the development of tolerance to the cannabinoid effects. Moreover, CB1-positive fibres were reduced in limbic areas in MSEW mice after cannabinoid withdrawal precipitated with the CB1 antagonist SR141617A. These findings support that early-life stress promotes behavioural and molecular changes in the sensitivity to cannabinoids, which are mediated by alterations in CB1 signalling in limbic areas and it induces an increased Iba1-microglial marker which could interfere in emotional memories formation.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital Del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
6
|
Chaliha D, Mamo JC, Albrecht M, Lam V, Takechi R, Vaccarezza M. A Systematic Review of the MDMA Model to Address Social Impairment in Autism. Curr Neuropharmacol 2021; 19:1101-1154. [PMID: 33388021 PMCID: PMC8686313 DOI: 10.2174/1570159x19666210101130258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/27/2020] [Accepted: 12/13/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterised by repetitive behaviours, cognitive rigidity/inflexibility, and social-affective impairment. Unfortunately, no gold-standard treatments exist to alleviate the core socio-behavioural impairments of ASD. Meanwhile, the prosocial empathogen/entactogen 3,4-methylene-dioxy-methamphetamine (MDMA) is known to enhance sociability and empathy in both humans and animal models of psychological disorders. OBJECTIVE We review the evidence obtained from behavioural tests across the current literature, showing how MDMA can induce prosocial effects in animals and humans, where controlled experiments were able to be performed. METHODS Six electronic databases were consulted. The search strategy was tailored to each database. Only English-language papers were reviewed. Behaviours not screened in this review may have affected the core ASD behaviours studied. Molecular analogues of MDMA have not been investigated. RESULTS We find that the social impairments may potentially be alleviated by postnatal administration of MDMA producing prosocial behaviours in mostly the animal model. CONCLUSION MDMA and/or MDMA-like molecules appear to be an effective pharmacological treatment for the social impairments of autism, at least in animal models. Notably, clinical trials based on MDMA use are now in progress. Nevertheless, larger and more extended clinical studies are warranted to prove the assumption that MDMA and MDMA-like molecules have a role in the management of the social impairments of autism.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauro Vaccarezza
- Address correspondence to this author at the Curtin Medical School, Curtin Health Innovation Research Institute, P.O. Box 6845, WA 6102 Perth, Australia; Tel: 08 9266 7671; E-mail:
| |
Collapse
|
7
|
Tirado-Muñoz J, Lopez-Rodriguez AB, Fonseca F, Farré M, Torrens M, Viveros MP. Effects of cannabis exposure in the prenatal and adolescent periods: Preclinical and clinical studies in both sexes. Front Neuroendocrinol 2020; 57:100841. [PMID: 32339546 DOI: 10.1016/j.yfrne.2020.100841] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
Cannabis is the most commonly used illicit drug among adolescents and young adults, including pregnant women. There is substantial evidence for a significant association between prenatal cannabis exposure and lower birth weight in offspring, and mixed results regarding later behavioural outcomes in the offspring. Adolescent cannabis use, especially heavy use, has been associated with altered executive function, depression, psychosis and use of other drugs later in life. Human studies have limitations due to several confounding factors and have provided scarce information about sex differences. In general, animal studies support behavioural alterations reported in humans and have revealed diverse sex differences and potential underlying mechanisms (altered mesolimbic dopaminergic and hippocampal glutamatergic systems and interference with prefrontal cortex maturation). More studies are needed that analyse sex and gender influences on cannabis-induced effects with great clinical relevance such as psychosis, cannabis use disorder and associated comorbidities, to achieve more personalized and accurate treatments.
Collapse
Affiliation(s)
- Judith Tirado-Muñoz
- Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Francina Fonseca
- Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Institute of Neuropsychiatry and Addictions, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Magi Farré
- Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germas Trias (HUGTP-IGTP), Badalona, Spain; Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marta Torrens
- Addiction Research Group, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Institute of Neuropsychiatry and Addictions, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
8
|
Lazary J, Eszlari N, Juhasz G, Bagdy G. A functional variant of CB2 receptor gene interacts with childhood trauma and FAAH gene on anxious and depressive phenotypes. J Affect Disord 2019; 257:716-722. [PMID: 31382124 DOI: 10.1016/j.jad.2019.07.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Accumulating data suggest that CB2 receptor plays a crucial role in development of anxiety via regulatory function of stress response and neuroimmune crosstalk. Although animal experiments confirm this relationship, relevant human genetic studies on CB2 receptor gene (CNR2) in association with affective phenotype are absent. METHODS CNR2 R63Q and FAAH C385A functional polymorphisms were genotyped of 921 volunteers from the general population. Phenotypic variables were measured by the Zung Self-related Depression Scale (ZSDS), The State-Trait Anxiety Inventory (Trait subscale, STAI-T) and the depressive and anxious subscales of the Brief Symptom Inventory (BSI-DEP and BSI-ANX). Early life trauma was assesssed by the Childhood Trauma Questionnaire (CHQ). Using general linear models we tested possible associations between phenotypic variance and genotype distribution. RESULTS There was a significant main effect of RR genotype of R63Q on ZSDS score (p = 0.007) and a remarkble interacting effect of CHQ and R63Q on scores of ZSDS, STAI-T and BSI-ANX scales (p = 0.009; p = 0.003; p = 0.001; respectively). R allele of R63Q and A allele of FAAH C385A were associated with significantly higher ZSDS, STAI-T and BSI-ANX scores compared to non-risk allele carriers (p = 0.009; p = 0.007; p = 0.007, respectively). The highest phenotypic scores were observed in GxGxE model (pZSDS = 0.04; pBSI-DEP = 0.006; pSTAI-T = 0.001; pBSI-ANX = 3.8 × 10-5). CONCLUSIONS In this first human genetic study on CNR2 and childhood trauma we revealed that dysfunctional CB2 receptor and FAAH can contribute to greater sensitivity for childhood trauma possibly via weaker inhibiton of inflammatory and overactivated HPA axis.
Collapse
Affiliation(s)
- Judit Lazary
- Nyírő Gyula National Institute of Psychiatry and Addictions, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Science, Semmelweis University, Budapest, Hungary.
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Budapest, Hungary
| | - Gabriella Juhasz
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Science, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Budapest, Hungary; Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gyorgy Bagdy
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Science, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Budapest, Hungary
| |
Collapse
|
9
|
McDonnell-Dowling K, Miczek KA. Alcohol, psychomotor-stimulants and behaviour: methodological considerations in preclinical models of early-life stress. Psychopharmacology (Berl) 2018; 235:909-933. [PMID: 29511806 DOI: 10.1007/s00213-018-4852-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 02/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND In order to assess the risk associated with early-life stress, there has been an increase in the amount of preclinical studies investigating early-life stress. There are many challenges associated with investigating early-life stress in animal models and ensuring that such models are appropriate and clinically relevant. OBJECTIVES The purpose of this review is to highlight the methodological considerations in the design of preclinical studies investigating the effects of early-life stress on alcohol and psychomotor-stimulant intake and behaviour. METHODS The protocols employed for exploring early-life stress were investigated and summarised. Experimental variables include animals, stress models, and endpoints employed. RESULTS The findings in this paper suggest that there is little consistency among these studies and so the interpretation of these results may not be as clinically relevant as previously thought. CONCLUSION The standardisation of these simple stress procedures means that results will be more comparable between studies and that results generated will give us a more robust understanding of what can and may be happening in the human and veterinary clinic.
Collapse
Affiliation(s)
| | - Klaus A Miczek
- Department of Psychology, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA
| |
Collapse
|
10
|
Enhanced Autophagy Contributes to Protective Effects of GM1 Ganglioside Against Aβ1-42-Induced Neurotoxicity and Cognitive Deficits. Neurochem Res 2017; 42:2417-2426. [PMID: 28497346 DOI: 10.1007/s11064-017-2266-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/18/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The aggregation of Aβ peptides, Aβ1-42 in particular, is thought to be a fundamental pathogenic mechanism leading to the neuronal damage in AD. Recently, monosialoganglioside GM1 is reported to possess pivotal neuroprotection in neurodegenerative diseases. Previous studies have focused on the conformational dynamics and the biochemical interaction of the amyloid-peptide with the GM1 ganglioside, as well as the protective effect of GM1 on cognition. However, the phenomenon of autophagy with regard to neuronal dysfunction in AD is less investigated. In the present study, GM1 treatment were investigated in an AD mouse model and cultured PC12 dells to examine cognition-protective and neuroprotective effects of GM1. Furthermore, GM1 was found to induce autophagy via testing light chain 3 (LC3), Beclin1, neighbor of BRCA1 gene 1 protein and p62 (a substrate of LC3). Chloroquine, an inhibitor of lysosomal, was used to exclude the interference of lysosome, which could fuse with autophagosome and then clear it. In the presence of the inhibitor of autophagy (3-methyladenine; 3-MA), the protective effect of GM1 on PC12 cells in Aβ (1-42) induced toxic conditions was diminished. Interestingly, the expression of histone deacetylase 1 was increased in PC12 cells when treated with GM1, indicating that autophagy might be activated by GM1 through a pathway integrates protein acetylation. This study provides a novel insight into the protective role of GM1 against Aβ (1-42)-induced neurotoxicity via enhancing autophagy.
Collapse
|
11
|
A two-hit model of suicide-trait-related behaviors in the context of a schizophrenia-like phenotype: Distinct effects of lithium chloride and clozapine. Physiol Behav 2016; 156:48-58. [DOI: 10.1016/j.physbeh.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 01/30/2023]
|
12
|
Environmental enrichment does not reverse the effects of maternal deprivation on NMDAR and Balb/c mice behaviors. Brain Res 2015; 1624:479-488. [PMID: 26300221 DOI: 10.1016/j.brainres.2015.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/06/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
Abstract
Early adverse life experiences have been associated with anxiety-like behavior and memory impairment. N-methyl-d-aspartate receptors (NMDARs) play an important role in brain development. Enriched environments are known to positively influence emotional and cognitive functions in the brain. We examined the effects of maternal deprivation (MD) on NMDAR subunits in the hippocampus, locomotor activity, anxiety behaviors, and learning-memory performance of Balb/c mice. We also examined whether these effects could be reversed by raising the offspring in an enriched environment. The mice were separated from their mothers for a single 24h episode on postnatal day (PND) 9. The mice were weaned on day 21 and were housed under either standard (SE) or enriched (EE) environmental conditions. Emotional behaviors and cognitive processes of mice were evaluated using an open field (OF) test, an elevated plus maze (EPM) test, and a Morris water-maze (MWM). NMDAR subunits (GluN1, GluN2A, and GluN2B) mRNA expression levels in the hippocampus were examined by real-time PCR. In OF, MD had no effect on horizontal locomotor activity. MD increased anxiety-like behaviors in the EPM and decreased spatial learning performance in MWM; however, these effects were not reversed by EE. MD (in SE and EE conditions) increased GluN1, GluN2A, and GluN2B mRNA expressions in the hippocampus. In conclusion, MD led to the deterioration of the emotional and cognitive processes during adulthood. Moreover, environmental enrichment did not reverse the deleterious effects of the MD on emotional and cognitive functions and increased the NMDAR levels.
Collapse
|
13
|
Acute social defeat stress increases the conditioned rewarding effects of cocaine in adult but not in adolescent mice. Pharmacol Biochem Behav 2015; 135:1-12. [DOI: 10.1016/j.pbb.2015.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023]
|
14
|
Early maternal deprivation enhances voluntary alcohol intake induced by exposure to stressful events later in life. Neural Plast 2015; 2015:342761. [PMID: 25821601 PMCID: PMC4363574 DOI: 10.1155/2015/342761] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/14/2015] [Accepted: 01/29/2015] [Indexed: 11/24/2022] Open
Abstract
In the present study, we aimed to assess the impact of early life stress, in the form of early maternal deprivation (MD, 24 h on postnatal day, pnd, 9), on voluntary alcohol intake in adolescent male and female Wistar rats. During adolescence, from pnd 28 to pnd 50, voluntary ethanol intake (20%, v/v) was investigated using the two-bottle free choice paradigm. To better understand the relationship between stress and alcohol consumption, voluntary alcohol intake was also evaluated following additional stressful events later in life, that is, a week of alcohol cessation and a week of alcohol cessation combined with exposure to restraint stress. Female animals consumed more alcohol than males only after a second episode of alcohol cessation combined with restraint stress. MD did not affect baseline voluntary alcohol intake but increased voluntary alcohol intake after stress exposure, indicating that MD may render animals more vulnerable to the effects of stress on alcohol intake. During adolescence, when animals had free access to alcohol, MD animals showed lower body weight gain but a higher growth rate than control animals. Moreover, the higher growth rate was accompanied by a decrease in food intake, suggesting an altered metabolic regulation in MD animals that may interact with alcohol intake.
Collapse
|
15
|
Lopez-Rodriguez AB, Llorente-Berzal A, Garcia-Segura LM, Viveros MP. Sex-dependent long-term effects of adolescent exposure to THC and/or MDMA on neuroinflammation and serotoninergic and cannabinoid systems in rats. Br J Pharmacol 2014; 171:1435-47. [PMID: 24236988 PMCID: PMC3954483 DOI: 10.1111/bph.12519] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 11/07/2013] [Accepted: 11/13/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Many young people consume ecstasy as a recreational drug and often in combination with cannabis. In this study, we aimed to mimic human consumption patterns and investigated, in male and female animals, the long-term effects of Δ(9) -tetrahydrocannabinol (THC) and 3,4-methylenedioxymethamphetamine (MDMA) on diverse neuroinflammation and neurotoxic markers. EXPERIMENTAL APPROACH Male and female Wistar rats were chronically treated with increasing doses of THC and/or MDMA during adolescence. The effects of THC and/or MDMA on glial reactivity and on serotoninergic and cannabinoid systems were assessed by immunohistochemistry in the hippocampus and parietal cortex. KEY RESULTS THC increased the area staining for glial fibrilar acidic protein in both sexes. In males, both drugs, either separately or in combination, increased the proportion of reactive microglia cells [ionized calcium binding adaptor molecule 1 (Iba-1)]. In contrast, in females, each drug, administered alone, decreased of this proportion, whereas the combination of both drugs resulted in a 'normalization' to control values. In males, MDMA reduced the number of SERT positive fibres, THC induced the opposite effect and the group receiving both drugs did not significantly differ from the controls. In females, MDMA reduced the number of SERT positive fibres and the combination of both drugs counteracted this effect. THC also reduced immunostaining for CB1 receptors in females and this effect was aggravated by the combination with MDMA. CONCLUSIONS AND IMPLICATIONS Adolescent exposure of rats to THC and/or MDMA induced long-term, sex-dependent neurochemical and glial alterations, and revealed interactions between the two drugs. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- Ana Belen Lopez-Rodriguez
- Department of Animal Physiology (Animal Physiology II), Faculty of Biology, Complutense University of Madrid – Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC)Madrid, Spain
| | - Alvaro Llorente-Berzal
- Department of Animal Physiology (Animal Physiology II), Faculty of Biology, Complutense University of Madrid – Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)Madrid, Spain
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC)Madrid, Spain
| | - Maria-Paz Viveros
- Department of Animal Physiology (Animal Physiology II), Faculty of Biology, Complutense University of Madrid – Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)Madrid, Spain
| |
Collapse
|
16
|
Cox BM, Shah MM, Cichon T, Tancer ME, Galloway MP, Thomas DM, Perrine SA. Behavioral and neurochemical effects of repeated MDMA administration during late adolescence in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:229-35. [PMID: 24121061 PMCID: PMC4348097 DOI: 10.1016/j.pnpbp.2013.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/27/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
Abstract
Adolescents and young adults disproportionately abuse 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy'); however, since most MDMA research has concentrated on adults, the effects of MDMA on the developing brain remain obscure. Therefore, we evaluated place conditioning to MDMA (or saline) during late adolescence and assessed anxiety-like behavior and monoamine levels during abstinence. Rats were conditioned to associate 5 or 10mg/kg MDMA or saline with contextual cues over 4 twice-daily sessions. Five days after conditioning, anxiety-like behavior was examined with the open field test and brain tissue was collected to assess serotonin (5-hydroxytryptamine, 5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal raphe, amygdala, and hippocampus by high-pressure liquid chromatography (HPLC). In a separate group of rats, anxiety-like and avoidant behaviors were measured using the light-dark box test under similar experimental conditions. MDMA conditioning caused a place aversion at 10, but not at 5, mg/kg, as well as increased anxiety-like behavior in the open field and avoidant behavior in light-dark box test at the same dose. Additionally, 10mg/kg MDMA decreased 5-HT in the dorsal raphe, increased 5-HT and 5-HIAA in the amygdala, and did not alter levels in the hippocampus. Overall, we show that repeated high (10mg/kg), but not low (5mg/kg), dose MDMA during late adolescence in rats increases anxiety-like and avoidant behaviors, accompanied by region-specific alterations in 5-HT levels during abstinence. These results suggest that MDMA causes a region-specific dysregulation of the serotonin system during adolescence that may contribute to maladaptive behavior.
Collapse
Affiliation(s)
- Brittney M. Cox
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mrudang M. Shah
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA,Research Service, John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Teri Cichon
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manuel E. Tancer
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Matthew P. Galloway
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA,Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - David M. Thomas
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA,Research Service, John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA,Corresponding author at: Wayne State University School of Medicine, Department of Psychiatry and Behavioral Neurosciences, 2353 Scott Hall, 540 East Canfield, Detroit, MI 48201, USA. Tel.: +1 313 577 9989 (office), +1 313 577 9960 (lab); fax: +1 313 577 9958. (S.A. Perrine)
| |
Collapse
|