1
|
Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: a proposed mechanistic insight. Mol Biol Rep 2022; 49:10101-10113. [PMID: 35657450 DOI: 10.1007/s11033-022-07594-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Neurodegenerative disorders are a diverse variety of diseases that can be distinguished from developing degeneration of neurons in the CNS. Several alkaloids have shown mounting effects in neurodegenerative disorders, and berberine is one of them. Demethyleneberberine is a metabolite of berberine that has better blood-brain barrier crossing capacity. Demethyleneberberine possesses anti-inflammatory, anti-oxidant, and mitochondrial targeting properties. However, neither the pharmacological action nor the molecular mechanism of action of demethyleneberberine on neurodegenerative disorders has been explored yet. MATERIALS AND METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elseveier) databases was carried out with the help of keywords like "Demethyleneberberine; neuroinflammation; oxidative stress; Neuroprotective; Neurodegenerative disorders" till date. CONCLUSION This review focus on the neuroprotective potential of demethyleneberberine in neurodegenerative disorders by attenuating different pathways, i.e., NF-κB, MAPK, and AMPK signalling.
Collapse
|
2
|
Chen ZZ, Niu YY. Stem cell therapy for Parkinson's disease using non-human primate models. Zool Res 2019; 40:349-357. [PMID: 31343853 PMCID: PMC6755115 DOI: 10.24272/j.issn.2095-8137.2019.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022] Open
Abstract
Stem cell therapy (SCT) for Parkinson's disease (PD) has received considerable attention in recent years. Non-human primate (NHP) models of PD have played an instrumental role in the safety and efficacy of emerging PD therapies and facilitated the translation of initiatives for human patients. NHP models of PD include primates with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, who are responsive to dopamine replacement therapies, similar to human PD patients. Extensive research in SCT has been conducted to better treat the progressive dopaminergic neurodegeneration that underlies PD. For effective application of SCT in PD, however, a number of basic parameters still need to be tested and optimized in NHP models, including preparation and storage of cells for engraftment, methods of transplantation, choice of target sites, and timelines for recovery. In this review, we discuss the current status of NHP models of PD in stem cell research. We also analyze the advances and remaining challenges for successful clinical translation of SCT for this persistent disease.
Collapse
Affiliation(s)
- Zhen-Zhen Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming Yunnan 650500
| | - Yu-Yu Niu
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming Yunnan 650500, China; E-mail:
| |
Collapse
|
3
|
Eo H, Kwon Y, Huh E, Sim Y, Choi JG, Jeong JS, Du XF, Soh HY, Hong SP, Kim Pak Y, Oh MS. Protective effects of DA-9805 on dopaminergic neurons against 6-hydroxydopamine-induced neurotoxicity in the models of Parkinson's disease. Biomed Pharmacother 2019; 117:109184. [PMID: 31387167 DOI: 10.1016/j.biopha.2019.109184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 11/19/2022] Open
Abstract
With the elderly population rapidly growing, the prevalence of Parkinson's disease (PD) is quickly increasing because neurodegenerative disorders are usually late-onset. Herbal medicines and formula are adjuvant therapies of conventional PD agents, which result in serious side effects with long-term use. This study evaluated the neuroprotective effects of DA-9805, a standardized herbal formula that consists of an ethanolic extract of Moutan Cortex Radix, Angelica Dahuricae Radix, and Bupleuri Radix against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity in vitro and in vivo. In PC12 cells, DA-9805 at concentrations of 1 and 10 μg/mL ameliorated cell viability, which was reduced by 6-OHDA. In addition, DA-9805 activated the extracellular-regulated kinase-nuclear transcription factor-erythroid 2-related factor 2 pathway, subsequently stimulating antioxidative enzymes such as NAD(P)H:quinone oxidoreductase 1 and catalase and suppressing apoptosis. Furthermore, DA-9805 prevented 6-OHDA-induced movement impairment, as well as a decrease of dopaminergic neurons and dopamine transmission in rodents. Taken together, these results suggest that the mixed herbal formula DA-9805 may be a pharmaceutical agent for preventing or improving PD.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Youngji Kwon
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Eugene Huh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Medical Science of Meridian, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Yeomoon Sim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jin Gyu Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jin Seok Jeong
- R&D Center of Dong-A ST, Yong-in, Kyungki-do, 17073, Republic of Korea
| | - Xiao Fei Du
- R&D Center of Dong-A ST, Yong-in, Kyungki-do, 17073, Republic of Korea
| | - Hye Yeon Soh
- R&D Center of Dong-A ST, Yong-in, Kyungki-do, 17073, Republic of Korea
| | - Seon-Pyo Hong
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Youngmi Kim Pak
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Ukgansan protects dopaminergic neurons from 6-hydroxydopamine neurotoxicity via activation of the nuclear factor (erythroid-derived 2)-like 2 factor signaling pathway. Neurochem Int 2018; 122:208-215. [PMID: 30508559 DOI: 10.1016/j.neuint.2018.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
The sustenance of redox homeostasis in brain is the crucial factor to treat Parkinson's disease (PD). Nuclear factor (erythroid-derived 2)-like 2 factor (Nrf2)-mediated antioxidant response is well known for the main cellular endogenous defense mechanisms against oxidative stress. This study investigated for the first time the effects and possible mechanisms of action of Ukgansan on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in both in vitro and in vivo models of PD. We investigated the protective effect of Ukgansan against 6-OHDA with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. In addition, we demonstrated that Ukgansan significantly increased the expression of antioxidant response elements (ARE) and pro-survival protein as Bcl2 and suppressed the expression of pro-apoptotic factors, such as Bax, cytochrome c, and caspase-3 using immunoblotting. For the in vivo study, we used a mouse model of PD involving stereotaxic injection of 6-OHDA into the striatum (ST). Ukgansan alleviated motor dysfunctions induced by 6-OHDA followed by pole, open-field, and rotation tests. Dopaminergic neuronal loss and Nrf2 activation were evaluated by immunohistochemistry in the mouse ST and substantia nigra pars compacta (SNpc) regions. Ukgansan significantly protected dopaminergic neurons from 6-OHDA toxicity in mouse ST and SNpc by activating Nrf2. These results indicate that Ukgansan inhibited 6-OHDA-induced dopaminergic neuronal cell damage via activation of Nrf2 and its related factors in 6-OHDA-induced dopaminergic loss in vitro and in vivo. Thus, Ukgansan might delay the progression of PD via maintenance of redox homeostasis.
Collapse
|
5
|
Tong H, Zhang X, Meng X, Lu L, Mai D, Qu S. Simvastatin Inhibits Activation of NADPH Oxidase/p38 MAPK Pathway and Enhances Expression of Antioxidant Protein in Parkinson Disease Models. Front Mol Neurosci 2018; 11:165. [PMID: 29872377 PMCID: PMC5972184 DOI: 10.3389/fnmol.2018.00165] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that oxidative stress is involved in the pathogenesis of Parkinson disease (PD). Simvastatin has been suggested to protect against oxidative stress in several diseases. However, the molecular mechanisms by which simvastatin protects against neuropathology and oxidative damage in PD are poorly elucidated. In this study, we aimed to investigate the potential neuroprotective effects of simvastatin owing to its anti-oxidative properties in 6-hydroxydopamine (6-OHDA)-treated SH-SY5Y cells and mice. The results of 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence and CCK-8 assay demonstrated that simvastatin reduced intracellular reactive oxygen species (ROS) levels and reversed apoptosis in 6-OHDA-treated SH-SY5Y cells. Mechanistic studies revealed that 6-OHDA-induced activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase/p38 mitogen-activated protein kinase (MAPK) pathway was inhibited and nuclear factor-κB (NF-κB) nuclear transcription decreased in SH-SY5Y cells after simvastatin treatment. Enhanced expression levels of superoxide dismutase (SOD), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and glutamate-cysteine ligase modifier subunit (GCLM) were observed after simvastatin treatment in 6-OHDA-treated SH-SY5Y cells. In vivo studies revealed that administration of simvastatin by gavage decreased limb-use asymmetry and apomorphine-induced rotations in 6-OHDA-lesioned mice. Simvastatin increased dopaminergic neurons and reduced protein tyrosine nitration and gliosis in the midbrain of PD mice. An inhibitory effect on activation of the NADPH oxidase/p38 MAPK was observed, and increased antioxidant protein expression in the midbrain were seen in the simvastatin plus 6-OHDA group compared with the 6-OHDA-lesioned group. Taken together, these results demonstrate that simvastatin might inhibit the activation of NADPH oxidase/p38 MAPK pathway, enhance antioxidant protein expression and protect against oxidative stress, thereby providing a novel antioxidant mechanism that has therapeutic validity.
Collapse
Affiliation(s)
- Huichun Tong
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xingjun Meng
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Lingli Lu
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Dongmei Mai
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Shaogang Qu
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
6
|
Fu Q, Song R, Yang Z, Shan Q, Chen W. 6-Hydroxydopamine induces brain vascular endothelial inflammation. IUBMB Life 2017; 69:887-895. [PMID: 29048735 DOI: 10.1002/iub.1685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Qizhi Fu
- Department of Neurology; The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology; Luoyang Henan China
| | - Runluo Song
- Department of Neurology; The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology; Luoyang Henan China
| | - Zhongxi Yang
- Department of Neurosurgery; The First Hospital of Jilin University; Changchun Jilin China
| | - Qi Shan
- Department of Neurology; The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology; Luoyang Henan China
| | - Wenna Chen
- Department of Neurology; The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology; Luoyang Henan China
| |
Collapse
|
7
|
Hernandez-Baltazar D, Zavala-Flores L, Villanueva-Olivo A. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2015.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
8
|
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther 2017; 23:5-22. [PMID: 27873462 PMCID: PMC6492703 DOI: 10.1111/cns.12655] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological-based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Elham Amini
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Zahurin Mohamed
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Raymond Azman Ali
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | | | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
9
|
Austin KW, Ameringer SW, Cloud LJ. An Integrated Review of Psychological Stress in Parkinson's Disease: Biological Mechanisms and Symptom and Health Outcomes. PARKINSON'S DISEASE 2016; 2016:9869712. [PMID: 28058129 PMCID: PMC5183774 DOI: 10.1155/2016/9869712] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/28/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is characterized by complex symptoms and medication-induced motor complications that fluctuate in onset, severity, responsiveness to treatment, and disability. The unpredictable and debilitating nature of PD and the inability to halt or slow disease progression may result in psychological stress. Psychological stress may exacerbate biological mechanisms believed to contribute to neuronal loss in PD and lead to poorer symptom and health outcomes. The purpose of this integrated review is to summarize and appraise animal and human research studies focused on biological mechanisms, symptom, and health outcomes of psychological stress in PD. A search of the electronic databases PubMed/Medline and CINAHL from 1980 to the present using the key words Parkinson's disease and stress, psychological stress, mental stress, and chronic stress resulted in 11 articles that met inclusion criteria. The results revealed significant associations between psychological stress and increased motor symptom severity and loss of dopamine-producing neurons in animal models of PD and between psychological stress and increased symptom severity and poorer health outcomes in human subjects with PD. Further research is needed to fully elucidate the underlying biological mechanisms responsible for these relationships, for the ultimate purpose of designing targeted interventions that may modify the disease trajectory.
Collapse
Affiliation(s)
- Kim Wieczorek Austin
- Virginia Commonwealth University School of Nursing, 1100 East Leigh Street, Richmond, VA 23219, USA
| | - Suzanne Weil Ameringer
- Virginia Commonwealth University School of Nursing, 1100 East Leigh Street, Richmond, VA 23219, USA
| | - Leslie Jameleh Cloud
- Virginia Commonwealth University Parkinson's and Movement Disorders Center and VCU Health Neuroscience, Orthopaedic, and Wellness Center, 11958 West Broad Street, Richmond, VA 23233, USA
| |
Collapse
|
10
|
Xu MX, Zhu YF, Chang HF, Liang Y. Nanoceria restrains PM2.5-induced metabolic disorder and hypothalamus inflammation by inhibition of astrocytes activation related NF-κB pathway in Nrf2 deficient mice. Free Radic Biol Med 2016; 99:259-272. [PMID: 27554971 DOI: 10.1016/j.freeradbiomed.2016.08.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 01/09/2023]
Abstract
Increasing studies demonstrated that air pollution (PM2.5) plays a significant role in metabolic and neurological diseases. Unfortunately, there is no direct testimony of this, and yet the molecular mechanism by which the occurrence remains unclear. In this regard, we investigated the role of NF-κB and Nrf2 signaling in PM2.5-induced metabolic disorders and neuroinflammation, and further confirmed whether Nrf2 deficiency promoted PM2.5-induced inflammatory response by up regulating astrocytes activation and nerve injury via modulating NF-κB signaling pathways. Present results found that, indeed, PM2.5 challenges results in glucose tolerance, insulin resistance, dysarteriotony, peripheral inflammation, nerve injury and hypothalamus oxidative stress through astrocytes activation related NF-κB pathway in Nrf2 deficient mice. Moreover, in vitro study, we confirmed that activated astrocytes induced by PM2.5 were involved in pathogenesis of hypothalamic inflammation, which were significantly associated with NF-κB signaling. Nanoceria as potential anti-inflammatory and anti-oxidant stress biomaterial has gained increasing attention. Moderate nanoceria treatment is able to restrain PM2.5-induced metabolic syndrome and inflammation. Inhibition of astrocytes activation related NF-κB and enhancement of Nrf2 by cerium oxide were observed in vivo and in vitro, suggesting cerium oxide inhibited hypothalamic inflammation and nerve injury by altering hypothalamic neuroendocrine alterations and decreasing glial cells activation. In addition, NF-κB inhibitor pyrollidine dithiocarbamate (PDTC) treated primary astrocytes directly determined Nrf2 pathway could be up regulated by dose-dependent nanoceria. These results suggest a new therapeutic approach or target to protect against air pollution related diseases by cerium oxide treatment.
Collapse
Affiliation(s)
- Min-Xuan Xu
- Fenchem Ingredient Technology Company & Nanjing University, Nanjing 210023, PR China
| | - Yan-Fang Zhu
- Fenchem Ingredient Technology Company & Nanjing University, Nanjing 210023, PR China
| | - Hsiao-Feng Chang
- Fenchem Ingredient Technology Company & Nanjing University, Nanjing 210023, PR China
| | - Ying Liang
- Research Institute of Leisure Industry, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
11
|
Lee H, Kim SW, Lee HK, Luo L, Kim ID, Lee JK. Upregulation of Nrf2–p300 mediates anti-inflammatory effects of curcumin in microglia by downregulating p65–p300. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1223169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
12
|
Kou X, Li J, Bian J, Yang Y, Yang X, Fan J, Jia S, Chen N. Ampelopsin attenuates 6-OHDA-induced neurotoxicity by regulating GSK-3β/NRF2/ARE signalling. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Snow WM, Pahlavan PS, Djordjevic J, McAllister D, Platt EE, Alashmali S, Bernstein MJ, Suh M, Albensi BC. Morris Water Maze Training in Mice Elevates Hippocampal Levels of Transcription Factors Nuclear Factor (Erythroid-derived 2)-like 2 and Nuclear Factor Kappa B p65. Front Mol Neurosci 2015; 8:70. [PMID: 26635523 PMCID: PMC4649017 DOI: 10.3389/fnmol.2015.00070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022] Open
Abstract
Research has identified several transcription factors that regulate activity-dependent plasticity and memory, with cAMP-response element binding protein (CREB) being the most well-studied. In neurons, CREB activation is influenced by the transcription factor nuclear factor kappa B (NF-κB), considered central to immunity but more recently implicated in memory. The transcription factor early growth response-2 (Egr-2), an NF-κB gene target, is also associated with learning and memory. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in pathological conditions, has not been studied in normal memory. Given that numerous transcription factors implicated in activity-dependent plasticity demonstrate connections to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2, Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after training in the Morris water maze, a hippocampal-dependent spatial memory task. After a 6-day acquisition period, time to locate the hidden platform decreased in the Morris water maze. Mice spent more time in the target vs. non-target quadrants of the maze, suggestive of recall of the platform location. Western blot data revealed a decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65, Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all tested animals. These data demonstrate that training in a spatial memory task results in alterations in and associations with particular transcription factors in the hippocampus, including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein levels caution against its use as a loading control in immunoblot studies examining activity-dependent plasticity, learning, and memory.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada ; Faculty of Health Sciences, Department of Pharmacology and Therapeutics, College of Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Payam S Pahlavan
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada ; Faculty of Health Sciences, Department of Pharmacology and Therapeutics, College of Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada ; Faculty of Health Sciences, Department of Pharmacology and Therapeutics, College of Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Danielle McAllister
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada
| | - Eric E Platt
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada
| | - Shoug Alashmali
- Department of Human Nutritional Sciences, University of Manitoba Winnipeg, MB, Canada
| | - Michael J Bernstein
- Department of Psychological and Social Sciences, Pennsylvania State University Abington Abington, PA, USA
| | - Miyoung Suh
- Department of Human Nutritional Sciences, University of Manitoba Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada ; Faculty of Health Sciences, Department of Pharmacology and Therapeutics, College of Medicine, University of Manitoba Winnipeg, MB, Canada ; Faculty of Engineering, Department of Electrical and Computer Engineering, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
14
|
Indirubin-3-Oxime Effectively Prevents 6OHDA-Induced Neurotoxicity in PC12 Cells via Activating MEF2D Through the Inhibition of GSK3β. J Mol Neurosci 2015; 57:561-70. [PMID: 26346600 DOI: 10.1007/s12031-015-0638-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
Indirubin-3-oxime (I3O), a synthetic derivative of indirubin, was originally designed as potent inhibitors of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3β (GSK3β) for leukemia therapy. In the current study, we have shown, for the first time, that I3O prevented 6-hydroxydopamine (6OHDA)-induced neuronal apoptosis and intracellular reactive oxygen species accumulation in PC12 cells in a concentration-dependent manner. GSK3β inhibitors but not CDK5 inhibitors reduced the neurotoxicity induced by 6OHDA. Moreover, the activation of GSK3β was observed after 6OHDA treatment. Furthermore, 6OHDA substantially decreased the transcriptional activity of myocyte enhancer factor 2D (MEF2D), a transcription factor that plays an important role in dopaminergic neuron survival, and reduced nuclear localized MEF2D expression. Interestingly, indirubin-3-oxime and GSK3β inhibitors prevented 6OHDA-induced dysregulation of MEF2D. In addition, short hairpin RNA-mediated decrease of MEF2D expression significantly abolished the neuroprotective effects of indirubin-3-oxime. Collectively, our results strongly suggested that indirubin-3-oxime prevented 6OHDA-induced neurotoxicity via activating MEF2D, possibly through the inhibition of GSK3β. In view of the capability of indirubin-3-oxime to cross the blood-brain barrier, our findings further indicated that indirubin-3-oxime might be a novel drug candidate for neurodegenerative disorders, including Parkinson's disease in particular.
Collapse
|
15
|
Hernandez-Baltazar D, Zavala-Flores LM, Villanueva-Olivo A. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurologia 2015; 32:533-539. [PMID: 26304655 DOI: 10.1016/j.nrl.2015.06.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 01/09/2023] Open
Abstract
The neurotoxin 6-hydroxydopamine (6-OHDA) is widely used to induce models of Parkinson's disease (PD). We now know that the model induced by 6-OHDA does not include all PD symptoms, although it does reproduce the main cellular processes involved in PD, such as oxidative stress, neurodegeneration, neuroinflammation, and neuronal death by apoptosis. In this review we analyse the factors affecting the vulnerability of dopaminergic neurons as well as the close relationships between neuroinflammation, neurodegeneration, and apoptosis in the 6-OHDA model. Knowledge of the mechanisms involved in neurodegeneration and cell death in this model is the key to identifying potential therapeutic targets for PD.
Collapse
Affiliation(s)
- D Hernandez-Baltazar
- Cátedra CONACyT, Dirección Adjunta de Desarrollo Científico CONACyT, México, D. F., México; Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México.
| | - L M Zavala-Flores
- Centro de Investigación Biomédica del Noreste, IMSS, Monterrey, Nuevo León, México
| | - A Villanueva-Olivo
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| |
Collapse
|
16
|
Value of monitoring Nrf2 activity for the detection of chemical and oxidative stress. Biochem Soc Trans 2015; 43:657-62. [PMID: 26551708 PMCID: PMC4613517 DOI: 10.1042/bst20150044] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 02/08/2023]
Abstract
Beyond specific limits of exposure, chemical entities can provoke deleterious effects in mammalian cells via direct interaction with critical macromolecules or by stimulating the accumulation of reactive oxygen species (ROS). In particular, these chemical and oxidative stresses can underpin adverse reactions to therapeutic drugs, which pose an unnecessary burden in the clinic and pharmaceutical industry. Novel pre-clinical testing strategies are required to identify, at an earlier stage in the development pathway, chemicals and drugs that are likely to provoke toxicity in humans. Mammalian cells can adapt to chemical and oxidative stress via the action of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which up-regulates the expression of numerous cell defence genes and has been shown to protect against a variety of chemical toxicities. Here, we provide a brief overview of the Nrf2 pathway and summarize novel experimental models that can be used to monitor changes in Nrf2 pathway activity and thus understand the functional consequences of such perturbations in the context of chemical and drug toxicity. We also provide an outlook on the potential value of monitoring Nrf2 activity for improving the pre-clinical identification of chemicals and drugs with toxic liability in humans.
Collapse
|
17
|
Zhang Z, Li G, Szeto SSW, Chong CM, Quan Q, Huang C, Cui W, Guo B, Wang Y, Han Y, Michael Siu KW, Yuen Lee SM, Chu IK. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 2015; 84:331-343. [PMID: 25769424 DOI: 10.1016/j.freeradbiomed.2015.02.030] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/22/2022]
Abstract
Polypharmacology-based strategies using drug combinations with different mechanisms of action are gaining increasing attention as a novel methodology to discover potentially innovative medicines for neurodegenerative disorders. We used this approach to examine the combined neuroprotective effects of two polyphenols, protocatechuic acid (PCA) and chrysin, identified from the fruits of Alpinia oxyphylla. Our results demonstrated synergistic neuroprotective effects, with chrysin enhancing the protective effects of PCA, resulting in greater cell viability and decreased lactate dehydrogenase release from 6-hydroxydopamine-treated PC12 cells. Their combination also significantly attenuated chemically induced dopaminergic neuron loss in both zebrafish and mice. We examined the molecular mechanisms underlying these collective cytoprotective effects through proteomic analysis of treated PC12 cells, resulting in the identification of 12 regulated proteins. Two were further characterized, leading to the determination that pretreatment with PCA and chrysin resulted in (i) increased nuclear factor-erythroid 2-related factor 2 protein expression and transcriptional activity; (ii) modulation of cellular redox status with the upregulated expression of hallmark antioxidant enzymes, including heme oxygenase-1, superoxide dismutase, and catalase; and (iii) decreased levels of malondialdehyde, a known lipid peroxidation product. Treatment with PCA and chrysin also inhibited activation of nuclear factor-κB and expression of inducible nitric oxide synthase. Our findings suggest that natural products, when used in combination, can be effective potential therapeutic agents for treating diseases such as Parkinson disease. A therapy involving both PCA and chrysin exhibits its enhanced neuroprotective effects through a combination of cellular mechanisms: antioxidant cytoprotection and anti-inflammation.
Collapse
Affiliation(s)
- Zaijun Zhang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Guohui Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Samuel S W Szeto
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Cheong Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Quan Quan
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Wei Cui
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hong Kong, China
| | - Baojian Guo
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University, Guangdong, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University, Guangdong, China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hong Kong, China
| | - K W Michael Siu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Granados-Castro LF, Rodríguez-Rangel DS, Montaño M, Ramos C, Pedraza-Chaverri J. Wood smoke exposure induces a decrease in respiration parameters and in the activity of respiratory complexes I and IV in lung mitochondria from guinea pigs. ENVIRONMENTAL TOXICOLOGY 2015; 30:461-471. [PMID: 24255020 DOI: 10.1002/tox.21922] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 06/02/2023]
Abstract
Domestic exposure to biomass smoke represents the second cause of chronic obstructive lung disease. Previous studies have shown that exposure of guinea pigs to wood smoke is capable of generating oxidative stress in lung tissue, and this may involve a failure at a mitochondrial level, given its close relation with the production of reactive oxygen species (ROS). The purpose of this study was to evaluate, in guinea pigs exposed to wood smoke, the lung mitochondrial functionality through O2 consumption measurement and the determination of the mitochondrial complexes enzymatic activity. We found that normal and maximum respiration decreased at 15 and 30 min of wood smoke exposure, recovering its normal values at 180 min. The same behavior was observed for the respiratory control rate (RCR) and the ADP/O value. Complex I activity decreased significantly after 30 min of exposure and it returned to baseline after 180 min. The greatest alteration was observed by the decrease of 85% on complex IV activity at 30 min of exposure, which returned to control values after 180 min of exposure. It is concluded that even when wood smoke exposure induces severe mitochondrial respiration alterations at the first 30 min, it seems that there is one or many ways by which mitochondria can reinstate its normal function after 180 min of exposure.
Collapse
|
19
|
Compromised MAPK signaling in human diseases: an update. Arch Toxicol 2015; 89:867-82. [PMID: 25690731 DOI: 10.1007/s00204-015-1472-2] [Citation(s) in RCA: 773] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/09/2015] [Indexed: 02/08/2023]
Abstract
The mitogen-activated protein kinases (MAPKs) in mammals include c-Jun NH2-terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (ERK). These enzymes are serine-threonine protein kinases that regulate various cellular activities including proliferation, differentiation, apoptosis or survival, inflammation, and innate immunity. The compromised MAPK signaling pathways contribute to the pathology of diverse human diseases including cancer and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The JNK and p38 MAPK signaling pathways are activated by various types of cellular stress such as oxidative, genotoxic, and osmotic stress as well as by proinflammatory cytokines such as tumor necrosis factor-α and interleukin 1β. The Ras-Raf-MEK-ERK signaling pathway plays a key role in cancer development through the stimulation of cell proliferation and metastasis. The p38 MAPK pathway contributes to neuroinflammation mediated by glial cells including microglia and astrocytes, and it has also been associated with anticancer drug resistance in colon and liver cancer. We here summarize recent research on the roles of MAPK signaling pathways in human diseases, with a focus on cancer and neurodegenerative conditions.
Collapse
|
20
|
Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015; 27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile,
| | | |
Collapse
|
21
|
Cebrián C, Loike JD, Sulzer D. Neuroinflammation in Parkinson's disease animal models: a cell stress response or a step in neurodegeneration? Curr Top Behav Neurosci 2015; 22:237-270. [PMID: 25293443 DOI: 10.1007/7854_2014_356] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The motor symptoms of Parkinson's disease are due to the progressive degeneration of dopaminergic neurons in the substantia nigra. Multiple neuroinflammatory processes are exacerbated in Parkinson's disease, including glial-mediated reactions, increased expression of proinflammatory substances, and lymphocytic infiltration, particularly in the substantia nigra. Neuroinflammation is also implicated in the neurodegeneration and consequent behavioral symptoms of many Parkinson's disease animal models, although it is not clear whether these features emulate pathogenic steps in the genuine disorder or if some inflammatory features provide protective stress responses. Here, we compare and summarize findings on neuroinflammatory responses and effects on behavior in a wide range of toxin-based, inflammatory and genetic Parkinson's disease animal models.
Collapse
Affiliation(s)
- Carolina Cebrián
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | | | | |
Collapse
|
22
|
Alani B, Salehi R, Sadeghi P, Khodagholi F, Digaleh H, Jabbarzadeh-Tabrizi S, Zare M, Korbekandi H. Silencing of Hsp70 intensifies 6-OHDA-induced apoptosis and Hsp90 upregulation in PC12 cells. J Mol Neurosci 2015; 55:174-183. [PMID: 24729093 DOI: 10.1007/s12031-014-0298-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/26/2014] [Indexed: 11/28/2022]
Abstract
By the current study, we tried to find out the interactive mechanisms enrolled by Hsp70 and Hsp90 following the 6-hydroxydopamine (6-OHDA)-induced oxidative stress. Of heat shock protein (Hsp) family, we have previously evaluated the effects of Hsp90 gene silencing on in vitro model of Parkinson's disease and its influence on controlling the mechanisms of cell survival. Here, we extended our study to Hsp70 silencing short interfering RNA (siRNA) oligonucleotides, transfected into Pheochromocytoma (PC12) cells with/without exposure to 6-OHDA stress. In order to determine the probable effects of Hsp70 silencing on apoptotic factors, we assessed Bcl2/Bax ratio, nuclear level of PARP, and cleavage of caspase-3 under 6-OHDA stress condition. The results showed deteriorated effect of Hsp70 siRNA on apoptosis in cells exposed to only 6-OHDA. This is, at least in part, in consequence of upregulation of Hsp90, both at messenger RNA (mRNA) and protein levels. These data highlight the critical role of Hsp70 for cell survival under 6-OHDA stress condition. It could be a suggestive issue for supervision of caspase cascades by survival roles of Hsps as Hsp70 silencing resulted in apoptosis phenomenon. Convergence of Hsp70 anti-apoptotic and 6-OHDA pro-apoptotic pathways may explain intensified apoptosis following Hsp70 silencing. In addition, nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor, has been previously studied in detoxification of oxidative stress. For this issue, we tried to elucidate Hsp70 silencing impact on Nrf2, which has been shown to regulate the transcription of Hsp70, unspecifically. Besides, our investigations revealed that Hsp70 siRNA did not affect the level of Nrf2 during 6-OHDA exposure. But, it is still a dealing question and other investigations are needed to have a comprehensive perception of Hsp family signaling functions.
Collapse
Affiliation(s)
- Behrang Alani
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Applied Cell Science, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Rasoul Salehi
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Payam Sadeghi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Digaleh
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Jabbarzadeh-Tabrizi
- Center for Cancer Stem Cell Research, Department of Medicine and Biosystemic Science and Graduate School of Medical Sciences, Kyushu University Hospital, Fukuoka, Japan
| | - Mohammad Zare
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Korbekandi
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Yildirim FB, Ozsoy O, Tanriover G, Kaya Y, Ogut E, Gemici B, Dilmac S, Ozkan A, Agar A, Aslan M. Mechanism of the beneficial effect of melatonin in experimental Parkinson's disease. Neurochem Int 2014; 79:1-11. [PMID: 25263280 DOI: 10.1016/j.neuint.2014.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 09/19/2014] [Indexed: 12/21/2022]
Abstract
This study aimed to elucidate locomotor activity changes in 6-hydroxydopamine (6-OHDA) induced Parkinson's disease (PD) and investigate the possible beneficial effects of melatonin on altered levels of locomotor activity, cyclooxygenase (COX), prostaglandin E2 (PGE2), nuclear factor kappa-B (NF-κB), nitrate/nitrite and apoptosis. Male Wistar rats were divided into five groups: vehicle (V), melatonin-treated (M), 6-OHDA-injected (6-OHDA), 6-OHDA-injected + melatonin-treated (6-OHDA-Mel) and melatonin treated + 6-OHDA-injected (Mel-6-OHDA). Melatonin was administered intraperitoneally at a dose of 10 mg/kg/day for 30 days in M and Mel-6-OHDA groups, for 7 days in 6-OHDA-Mel group. Experimental PD was created stereotactically via unilateral infusion of 6-OHDA into the medial forebrain bundle (MFB). The 6-OHDA-Mel group started receiving melatonin when experimental PD was created and treatment was continued for 7 days (post-treatment). In the Mel-6-OHDA group, experimental PD was created on the 23rd day of melatonin treatment and continued for the remaining 7 days (pre- and post-treatment). Locomotor activity performance decreased in 6-OHDA group compared with vehicle; however melatonin treatment did not improve this impairment. Nuclear factor kappa Bp65 and Bcl-2 levels were significantly decreased while COX, PGE2 and caspase-3 activity were significantly increased in 6-OHDA group. Melatonin treatment significantly decreased COX, PGE2 and caspase-3 activity, increased Bcl-2 and had no effect on NF-κB levels in experimental PD. 6-Hydroxydopamine injection caused an obvious reduction in TH positive dopaminergic neuron viability as determined by immunohistochemistry. Melatonin supplementation decreased dopaminergic neuron death in 6-OHDA-Mel and Mel-6-OHDA groups compared with 6-OHDA group. Melatonin also protected against 6-OHDA-induced apoptosis, as identified by increment in Bcl-2 levels in dopaminergic neurons. The protective effect of melatonin was more prominent for most parameter following 30 days treatment (pre- and post-) than 7 days post-treatment. In summary, melatonin treatment decreased dopaminergic neuron death in experimental PD model by increasing Bcl-2 protein level and decreasing caspase-3 activity.
Collapse
Affiliation(s)
| | - Ozlem Ozsoy
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Gamze Tanriover
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| | - Yasemin Kaya
- Faculty of Medicine, Department of Anatomy, Akdeniz University, Antalya, Turkey
| | - Eren Ogut
- Faculty of Medicine, Department of Anatomy, Akdeniz University, Antalya, Turkey
| | - Burcu Gemici
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Sayra Dilmac
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| | - Ayse Ozkan
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Aysel Agar
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey.
| | - Mutay Aslan
- Faculty of Medicine, Department of Biochemistry, Akdeniz University, Antalya, Turkey
| |
Collapse
|
24
|
Yildirim FB, Ozsoy O, Tanriover G, Kaya Y, Ogut E, Gemici B, Dilmac S, Ozkan A, Agar A, Aslan M. Mechanism of the beneficial effect of melatonin in experimental Parkinson's disease. Neurochem Int 2014; 79:1-11. [DOI: https:/doi.org/10.1016/j.neuint.2014.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
|
25
|
Jing X, Shi H, Zhang C, Ren M, Han M, Wei X, Zhang X, Lou H. Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity. Neuroscience 2014; 286:131-40. [PMID: 25449120 DOI: 10.1016/j.neuroscience.2014.11.047] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 11/17/2022]
Abstract
Oxidative stress is central to the pathology of several neurodegenerative diseases, including Parkinson's disease (PD), and therapeutics designed to enhance antioxidant potential could have clinical value. In this study, we investigated whether dimethyl fumarate (DMF) has therapeutic effects in cellular and animal model of PD, and explore the role of nuclear transcription factor related to NF-E2 (Nrf2) in this process. Treatment of animals and dopaminergic SH-SY5Y cells with DMF resulted in increased nuclear levels of active Nrf2, with subsequent upregulation of antioxidant target genes. The cytotoxicity of 6-hydroxydopamine (6-OHDA) was reduced by pre-treatment with DMF in SH-SY5Y cells. The increase in the reactive oxygen species caused by 6-OHDA treatment was also attenuated by DMF in SH-SY5Y cells. The neuroprotective effects of DMF against 6-OHDA neurotoxicity were dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity and induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In vivo, DMF oral administration was shown to upregulate mRNA and protein levels of Nrf2 and Nrf2-regulated cytoprotective genes, attenuate 6-OHDA induced striatal oxidative stress and inflammation in C57BL/6 mice. Moreover, DMF ameliorated dopaminergic neurotoxicity in 6-OHDA-induced PD animal models as evidenced by amelioration of locomotor dysfunction, loss in striatal dopamine, and reductions in dopaminergic neurons in the substantia nigra and striatum. Taken together, these data strongly suggest that DMF may be beneficial for the treatment of neurodegenerative diseases like PD.
Collapse
Affiliation(s)
- X Jing
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - H Shi
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - C Zhang
- Department of Pharmacy, Jinan Women and Children's Hospital, Jinan 250012, China
| | - M Ren
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - M Han
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - X Wei
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - X Zhang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - H Lou
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
26
|
Cunha MP, Martín-de-Saavedra MD, Romero A, Egea J, Ludka FK, Tasca CI, Farina M, Rodrigues ALS, López MG. Both creatine and its product phosphocreatine reduce oxidative stress and afford neuroprotection in an in vitro Parkinson's model. ASN Neuro 2014; 6:1759091414554945. [PMID: 25424428 PMCID: PMC4357608 DOI: 10.1177/1759091414554945] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson's model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine(473)) and GSK3β (Serine(9)). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons.
Collapse
Affiliation(s)
- Mauricio Peña Cunha
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain Departamento de Bioquímica, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Florianópolis, SC, Brazil
| | - Maria D Martín-de-Saavedra
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Alejandro Romero
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | - Javier Egea
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain Instituto de Investigación Sanitaria Hospital de la Princesa, Madrid, Spain
| | - Fabiana K Ludka
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Florianópolis, SC, Brazil Department of Pharmacy, Universidade do Contestado, Canoinhas, SC, Brazil
| | - Carla I Tasca
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain
| | - Marcelo Farina
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Florianópolis, SC, Brazil
| | - Manuela G López
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
27
|
Yew MY, Koh RY, Chye SM, Othman I, Ng KY. Edible bird's nest ameliorates oxidative stress-induced apoptosis in SH-SY5Y human neuroblastoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:391. [PMID: 25308934 PMCID: PMC4210536 DOI: 10.1186/1472-6882-14-391] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/01/2014] [Indexed: 12/21/2022]
Abstract
Background Parkinson’s disease (PD) is the second most common neurodegenerative disorder affecting the senile population with manifestation of motor disability and cognitive impairment. Reactive oxygen species (ROS) is implicated in the progression of oxidative stress-related apoptosis and cell death of the midbrain dopaminergic neurons. Its interplay with mitochondrial functionality constitutes an important aspect of neuronal survival in the perspective of PD. Edible bird’s nest (EBN) is an animal-derived natural food product made of saliva secreted by swiftlets from the Aerodamus genus. It contains bioactive compounds which might confer neuroprotective effects to the neurons. Hence this study aims to investigate the neuroprotective effect of EBN extracts in the neurotoxin-induced in vitro PD model. Methods EBN was first prepared into pancreatin-digested crude extract and water extract. In vitro PD model was generated by exposing SH-SY5Y cells to neurotoxin 6-hydroxydopamine (6-OHDA). Cytotoxicity of the extracts on SH-SY5Y cells was tested using MTT assay. Then, microscopic morphological and nuclear examination, cell viability test and ROS assay were performed to assess the protective effect of EBN extracts against 6-OHDA-induced cellular injury. Apoptotic event was later analysed with Annexin V-propidium iodide flow cytometry. To understand whether the mechanism underlying the neuroprotective effect of EBN was mediated via mitochondrial or caspase-dependent pathway, mitochondrial membrane potential (MMP) measurement and caspase-3 quantification were carried out. Results Cytotoxicity results showed that crude EBN extract did not cause SH-SY5Y cell death at concentrations up to 75 μg/ml while the maximum non-toxic dose (MNTD) of water extract was double of that of crude extract. Morphological observation and nuclear staining suggested that EBN treatment reduced the level of 6-OHDA-induced apoptotic changes in SH-SY5Y cells. MTT study further confirmed that cell viability was better improved with crude EBN extract. However, water extract exhibited higher efficacy in ameliorating ROS build up, early apoptotic membrane phosphatidylserine externalization as well as inhibition of caspase-3 cleavage. None of the EBN treatment had any effect on MMP. Conclusions Current findings suggest that EBN extracts might confer neuroprotective effect against 6-OHDA-induced degeneration of dopaminergic neurons, particularly through inhibition of apoptosis. Thus EBN may be a viable nutraceutical option to protect against oxidative stress-related neurodegenerative disorders such as PD.
Collapse
|
28
|
Jiang BP, Le L, Xu LJ, Xiao PG. Minocycline inhibits ICAD degradation and the NF-κB activation induced by 6-OHDA in PC12 cells. Brain Res 2014; 1586:1-11. [PMID: 25195972 DOI: 10.1016/j.brainres.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 01/08/2023]
Abstract
6-Hydroxydopamine (6-OHDA) is a neurotoxin that is commonly employed to induce lesions of the dopaminergic pathways to generating experimental models of Parkinson's disease (PD) in rodents. Antioxidant and anti-inflammatory therapy approaches have been the focus of attention in the treatment of neurodegenerative. PD and Alzheimer's diseases, and oxidative stress have been implicated in these diseases. In this study, we investigated the neuroprotective effects of minocycline and the signalling pathway that is possibly involved in a PC12 cell model of PD. The results indicated that 6-OHDA cytotoxicity was accompanied by an increment in lactate dehydrogenase (LDH) release, an increase in caspase-3 protein activity, an increase in ROS generation, MDA content and decrease in the SOD, CAT activities and cell viability. Moreover, treatment with 6-OHDA alone for 24h resulted in ICAD degradation, increased nuclear translocation of NF-κB, and increased p53 expression. However, pretreatment with minocycline (5, 10, 20 µM) for 24h significantly reduced LDH release, reduced caspase-3 protein production, reduced ROS production, MDA content and attenuated the decrease in SOD, CAT activities and cell viability. Additionally, minocycline (20 µM) markedly decreased the levels of cleaved ICAD protein, down-regulated p53 activity and inhibited the nuclear translocation of NF-κB. The neuroprotective effects of minocycline were attributable to its potent antioxidant activities, which prevented the nuclear translocation of NF-κB and the subsequent promotion of cell death. Therefore, the present study supports the notion that minocycline may be a promising neuroprotective agent for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Bao-Ping Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Key Laboratory of Bioactive Substances and Resources Unilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Liang Le
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li-Jia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Key Laboratory of Bioactive Substances and Resources Unilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Key Laboratory of Bioactive Substances and Resources Unilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
29
|
Park SY, Kim DY, Kang JK, Park G, Choi YW. Involvement of activation of the Nrf2/ARE pathway in protection against 6-OHDA-induced SH-SY5Y cell death by α-iso-cubebenol. Neurotoxicology 2014; 44:160-8. [PMID: 24997245 DOI: 10.1016/j.neuro.2014.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 12/16/2022]
Abstract
Free radical-mediated neurodegeneration is one of the many causes of Parkinson's disease (PD). As part of our ongoing studies on the identification of biologically active Schisandra chinensis components, we have isolated and structurally elucidated α-iso-cubebenol. This study was carried out in an attempt to clarify the neuroprotective effect of α-iso-cubebenol on toxin-insulted dopaminergic neuronal death using 6-hydroxy-dopamine (6-OHDA)-induced dopaminergic SH-SY5Y cells. α-iso-cubebenol significantly attenuated the loss of mitochondrial function (MTT assay) and membrane integrity (lactate dehydrogenase assay) associated with 6-OHDA-induced neurotoxicity. Pretreatment of the cells with α-iso-cubebenol diminished the intracellular accumulation of reactive oxygen species (ROS) and calcium in response to 6-OHDA. Moreover, α-iso-cubebenol protected against 6-OHDA-induced neurotoxicity through inhibition of SH-SY5Y cell apoptosis. In addition, JC-1 staining, which is a well-established measure of mitochondrial damage, was decreased after treatment with α-iso-cubebenol. Notably, α-iso-cubebenol inhibited the release of mitochondrial flavoprotein apoptosis inducing factor (AIF) from the mitochondria to the cytosol and nucleus following 6-OHDA treatment. In addition, α-iso-cubebenol reduced the 6-OHDA-induced phosphorylation of ERK and induced the phosphorylation of PKA, PKB, and CREB in a dose-dependent manner. Moreover, α-iso-cubebenol stimulated the activation of Nrf2, a downstream target of CREB. Furthermore, α-iso-cubebenol stimulated the expression of multiple antioxidant response genes (NQO-1 and HO-1). Finally, CREB and Nrf2 siRNA transfection diminished α-iso-cubebenol-mediated neuroprotection.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Republic of Korea
| | - Do Yeon Kim
- Department of Horticultural Bioscience, Pusan National University, Miryang 627-706, Republic of Korea
| | - Jong-Koo Kang
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Geuntae Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Republic of Korea; Institute for Research &Industry Cooperation, Pusan National University, Busan 609-735, Republic of Korea
| | - Young-Whan Choi
- College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea; Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea.
| |
Collapse
|
30
|
Park SY, Son BG, Park YH, Kim CM, Park G, Choi YW. The Neuroprotective Effects of α-Iso-cubebene on Dopaminergic Cell Death: Involvement of CREB/Nrf2 Signaling. Neurochem Res 2014; 39:1759-66. [DOI: 10.1007/s11064-014-1371-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/26/2014] [Accepted: 06/21/2014] [Indexed: 01/15/2023]
|
31
|
Zhang N, Shu HY, Huang T, Zhang QL, Li D, Zhang GQ, Peng XY, Liu CF, Luo WF, Hu LF. Nrf2 signaling contributes to the neuroprotective effects of urate against 6-OHDA toxicity. PLoS One 2014; 9:e100286. [PMID: 24959672 PMCID: PMC4069024 DOI: 10.1371/journal.pone.0100286] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/26/2014] [Indexed: 01/07/2023] Open
Abstract
Background Mounting evidence shows that urate may become a biomarker of Parkinson's disease (PD) diagnosis and prognosis and a neuroprotectant candidate for PD therapy. However, the cellular and molecular mechanisms underlying its neuroprotective actions remain poorly understood. Results In this study, we showed that urate pretreatment protected dopaminergic cell line (SH-SY5Y and MES23.5) against 6-hydroxydopamine (6-OHDA)- and hydrogen peroxide- induced cell damage. Urate was found to be accumulated into SH-SY5Y cells after 30 min treatment. Moreover, urate induced NF-E2-related factor 2 (Nrf2) accumulation by inhibiting its ubiquitinationa and degradation, and also promoted its nuclear translocation; however, it did not modulate Nrf2 mRNA level or Kelch-like ECH-associated protein 1 (Keap1) expression. In addition, urate markedly up-regulated the transcription and protein expression of γ-glutamate-cysteine ligase catalytic subunit (γ-GCLC) and heme oxygenase-1 (HO-1), both of which are controlled by Nrf2 activity. Furthermore, Nrf2 knockdown by siRNA abolished the intracellular glutathione augmentation and the protection exerted by urate pretreatment. Conclusion Our findings demonstrated that urate treatment may result in Nrf2-targeted anti-oxidant genes transcription and expression by reducing Nrf2 ubiquitination and degradation and promoting its nuclear translocation, and thus offer neuroprotection on dopaminergic cells against oxidative stresses.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Hai-Yang Shu
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Tingting Huang
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Qi-Lin Zhang
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Da Li
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Guan-Qun Zhang
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Yan Peng
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Wei-Feng Luo
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- * E-mail: (LFH); (WFL)
| | - Li-Fang Hu
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmacology, Soochow University, Suzhou, Jiangsu, China
- * E-mail: (LFH); (WFL)
| |
Collapse
|
32
|
Grosso C, Valentão P, Ferreres F, Andrade PB. Bioactive marine drugs and marine biomaterials for brain diseases. Mar Drugs 2014; 12:2539-89. [PMID: 24798925 PMCID: PMC4052305 DOI: 10.3390/md12052539] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022] Open
Abstract
Marine invertebrates produce a plethora of bioactive compounds, which serve as inspiration for marine biotechnology, particularly in drug discovery programs and biomaterials development. This review aims to summarize the potential of drugs derived from marine invertebrates in the field of neuroscience. Therefore, some examples of neuroprotective drugs and neurotoxins will be discussed. Their role in neuroscience research and development of new therapies targeting the central nervous system will be addressed, with particular focus on neuroinflammation and neurodegeneration. In addition, the neuronal growth promoted by marine drugs, as well as the recent advances in neural tissue engineering, will be highlighted.
Collapse
Affiliation(s)
- Clara Grosso
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, Campus University Espinardo, Murcia 30100, Spain.
| | - Paula B Andrade
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| |
Collapse
|
33
|
Shukla A, Mohapatra TM, Parmar D, Seth K. Neuroprotective potentials of neurotrophin rich olfactory ensheathing cell's conditioned media against 6OHDA-induced oxidative damage. Free Radic Res 2014; 48:560-71. [PMID: 24528157 DOI: 10.3109/10715762.2014.894636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
On the basis of recent reports, we propose that impaired neurotrophin signaling (PI3k/Akt), low antioxidant levels, and generation of reactive oxygen species (ROS) conjointly participate in the progressive events responsible for the dopaminergic cell loss in Parkinson's disease (PD). In the present study we tried to target these deficits collectively through multiple neurotrophic factors (NTFs) support in the form of Olfactory Ensheathing Cell's Conditioned Media (OEC CM) using human SH-SY5Y neuroblastoma cell line exposed to 6 hydroxydopamine (6OHDA). 6OHDA exposure induced, oxidative stress-mediated apoptotic cell death viz. enhanced ROS generation, diffused cytosolic cytochrome c (cyt c), impaired Bcl-2: Bax levels along with decrease in GSH content. These changes were accompanied by loss in Akt phosphorylation and TH levels in SH-SY5Y cells. OEC CM significantly checked apoptotic cell death by preserving pAkt levels which coincided with enhanced GSH and suppressed oxidative injury. Functional integrity of OEC CM supported cells was evident by maintained tyrosine hydroxylase (TH) expression. Intercepting Akt signaling by specific inhibitor LY294002 blocked the protective effect. Taken together our findings provide important evidence that the key to protective effect of multiple NTF support via OEC CM is enhanced Akt survival signaling which promotes antioxidant defense leading to suppression of oxidative damage.
Collapse
Affiliation(s)
- A Shukla
- Indian Institute of Toxicology Research (CSIR), Developmental Toxicology Division , Lucknow , India
| | | | | | | |
Collapse
|
34
|
6-Hydroxydopamine impairs mitochondrial function in the rat model of Parkinson's disease: respirometric, histological, and behavioral analyses. J Neural Transm (Vienna) 2014; 121:1245-57. [PMID: 24627045 DOI: 10.1007/s00702-014-1185-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/23/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial defects have been shown to be associated with the pathogenesis of Parkinson's disease (PD). Yet, experience in PD research linking mitochondrial dysfunction, e.g., deregulation of oxidative phosphorylation, with neuronal degeneration and behavioral changes is rather limited. Using the 6-hydroxydopamine (6-OHDA) rat model of PD, we have investigated the potential role of mitochondria in dopaminergic neuronal cell death in the substantia nigra pars compacta by high-resolution respirometry. Mitochondrial function was correlated with the time course of disease-related motor behavior asymmetry and dopaminergic neuronal cell loss, respectively. Unilateral 6-OHDA injections (>2.5 μg/2 μl) into the median forebrain bundle induced an impairment of oxidative phosphorylation due to a decrease in complex I activity. This was indicated by increased flux control coefficient. During the period of days 2-21, a progressive decrease in respiratory control ratio of up to -58 % was observed in the lesioned compared to the non-lesioned substantia nigra of the same animals. This decrease was associated with a marked uncoupling of oxidative phosphorylation. Mitochondrial dysfunction, motor behavior asymmetry, and dopaminergic neuronal cell loss correlated with dosage (1.25-5 μg/2 μl). We conclude that high-resolution respirometry may allow the detection of distinct mitochondrial dysfunction as a suitable surrogate marker for the preclinical assessment of potential neuroprotective strategies in the 6-OHDA model of PD.
Collapse
|
35
|
Urrutia PJ, Mena NP, Núñez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol 2014; 5:38. [PMID: 24653700 PMCID: PMC3948003 DOI: 10.3389/fphar.2014.00038] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/19/2014] [Indexed: 12/21/2022] Open
Abstract
A growing set of observations points to mitochondrial dysfunction, iron accumulation, oxidative damage and chronic inflammation as common pathognomonic signs of a number of neurodegenerative diseases that includes Alzheimer’s disease, Huntington disease, amyotrophic lateral sclerosis, Friedrich’s ataxia and Parkinson’s disease. Particularly relevant for neurodegenerative processes is the relationship between mitochondria and iron. The mitochondrion upholds the synthesis of iron–sulfur clusters and heme, the most abundant iron-containing prosthetic groups in a large variety of proteins, so a fraction of incoming iron must go through this organelle before reaching its final destination. In turn, the mitochondrial respiratory chain is the source of reactive oxygen species (ROS) derived from leaks in the electron transport chain. The co-existence of both iron and ROS in the secluded space of the mitochondrion makes this organelle particularly prone to hydroxyl radical-mediated damage. In addition, a connection between the loss of iron homeostasis and inflammation is starting to emerge; thus, inflammatory cytokines like TNF-alpha and IL-6 induce the synthesis of the divalent metal transporter 1 and promote iron accumulation in neurons and microglia. Here, we review the recent literature on mitochondrial iron homeostasis and the role of inflammation on mitochondria dysfunction and iron accumulation on the neurodegenerative process that lead to cell death in Parkinson’s disease. We also put forward the hypothesis that mitochondrial dysfunction, iron accumulation and inflammation are part of a synergistic self-feeding cycle that ends in apoptotic cell death, once the antioxidant cellular defense systems are finally overwhelmed.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology and Research Ring on Oxidative Stress in the Nervous System, Faculty of Sciences, University of Chile Santiago, Chile
| | - Natalia P Mena
- Department of Biology and Research Ring on Oxidative Stress in the Nervous System, Faculty of Sciences, University of Chile Santiago, Chile
| | - Marco T Núñez
- Department of Biology and Research Ring on Oxidative Stress in the Nervous System, Faculty of Sciences, University of Chile Santiago, Chile
| |
Collapse
|
36
|
Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology 2013; 79:380-8. [PMID: 24333330 DOI: 10.1016/j.neuropharm.2013.11.026] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/23/2013] [Accepted: 11/29/2013] [Indexed: 12/16/2022]
Abstract
There is increasing evidence that oxidative stress is critically involved in the pathogenesis of Parkinson's disease (PD), suggesting that pharmacological targeting of the antioxidant machinery may have therapeutic value. Naringenin, a natural flavonoid compound, has been reported to possess neuroprotective effect against PD related pathology; however the mechanisms underlying its beneficial effects are poorly defined. Thus, the purpose of the present study was to investigate the potential neuroprotective role of naringenin and to delineate its mechanism of action against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in models of PD both in vitro and in vivo. Naringenin treatment resulted in an increase in nuclear factor E2-related factor 2 (Nrf2) protein levels and subsequent activation of antioxidant response element (ARE) pathway genes in SH-SY5Y cells and in mice. Exposure of SH-SY5Y cells to naringenin provided protection against 6-OHDA-induced oxidative insults that was dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity or induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In mice, oral administration of naringenin resulted in significant protection against 6-OHDA-induced nigrostriatal dopaminergic neurodegeneration and oxidative damage. Our results indicate that activation of Nrf2/ARE signaling by naringenin is strongly associated with its neuroprotective effects against 6-OHDA neurotoxicity and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in PD.
Collapse
|
37
|
Fan Y, Li J, Zhang YQ, Jiang LH, Zhang YN, Yan CQ. Protein kinase C delta mediated cytotoxicity of 6-Hydroxydopamine via sustained extracellular signal-regulated kinase 1/2 activation in PC12 cells. Neurol Res 2013; 36:53-64. [PMID: 24107416 DOI: 10.1179/1743132813y.0000000267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The incidence of Parkinson's disease (PD) is increasing as the global population ages. 6-hydroxydopamine (6-OHDA) can induce PD-like neuropathology and biochemical changes in both in vitro and in vivo models. Therefore, clarification of the molecular mechanism of 6-OHDA-induced cell death might contribute to the understanding of the pathogenesis of PD. METHODS With this goal in mind, we investigated the role of protein kinase C delta (PKC delta) in 6-OHDA-dependent death using the pheochromocytoma cell line, PC12. Cells were treated with 6-OHDA to induce toxicity with or without pretreatment using rottlerin (a PKC delta inhibitor), bisindolylmaleimide I (a general PKC inhibitor), Gö6976 (a PKC inhibitor selective for calcium-dependent PKC isoforms), or phorbol-12-myristate-13-acetate (PMA, a PKC activator). RESULTS Phorbol-12-myristate-13-acetate decreased cell survival and increased the rate of apoptosis while rottlerin increased cell survival and decreased the rate of apoptosis. In contrast, neither bisindolylmaleimide I nor Gö6976 affected 6-OHDA-induced cell death. Western analysis demonstrated that phosphorylation of PKC delta on Thr 505 as well as extracellular signal-regulated kinase (ERK) phosphorylation increased after exposure to 6-OHDA. This increase in PKC delta phosphorylation was potentiated by PMA. However, rottlerin attenuated the 6-OHDA-stimulated increase in PKC delta and ERK phosphorylation. CONCLUSION These data suggest that PKC delta, rather than classic-type PKC (alpha, beta1, beta2, gamma), participates in 6-OHDA-induced neurotoxicity in PC12 cells, and PKC delta activity is required for subsequent ERK activation during cell death.
Collapse
|
38
|
Meng XB, Sun GB, Wang M, Sun J, Qin M, Sun XB. P90RSK and Nrf2 Activation via MEK1/2-ERK1/2 Pathways Mediated by Notoginsenoside R2 to Prevent 6-Hydroxydopamine-Induced Apoptotic Death in SH-SY5Y Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:971712. [PMID: 24159358 PMCID: PMC3789498 DOI: 10.1155/2013/971712] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/27/2013] [Accepted: 08/12/2013] [Indexed: 01/13/2023]
Abstract
6-Hydroxydopamine (6-OHDA) is known to contribute to neuronal death in Parkinson's disease. In this study, we found that the preincubation of SH-SY5Y cells for 24 h with 20 μ M notoginsenoside R2 (NGR2), which is a newly isolated notoginsenoside from Panax notoginseng, showed neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis. NGR2 incubation successively resulted in the activation of P90RSK, inactivation of BAD, and inhibition of 6-OHDA-induced mitochondrial membrane depolarization, thus preventing the mitochondrial apoptosis pathway. NGR2 incubation also led to the activation of Nrf2 and subsequent activity enhancement of phase II detoxifying enzymes, thus suppressing 6-OHDA-induced oxidative stress, and these effects could be removed by Nrf2 siRNA. We also found that the upstream activators of P90RSK and Nrf2 were the MEK1/2-ERK1/2 pathways but not the JNK, P38, or PI3K/Akt pathways. Interestingly, NGR2 incubation could also activate MEK1/2 and ERK1/2. Most importantly, NGR2-mediated P90RSK and Nrf2 activation, respective downstream target activation, and neuroprotection were reversed by the genetic silencing of MEK1/2 and ERK1/2 by using siRNA and PD98059 application. These results suggested that the neuroprotection elicited by NGR2 against 6-OHDA-induced neurotoxicity was associated with NGR2-mediated P90RSK and Nrf2 activation through MEK1/2-ERK1/2 pathways.
Collapse
Affiliation(s)
- Xiang-Bao Meng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Gui-Bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jing Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meng Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiao-Bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
39
|
Redox activation of Nrf2 & NF-κB: a double end sword? Cell Signal 2013; 25:2548-57. [PMID: 23993959 DOI: 10.1016/j.cellsig.2013.08.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022]
Abstract
Moderate concentrations of reactive oxygen species (ROS) are produced by diverse sources under physiological conditions. At such low levels, these molecules may act as upstream mediators of relevant signaling pathways; however an increase in their concentration with respect to the antioxidant system activity, changes their redox signaling function into a deleterious role. Thus, cell health depends, at least in part, on redox balance. This review includes global aspects of oxygen chemistry, ROS generation, antioxidant system, and redox signaling. It is also focused on the description of two relevant redox-sensitive transcription factors: nuclear factor erythroid 2-related factor 2 (Nrf2), which may be a potential target to confer cell protection, and nuclear factor κB (NF-κB), which is involved in deleterious effects in the cell. Finally, recent findings on the interplay between both factors for the development of different pathologies are discussed.
Collapse
|