1
|
Einhorn V, Haase H, Maares M. Interaction and competition for intestinal absorption by zinc, iron, copper, and manganese at the intestinal mucus layer. J Trace Elem Med Biol 2024; 84:127459. [PMID: 38640745 DOI: 10.1016/j.jtemb.2024.127459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Trace elements such as zinc, manganese, copper, or iron are essential for a wide range of physiological functions. It is therefore crucial to ensure an adequate supply of these elements to the body. Many previous investigations have dealt with the role of transport proteins, in particular their selectivity for, and competition between, different ions. Another so far less well investigated major factor influencing the absorption of trace elements seems to be the intestinal mucus layer. This gel-like substance covers the entire gastrointestinal tract and its physiochemical properties can be mainly assigned to the glycoproteins it contains, so-called mucins. Interaction with mucins has already been demonstrated for some metals. However, knowledge about the impact on the respective bioavailability and competition between those metals is still sketchy. This review therefore aims to summarize the findings and knowledge gaps about potential effects regarding the interaction between gastrointestinal mucins and the trace elements iron, zinc, manganese, and copper. Mucins play an indispensable role in the absorption of these trace elements in the neutral to slightly alkaline environment of the intestine, by keeping them in a soluble form that can be absorbed by enterocytes. Furthermore, the studies so far indicate that the competition between these trace elements for uptake already starts at the intestinal mucus layer, yet further research is required to completely understand this interaction.
Collapse
Affiliation(s)
- Vincent Einhorn
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Hajo Haase
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Maria Maares
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| |
Collapse
|
2
|
Rodríguez-Viso P, Domene A, Sánchez A, Vélez D, Monedero V, Devesa V, Zúñiga M. Challenges and strategies for preventing intestinal damage associated to mercury dietary exposure. Toxicology 2023; 494:153580. [PMID: 37328091 DOI: 10.1016/j.tox.2023.153580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Food represents the major risk factor for exposure to mercury in most human populations. Therefore, passage through the gastrointestinal tract plays a fundamental role in its entry into the organism. Despite the intense research carried out on the toxicity of Hg, the effects at the intestinal level have received increased attention only recently. In this review we first provide a critical appraisal of the recent advances on the toxic effects of Hg at the intestinal epithelium. Next, dietary strategies aimed to diminish Hg bioavailability or modulate the epithelial and microbiota responses will be revised. Food components and additives, including probiotics, will be considered. Finally, limitations of current approaches to tackle this problem and future lines of research will be discussed.
Collapse
Affiliation(s)
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Alicia Sánchez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain.
| |
Collapse
|
3
|
Wang L, Han J, Su W, Li A, Zhang W, Li H, Hu H, Song W, Xu C, Chen J. Gut-on-a-chip for exploring the transport mechanism of Hg(II). MICROSYSTEMS & NANOENGINEERING 2023; 9:2. [PMID: 36597512 PMCID: PMC9805456 DOI: 10.1038/s41378-022-00447-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/09/2022] [Accepted: 08/11/2022] [Indexed: 06/17/2023]
Abstract
Animal models and static cultures of intestinal epithelial cells are commonly used platforms for exploring mercury ion (Hg(II)) transport. However, they cannot reliably simulate the human intestinal microenvironment and monitor cellular physiology in situ; thus, the mechanism of Hg(II) transport in the human intestine is still unclear. Here, a gut-on-a-chip integrated with transepithelial electrical resistance (TEER) sensors and electrochemical sensors is proposed for dynamically simulating the formation of the physical intestinal barrier and monitoring the transport and absorption of Hg(II) in situ. The cellular microenvironment was recreated by applying fluid shear stress (0.02 dyne/cm2) and cyclic mechanical strain (1%, 0.15 Hz). Hg(II) absorption and physical damage to cells were simultaneously monitored by electrochemical and TEER sensors when intestinal epithelial cells were exposed to different concentrations of Hg(II) mixed in culture medium. Hg(II) absorption increased by 23.59% when tensile strain increased from 1% to 5%, and the corresponding expression of Piezo1 and DMT1 on the cell surface was upregulated.
Collapse
Affiliation(s)
- Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353 China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353 China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353 China
| | - Anqing Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353 China
| | - Wenxian Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353 China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353 China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Shandong University, 250012 Jinan, China
- The Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 250012 Jinan, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021 China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353 China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353 China
| |
Collapse
|
4
|
Rodríguez-Viso P, Domene A, Vélez D, Devesa V, Monedero V, Zúñiga M. Mercury toxic effects on the intestinal mucosa assayed on a bicameral in vitro model: Possible role of inflammatory response and oxidative stress. Food Chem Toxicol 2022; 166:113224. [PMID: 35700822 DOI: 10.1016/j.fct.2022.113224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Exposure to mercury (Hg) mostly occurs through diet, where it is mainly found as inorganic Hg [Hg(II)] or methylmercury (MeHg). In vivo studies have linked its exposure with neurological and renal diseases, however, its toxic effects upon the gastrointestinal tract are largely unknown. In order to evaluate the effect of Hg on intestinal mucosa, a bicameral system was employed with co-cultures of Caco-2 and HT29-MTX intestinal epithelial cells and THP-1 macrophages. Cells were exposed to Hg(II) and MeHg (0.1, 0.5, 1 mg/L) during 11 days. The results evidenced a greater pro-inflammatory response in cells exposed to Hg with increments of IL-8 (15-126%) and IL-1β release (39-63%), mainly induced by macrophages which switched to a M1 phenotype. A pro-oxidant response was also observed in both cell types with an increase in ROS/RNS levels (44-140%) and stress proteins expression. Intestinal cells treated with Hg displayed structural abnormalities, hypersecretion of mucus and defective tight junctions. An increased paracellular permeability (123-170%) at the highest concentrations of Hg(II) and MeHg and decreased capacity to restore injuries in the cell monolayer were also observed. All these toxic effects were governed by various inflammatory signalling pathways (p38 MAPK, JNK and NF-κB).
Collapse
Affiliation(s)
- Pilar Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
5
|
Schmidt S. Navigating a Two-Way Street: Metal Toxicity and the Human Gut Microbiome. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:32001. [PMID: 35302387 PMCID: PMC8932408 DOI: 10.1289/ehp9731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/07/2021] [Indexed: 05/21/2023]
|
6
|
Bolan S, Seshadri B, Keely S, Kunhikrishnan A, Bruce J, Grainge I, Talley NJ, Naidu R. Bioavailability of arsenic, cadmium, lead and mercury as measured by intestinal permeability. Sci Rep 2021; 11:14675. [PMID: 34282255 PMCID: PMC8289861 DOI: 10.1038/s41598-021-94174-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, the intestinal permeability of metal(loid)s (MLs) such as arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) was examined, as influenced by gut microbes and chelating agents using an in vitro gastrointestinal/Caco-2 cell intestinal epithelium model. The results showed that in the presence of gut microbes or chelating agents, there was a significant decrease in the permeability of MLs (As-7.5%, Cd-6.3%, Pb-7.9% and Hg-8.2%) as measured by apparent permeability coefficient value (Papp), with differences in ML retention and complexation amongst the chelants and the gut microbes. The decrease in ML permeability varied amongst the MLs. Chelating agents reduce intestinal absorption of MLs by forming complexes thereby making them less permeable. In the case of gut bacteria, the decrease in the intestinal permeability of MLs may be associated to a direct protection of the intestinal barrier against the MLs or indirect intestinal ML sequestration by the gut bacteria through adsorption on bacterial surface. Thus, both gut microbes and chelating agents can be used to decrease the intestinal permeability of MLs, thereby mitigating their toxicity.
Collapse
Affiliation(s)
- Shiv Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Simon Keely
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Anitha Kunhikrishnan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Jessica Bruce
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Nicholas J Talley
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
7
|
Gauthama B, Narayana B, Sarojini B, Suresh N, Sangappa Y, Kudva AK, Satyanarayana G, Raghu SV. Colorimetric “off–on” fluorescent probe for selective detection of toxic Hg2+ based on rhodamine and its application for in-vivo bioimaging. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Rothenberg SE, Sweitzer DN, Rackerby BR, Couch CE, Cohen LA, Broughton HM, Steingass SM, Beechler BR. Fecal Methylmercury Correlates With Gut Microbiota Taxa in Pacific Walruses ( Odobenus rosmarus divergens). Front Microbiol 2021; 12:648685. [PMID: 34177830 PMCID: PMC8220164 DOI: 10.3389/fmicb.2021.648685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/30/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES Methylmercury metabolism was investigated in Pacific walruses (Odobenus rosmarus divergens) from St. Lawrence Island, Alaska, United States. METHODS Total mercury and methylmercury concentrations were measured in fecal samples and paired colon samples (n = 16 walruses). Gut microbiota composition and diversity were determined using 16S rRNA gene sequencing. Associations between fecal and colon mercury and the 24 most prevalent gut microbiota taxa were investigated using linear models. RESULTS In fecal samples, the median values for total mercury, methylmercury, and %methylmercury (of total mercury) were 200 ng/g, 4.7 ng/g, and 2.5%, respectively, while in colon samples, the median values for the same parameters were 28 ng/g, 7.8 ng/g, and 26%, respectively. In fecal samples, methylmercury was negatively correlated with one Bacteroides genus, while members of the Oscillospirales order were positively correlated with both methylmercury and %methylmercury (of total mercury). In colon samples, %methylmercury (of total mercury) was negatively correlated with members of two genera, Romboutsia and Paeniclostridium. CONCLUSIONS Median %methylmercury (of total mercury) was 10 times higher in the colon compared to the fecal samples, suggesting that methylmercury was able to pass through the colon into systemic circulation. Fecal total mercury and/or methylmercury concentrations in walruses were comparable to some human studies despite differences in seafood consumption rates, suggesting that walruses excreted less mercury. There are no members (at this time) of the Oscillospirales order which are known to contain the genes to methylate mercury, suggesting the source of methylmercury in the gut was from diet and not in vivo methylation.
Collapse
Affiliation(s)
- Sarah E. Rothenberg
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Danielle N. Sweitzer
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Bryna R. Rackerby
- Department of Food Science and Technology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Claire E. Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Lesley A. Cohen
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Heather M. Broughton
- Department of Biology, Oregon State University-Cascades, Bend, OR, United States
| | - Sheanna M. Steingass
- Department of Fisheries, Wildlife, and Conservation Sciences, Marine Mammal Institute, Oregon State University, Corvallis, OR, United States
| | - Brianna R. Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
9
|
Keil C, Klein J, Schmitt F, Zorlu Y, Haase H, Yücesan G. Arylphosphonate-Tethered Porphyrins: Fluorescence Silencing Speaks a Metal Language in Living Enterocytes*. Chembiochem 2021; 22:1925-1931. [PMID: 33554446 PMCID: PMC8252553 DOI: 10.1002/cbic.202100031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Indexed: 12/22/2022]
Abstract
We report the application of a highly versatile and engineerable novel sensor platform to monitor biologically significant and toxic metal ions in live human Caco-2 enterocytes. The extended conjugation between the fluorescent porphyrin core and metal ions through aromatic phenylphosphonic acid tethers generates a unique turn off and turn on fluorescence and, in addition, shifts in absorption and emission spectra for zinc, cobalt, cadmium and mercury. The reported fluorescent probes p-H8 TPPA and m-H8 TPPA can monitor a wide range of metal ion concentrations via fluorescence titration and also via fluorescence decay curves. Cu- and Zn-induced turn off fluorescence can be differentially reversed by the addition of common chelators. Both p-H8 TPPA and m-H8 TPPA readily pass the mammalian cellular membrane due to their amphipathic character as confirmed by confocal microscopic imaging of living enterocytes.
Collapse
Affiliation(s)
- Claudia Keil
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Julia Klein
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Franz‐Josef Schmitt
- Martin-Luther-Universität Halle-WittenbergDepartment of Physicsvon-Danckelmann-Platz 306120Halle/SaaleGermany
| | - Yunus Zorlu
- Department of ChemistryFaculty of ScienceGebze Technical University41400Gebze-KocaeliTurkey
| | - Hajo Haase
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| | - Gündoğ Yücesan
- Technische Universität BerlinChair of Food Chemistry and ToxicologyStraße des 17. Juni 13510623BerlinGermany
| |
Collapse
|
10
|
Dhaneshwar A, Hardej D. Disruption of mitochondrial complexes, cytotoxicity, and apoptosis results from Mancozeb exposure in transformed human colon cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103614. [PMID: 33592315 DOI: 10.1016/j.etap.2021.103614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Ethylene bisdithiocarbamate pesticides, including Mancozeb (MZ), are used as fungicides. Effects of MZ on apoptosis induction and mitochondrial activity of HT-29 colon cells were investigated. MZ exposed cells exhibited blebbing and cellular membrane disruption in scanning electron micrographs. Positive fluorescent staining with Annexin V at doses of 60-140 μM supports apoptosis as the mechanism of cell death. Activity of all electron transport chain complexes were evaluated. Mitochondrial Complex I activity was decreased in 100 μM treated cells. Mitochondrial Complex III activity was decreased in 60 and 100 μM MZ treated cells. Mitochondrial Complex II and Complex IV activities were decreased in cells treated with 60, 100, and 140 μM. Cells treated with 60 μM exhibited a decrease in Complex V enzyme activity. It is concluded that MZ exposure inhibits all mitochondrial complexes of HT-29 cells and that positive fluorescent microscopy and blebbing support previous studies of cell death via apoptosis.
Collapse
Affiliation(s)
- Amanda Dhaneshwar
- Department of Pharmaceutical Sciences, College of Pharmacy and Healthy Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | - Diane Hardej
- Department of Pharmaceutical Sciences, College of Pharmacy and Healthy Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA.
| |
Collapse
|
11
|
Hoffman HI, Bradley WG, Chen CY, Pioro EP, Stommel EW, Andrew AS. Amyotrophic Lateral Sclerosis Risk, Family Income, and Fish Consumption Estimates of Mercury and Omega-3 PUFAs in the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094528. [PMID: 33923256 PMCID: PMC8123167 DOI: 10.3390/ijerph18094528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Most amyotrophic lateral sclerosis (ALS) cases are considered sporadic, without a known genetic basis, and lifestyle factors are suspected to play an etiologic role. We previously observed increased risk of ALS associated with high nail mercury levels as an exposure biomarker and thus hypothesized that mercury exposure via fish consumption patterns increases ALS risk. Lifestyle surveys were obtained from ALS patients (n = 165) and n = 330 age- and sex-matched controls without ALS enrolled in New Hampshire, Vermont, or Ohio, USA. We estimated their annual intake of mercury and omega-3 polyunsaturated fatty acid (PUFA) via self-reported seafood consumption habits, including species and frequency. In our multivariable model, family income showed a significant positive association with ALS risk (p = 0.0003, adjusted for age, sex, family history, education, and race). Neither the estimated annual mercury nor omega-3 PUFA intakes via seafood were associated with ALS risk. ALS incidence is associated with socioeconomic status; however, consistent with a prior international study, this relationship is not linked to mercury intake estimated via fish or seafood consumption patterns.
Collapse
Affiliation(s)
- Hannah I. Hoffman
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; (H.I.H.); (C.Y.C.)
| | - Walter G. Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33146, USA;
| | - Celia Y. Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; (H.I.H.); (C.Y.C.)
| | - Erik P. Pioro
- ALS and Neuromuscular Disease Center, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine, Lebanon, NH 03756, USA;
| | - Angeline S. Andrew
- Department of Neurology, Geisel School of Medicine, Lebanon, NH 03756, USA;
- Correspondence: ; Tel.: +1-603-653-9019
| |
Collapse
|
12
|
Orr SE, George HS, Barnes MC, Mathis TN, Joshee L, Barkin J, Kiefer AM, Seney CS, Bridges CC. Co-administration of Selenium with Inorganic Mercury Alters the Disposition of Mercuric Ions in Rats. Biol Trace Elem Res 2020; 195:187-195. [PMID: 31332705 DOI: 10.1007/s12011-019-01835-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
Mercury (Hg) is a common environmental toxicant to which humans are exposed regularly through occupational and dietary means. Although selenium supplementation has been reported to prevent the toxic effects of Hg in animals, the mechanisms for this prevention are not well understood. The purpose of the current study was to determine the effects of selenium on the disposition and toxicity of Hg. Wistar rats were injected intravenously with a non-nephrotoxic dose (0.5 μmol kg-1) or a nephrotoxic dose (2.5 μmol kg-1) of HgCl2 (containing radioactive Hg) with or without co-administration of sodium selenite (Na2SeO3). Twenty-four hours after exposure, rats were euthanized, and organs were harvested. Co-administration of SeO32- with HgCl2 reduced the renal burden of Hg and the urinary excretion of Hg while increasing the amount of Hg in blood and spleen. We propose that Hg reacts with reduced selenite in the blood to form large Hg-Se complexes that are unable to be filtered at the glomerulus. Consequently, these complexes remain in the blood and are able to accumulate in blood-rich organs. These complexes, which may have fewer toxic effects than other species of Hg, may be eliminated slowly over the course of weeks to months.
Collapse
Affiliation(s)
- Sarah E Orr
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Dr, Macon, GA, 31207, USA
| | - Hannah S George
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Dr, Macon, GA, 31207, USA
| | - Mary C Barnes
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Dr, Macon, GA, 31207, USA
| | - Taylor N Mathis
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Dr, Macon, GA, 31207, USA
| | - Lucy Joshee
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Dr, Macon, GA, 31207, USA
| | - Jennifer Barkin
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA, USA
| | - Adam M Kiefer
- Department of Chemistry, Mercer University, Macon, GA, USA
| | - Caryn S Seney
- Department of Chemistry, Mercer University, Macon, GA, USA
| | - Christy C Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Dr, Macon, GA, 31207, USA.
| |
Collapse
|
13
|
Corrêa MG, Bittencourt LO, Nascimento PC, Ferreira RO, Aragão WAB, Silva MCF, Gomes-Leal W, Fernandes MS, Dionizio A, Buzalaf MR, Crespo-Lopez ME, Lima RR. Spinal cord neurodegeneration after inorganic mercury long-term exposure in adult rats: Ultrastructural, proteomic and biochemical damages associated with reduced neuronal density. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110159. [PMID: 31962214 DOI: 10.1016/j.ecoenv.2019.110159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Mercury chloride (HgCl2) is a chemical pollutant widely found in the environment. This form of mercury is able to promote several damages to the Central Nervous System (CNS), however the effects of HgCl2 on the spinal cord, an important pathway for the communication between the CNS and the periphery, are still poorly understood. The aim of this work was to investigate the effects of HgCl2 exposure on spinal cord of adult rats. For this, animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. Then, they were euthanized, the spinal cord collected and we investigated the mercury concentrations in medullary parenchyma and the effects on oxidative biochemistry, proteomic profile and tissue structures. Our results showed that exposure to this metal promoted increased levels of Hg in the spinal cord, impaired oxidative biochemistry by triggering oxidative stress, mudulated antioxidant system proteins, energy metabolism and myelin structure; as well as caused disruption in the myelin sheath and reduction in neuronal density. Despite the low dose, we conclude that prolonged exposure to HgCl2 triggers biochemical changes and modulates the expression of several proteins, resulting in damage to the myelin sheath and reduced neuronal density in the spinal cord.
Collapse
Affiliation(s)
- Márcio Gonçalves Corrêa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Railson Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Marcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walace Gomes-Leal
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Mileni Silva Fernandes
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Marília Rabelo Buzalaf
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil.
| |
Collapse
|
14
|
Maares M, Haase H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models. Nutrients 2020; 12:E762. [PMID: 32183116 PMCID: PMC7146416 DOI: 10.3390/nu12030762] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc absorption in the small intestine is one of the main mechanisms regulating the systemic homeostasis of this essential trace element. This review summarizes the key aspects of human zinc homeostasis and distribution. In particular, current knowledge on human intestinal zinc absorption and the influence of diet-derived factors on bioaccessibility and bioavailability as well as intrinsic luminal and basolateral factors with an impact on zinc uptake are discussed. Their investigation is increasingly performed using in vitro cellular intestinal models, which are continually being refined and keep gaining importance for studying zinc uptake and transport via the human intestinal epithelium. The vast majority of these models is based on the human intestinal cell line Caco-2 in combination with other relevant components of the intestinal epithelium, such as mucin-secreting goblet cells and in vitro digestion models, and applying improved compositions of apical and basolateral media to mimic the in vivo situation as closely as possible. Particular emphasis is placed on summarizing previous applications as well as key results of these models, comparing their results to data obtained in humans, and discussing their advantages and limitations.
Collapse
Affiliation(s)
- Maria Maares
- Technische Universität Berlin, Chair of Food Chemistry and Toxicology, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Hajo Haase
- Technische Universität Berlin, Chair of Food Chemistry and Toxicology, Straße des 17. Juni 135, 10623 Berlin, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena, Germany
| |
Collapse
|
15
|
Babadi D, Dadashzadeh S, Osouli M, Daryabari MS, Haeri A. Nanoformulation strategies for improving intestinal permeability of drugs: A more precise look at permeability assessment methods and pharmacokinetic properties changes. J Control Release 2020; 321:669-709. [PMID: 32112856 DOI: 10.1016/j.jconrel.2020.02.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
The therapeutic efficacy of orally administered drugs is often restricted by their inherent limited oral bioavailability. Low water solubility, limited permeability through the intestinal barrier, instability in harsh environment of the gastrointestinal (GI) tract and being substrate of the efflux pumps and the cytochrome P450 (CYP) can impair oral drug bioavailability resulting in erratic and variable plasma drug profile. As more drugs with low membrane permeability are developed, new interest is growing to enhance their intestinal permeability and bioavailability. A wide variety of nanosystems have been developed to improve drug transport and absorption. Sufficient evidence exists to suggest that nanoparticles are able to increase the transepithelial transport of drug molecules. However, key questions remained unanswered. What types of nanoparticles are more efficient? What are preclinical (or clinical) achievements of each type of nanoformulation in terms of pharmacokinetic (PK) parameters? Addressing this issue in this paper, we have reviewed the current literature regarding permeability enhancement, permeability assessment methods and changes in PK parameters following administration of various nanoformulations. Although permeability enhancement by various nanoformulations holds great promise for oral drug delivery, many challenges still need to be addressed before development of more clinically successful nanoproducts.
Collapse
Affiliation(s)
- Delaram Babadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahraz Osouli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Ando M, Yamada T, Okinaga Y, Taguchi E, Sugimoto Y, Takeuchi A, Itoh T, Fukuda T, Tsukamasa Y. Evaluation of the inhibition of mercury absorption by vegetable juices using a red sea bream intestine model. Food Chem 2020; 303:125351. [DOI: 10.1016/j.foodchem.2019.125351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/16/2019] [Accepted: 08/09/2019] [Indexed: 10/26/2022]
|
17
|
Rodríguez-Estival J, Morales-Machuca C, Pareja-Carrera J, Ortiz-Santaliestra ME, Mateo R. Food safety risk assessment of metal pollution in crayfish from two historical mining areas: Accounting for bioavailability and cooking extractability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109682. [PMID: 31557570 DOI: 10.1016/j.ecoenv.2019.109682] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Here we characterize the bioaccumulation of mercury (Hg) and lead (Pb) in red swamp crayfish (Procambarus clarkii) from two river courses in Central Spain that are impacted by historical Hg and Pb mining activities, respectively. We estimate the absolute oral bioavailability of metals in crayfish tissues by means of in vitro bioaccessibility simulations, and assess whether their consumption may imply a health risk for humans by estimating target hazard quotients and safe consumption rates. We also study the effect of cooking crayfish on the mobilization of the metal body burden in the context of the traditional Spanish cuisine. The results showed that crayfish from the mining districts accumulated a high level of Hg and Pb pollution in both the tail muscle and the carcass. The in vitro bioaccessibility of Hg and Pb in the edible part was 27.86 ± 4.05 and 33.73 ± 5.91%, respectively. Absolute bioavailability was estimated to be 38.31 for Hg, and 20.21 (adults) and 67.35% (children) for Pb. Risk indices indicated that, even after adjusting for bioavailability, it is not safe to consume crayfish from the mining-impacted rivers because of their high levels of Hg and Pb. Using the carcass as a condiment for flavouring should also be avoided. The cooking procedure extracted relatively small amounts of the total Hg (8.92 ± 2.13%) and Pb (1.68 ± 0.29%) body burden. Further research that will support human and ecological risk assessment, along with the implementation of advisory measures for the local population as regards crayfish consumption, are recommended.
Collapse
Affiliation(s)
- Jaime Rodríguez-Estival
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Carlos Morales-Machuca
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Jennifer Pareja-Carrera
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| |
Collapse
|
18
|
Liu Y, Ji J, Zhang W, Suo Y, Zhao J, Lin X, Cui L, Li B, Hu H, Chen C, Li YF. Selenium modulated gut flora and promoted decomposition of methylmercury in methylmercury-poisoned rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109720. [PMID: 31585392 DOI: 10.1016/j.ecoenv.2019.109720] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/07/2019] [Accepted: 09/23/2019] [Indexed: 05/28/2023]
Abstract
INTRODUCTION Selenium plays important roles in antagonizing the toxicity of methylmercury. The underlying mechanism for the antagonism between Se and MeHg is still not fully understood. OBJECTIVE The role of gut flora against the toxicity of environmental contaminants is receiving more and more attention. The objective of this study was to investigate the role of Se against MeHg-poisoning in the modulation of gut flora and the decomposition of MeHg. METHODS MeHg-poisoned rats were treated with sodium selenite every other day for 90 days. Fecal samples were collected on Day 8, 30, 60 and 90. Gut flora in feces was determined using 16S rRNA gene profiling, and the concentrations of Se and total mercury (THg) were measured by ICP-MS, and the concentration of MeHg was measured by CVAFS. RESULTS Gut flora at both the ranks of phylum and genus in the MeHg-poisoned rats after Se treatment was modulated towards that in the control group, suggesting the restoration of the profile of gut flora. Increased THg was found in fecal samples after Se treatment on day 30. The percentage of MeHg (of total mercury) in the MeHg-poisoned group was in the range of 81-105% while it was 65-84% in the Se treatment group on different days, suggesting the increased decomposition of MeHg in MeHg-poisoned rats after Se treatment. CONCLUSIONS This study suggests that MeHg poisoning damaged the abundance of gut flora and decreased their capacity for the decomposition of MeHg. After Se treatment, the abundance of gut flora was partially restored and the decomposition and excretion of MeHg was enhanced. These findings suggest that the modulation of gut flora may be one way to promote the health status in MeHg-poisoned rats and possibly in human beings.
Collapse
Affiliation(s)
- Yang Liu
- Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, 014060, Inner Mongolia, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Ji
- Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, 014060, Inner Mongolia, China
| | - Wei Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Jinan, No. 336, Nanxinzhuang West Road, Jinan, 250022, Shandong, China
| | - Yao Suo
- Food Science and Engineering College, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Lin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Cui
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Bai Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaiqiang Hu
- Department of Neurology, No. 960 Hospital of Chinese PLA, Jinan, 250031, Shandong, China.
| | - Chunying Chen
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Centre for Nanoscience and Technology, Beijing, 100191, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Takanezawa Y, Nakamura R, Matsuda H, Yagi T, Egawa Z, Sone Y, Uraguchi S, Adachi T, Kiyono M. Intracellular Demethylation of Methylmercury to Inorganic Mercury by Organomercurial Lyase (MerB) Strengthens Cytotoxicity. Toxicol Sci 2019; 170:438-451. [DOI: 10.1093/toxsci/kfz094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Some methylmercury (MeHg) is converted to inorganic mercury (Hg2+) after incorporation into human and animal tissues, where it can remain for a long time. To determine the overall toxicity of MeHg in tissues, studies should evaluate low concentrations of Hg2+. Although demethylation is involved, the participating enzymes or underlying mechanisms are unknown; in addition, the low cell membrane permeability of Hg2+ makes these analyses challenging. We established model cell lines to assess toxicities of low concentrations of Hg2+ using bacterial organomercury lyase (MerB). We engineered MerB-expressing HEK293 and HeLa cell lines that catalyze MeHg demethylation. These cells were significantly more sensitive to MeHg exposure compared to the parental cells. MeHg treatment remarkably induced metallothioneins (MTs) and hemeoxygenase-1 (HMOX-1) mRNAs and modest expression of superoxide dismutase 1, whereas catalase and glutathione peroxidase 1 mRNAs were not up-regulated. merB knockdown using small interfering RNA supported the induction of MT and HMOX-1 mRNA by MerB enzymatic activity. Pretreatment with Trolox, a water-soluble vitamin E analog, did not inhibit MeHg-induced elevation of MT-Ix and HMOX-1 mRNAs in MerB-expressing cells, suggesting that Hg2+ works independently of reactive oxygen species generation. Similar results were obtained in cells expressing MerB, suggesting that high MTs and HMOX-1 induction and cytotoxicity are common cellular responses to low intracellular Hg2+ concentrations. This is the first study to establish cell lines that demethylate intracellular MeHg to Hg2+ using bacterial MerB for overcoming the low membrane permeability of Hg2+ and exploring the intracellular responses and toxicities of low Hg2+ concentrations.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641
| | - Haruki Matsuda
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641
| | - Tomomi Yagi
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641
| | - Zen Egawa
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641
| | - Yuka Sone
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641
| | - Tatsumi Adachi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641
| |
Collapse
|
20
|
Maares M, Keil C, Koza J, Straubing S, Schwerdtle T, Haase H. In Vitro Studies on Zinc Binding and Buffering by Intestinal Mucins. Int J Mol Sci 2018; 19:E2662. [PMID: 30205533 PMCID: PMC6164875 DOI: 10.3390/ijms19092662] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
The investigation of luminal factors influencing zinc availability and accessibility in the intestine is of great interest when analyzing parameters regulating intestinal zinc resorption. Of note, intestinal mucins were suggested to play a beneficial role in the luminal availability of zinc. Their exact zinc binding properties, however, remain unknown and the impact of these glycoproteins on human intestinal zinc resorption has not been investigated in detail. Thus, the aim of this study is to elucidate the impact of intestinal mucins on luminal uptake of zinc into enterocytes and its transfer into the blood. In the present study, in vitro zinc binding properties of mucins were analyzed using commercially available porcine mucins and secreted mucins of the goblet cell line HT-29-MTX. The molecular zinc binding capacity and average zinc binding affinity of these glycoproteins demonstrates that mucins contain multiple zinc-binding sites with biologically relevant affinity within one mucin molecule. Zinc uptake into the enterocyte cell line Caco-2 was impaired by zinc-depleted mucins. Yet this does not represent their form in the intestinal lumen in vivo under zinc adequate conditions. In fact, zinc-uptake studies into enterocytes in the presence of mucins with differing degree of zinc saturation revealed zinc buffering by these glycoproteins, indicating that mucin-bound zinc is still available for the cells. Finally, the impact of mucins on zinc resorption using three-dimensional cultures was studied comparing the zinc transfer of a Caco-2/HT-29-MTX co-culture and conventional Caco-2 monoculture. Here, the mucin secreting co-cultures yielded higher fractional zinc resorption and elevated zinc transport rates, suggesting that intestinal mucins facilitate the zinc uptake into enterocytes and act as a zinc delivery system for the intestinal epithelium.
Collapse
Affiliation(s)
- Maria Maares
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | - Jenny Koza
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | - Sophia Straubing
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
- TraceAge-DFG Research Unit on Interactions of essential trace elements in healthy and diseased elderly, Potsdam-Berlin-Jena, Germany.
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
- TraceAge-DFG Research Unit on Interactions of essential trace elements in healthy and diseased elderly, Potsdam-Berlin-Jena, Germany.
| |
Collapse
|
21
|
Oliveira C, Joshee L, Bridges CC. MRP2 and the Transport Kinetics of Cysteine Conjugates of Inorganic Mercury. Biol Trace Elem Res 2018; 184:279-286. [PMID: 28980184 PMCID: PMC5882609 DOI: 10.1007/s12011-017-1163-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Human exposure to mercuric species occurs regularly throughout the world. Mercuric ions may accumulate in target cells and subsequently lead to cellular intoxication and death. Therefore, it is important to have a thorough understanding of how transportable species of mercury are handled by specific membrane transporters. The purpose of the current study was to characterize the transport kinetics of cysteine (Cys)-S-conjugates of inorganic mercury (Cys-S-Hg-S-Cys) at the site of the multidrug resistance-associated transporter 2 (MRP2). In order to estimate the maximum velocity (V max) and Michaelis constant (K m) for the uptake of Cys-S-Hg-S-Cys mediated by MRP2, in vitro studies were carried out using radioactive Cys-S-Hg-S-Cys (5 μM) and inside-out membrane vesicles made from Sf9 cells transfected with MRP2. The V max was estimated to be 74.3 ± 10.1 nmol mg protein-1 30 s-1 while the K m was calculated to be 63.4 ± 27.3 μM. In addition, in vivo studies were utilized to measure the disposition of inorganic mercury (administered dose 0.5 μmol kg-1 in 2 mL normal saline) over time in Wistar and TR¯ (Mrp2-deficient) rats. These studies measured the disposition of mercuric ions in the kidney, liver, and blood. In general, the data suggest that the initial uptake of mercuric conjugates into select target cells is rapid followed by a period of slower uptake and accumulation. Overall, the data indicate that MRP2 transports Cys-S-Hg-S-Cys in a manner that is similar to that of other MRP2 substrates.
Collapse
Affiliation(s)
- Cláudia Oliveira
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 College St., Macon, GA, 31207, USA
- Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lucy Joshee
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 College St., Macon, GA, 31207, USA
| | - Christy C Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 College St., Macon, GA, 31207, USA.
| |
Collapse
|
22
|
Fröhlich E. Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018; 46:1091-1107. [PMID: 29956556 PMCID: PMC6214528 DOI: 10.1080/21691401.2018.1479709] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
Humans are exposed to a wide variety of nanoparticles (NPs) present in the environment, in consumer, health and medical products, and in food. Conventional cytotoxicity testing compared to animal testing is less expensive, faster and avoids ethical problems at the expense of a lower predictive value. New cellular models and exposure conditions have been developed to overcome the limitations of conventional cell culture and obtain more predictive data. The use of three-dimensional culture, co-culture and inclusion of mechanical stimulation can provide physiologically more relevant culture conditions. These systems are particularly relevant for oral, respiratory and intravenous exposure to NPs and it may be assumed that physiologically relevant application of the NPs can improve the predictive value of in vitro testing. Various groups have used advanced culture and exposure systems, but few direct comparisons between data from conventional cultures and from advanced systems exist. In silico models may present another option to predict human health risk by NPs without using animal studies. In the absence of validation, the question whether these alternative models provide more predictive data than conventional testing remains elusive.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
23
|
Mucus: An Underestimated Gut Target for Environmental Pollutants and Food Additives. Microorganisms 2018; 6:microorganisms6020053. [PMID: 29914144 PMCID: PMC6027178 DOI: 10.3390/microorganisms6020053] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Synthetic chemicals (environmental pollutants, food additives) are widely used for many industrial purposes and consumer-related applications, which implies, through manufactured products, diet, and environment, a repeated exposure of the general population with growing concern regarding health disorders. The gastrointestinal tract is the first physical and biological barrier against these compounds, and thus their first target. Mounting evidence indicates that the gut microbiota represents a major player in the toxicity of environmental pollutants and food additives; however, little is known on the toxicological relevance of the mucus/pollutant interplay, even though mucus is increasingly recognized as essential in gut homeostasis. Here, we aimed at describing how environmental pollutants (heavy metals, pesticides, and other persistent organic pollutants) and food additives (emulsifiers, nanomaterials) might interact with mucus and mucus-related microbial species; that is, “mucophilic” bacteria such as mucus degraders. This review highlights that intestinal mucus, either directly or through its crosstalk with the gut microbiota, is a key, yet underestimated gut player that must be considered for better risk assessment and management of environmental pollution.
Collapse
|
24
|
O’Sullivan F, Keenan J, Aherne S, O’Neill F, Clarke C, Henry M, Meleady P, Breen L, Barron N, Clynes M, Horgan K, Doolan P, Murphy R. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine. World J Gastroenterol 2017; 23:7369-7386. [PMID: 29151691 PMCID: PMC5685843 DOI: 10.3748/wjg.v23.i41.7369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/07/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. METHODS Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. RESULTS Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid and cholesterol metabolic processes, small molecule transport and a range of responses to external stimuli, while similar analysis of the DE protein list identified gene expression/transcription, epigenetic mechanisms, DNA replication, differentiation and translation ontology categories. The DE protein and gene lists were found to share 15 biological processes including for example epithelial cell differentiation [P value ≤ 1.81613E-08 (protein list); P ≤ 0.000434311 (gene list)] and actin filament bundle assembly [P value ≤ 0.001582797 (protein list); P ≤ 0.002733714 (gene list)]. Analysis was conducted on the three data streams acquired in parallel to identify targets undergoing potential miRNA translational repression identified 34 proteins, whose respective mRNAs were detected but no change in expression was observed. Of these 34 proteins, 27 proteins downregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 19 unique anti-correlated/upregulated microRNAs and 7 proteins upregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 15 unique anti-correlated/downregulated microRNAs. CONCLUSION This first study providing "tri-omics" analysis of the principal intestinal cell line models Caco-2 and HT-29 has identified 34 proteins potentially undergoing miRNA translational repression.
Collapse
Affiliation(s)
- Finbarr O’Sullivan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Sinead Aherne
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Fiona O’Neill
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Colin Clarke
- National Institute for Bioprocessing Research & Training, Blackrock, Dublin A94 X099, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Laura Breen
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Niall Barron
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | | | - Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | | |
Collapse
|
25
|
Bridges CC, Zalups RK. The aging kidney and the nephrotoxic effects of mercury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:55-80. [PMID: 28339347 PMCID: PMC6088787 DOI: 10.1080/10937404.2016.1243501] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Owing to advances in modern medicine, life expectancies are lengthening and leading to an increase in the population of older individuals. The aging process leads to significant alterations in many organ systems, with the kidney being particularly susceptible to age-related changes. Within the kidney, aging leads to ultrastructural changes such as glomerular and tubular hypertrophy, glomerulosclerosis, and tubulointerstitial fibrosis, which may compromise renal plasma flow (RPF) and glomerular filtration rate (GFR). These alterations may reduce the functional reserve of the kidneys, making them more susceptible to pathological events when challenged or stressed, such as following exposure to nephrotoxicants. An important and prevalent environmental toxicant that induces nephrotoxic effects is mercury (Hg). Since exposure of normal kidneys to mercuric ions might induce glomerular and tubular injury, aged kidneys, which may not be functioning at full capacity, may be more sensitive to the effects of Hg than normal kidneys. Age-related renal changes and the effects of Hg in the kidney have been characterized separately. However, little is known regarding the influence of nephrotoxicants, such as Hg, on aged kidneys. The purpose of this review was to summarize known findings related to exposure of aged and diseased kidneys to the environmentally relevant nephrotoxicant Hg.
Collapse
Affiliation(s)
- Christy C Bridges
- a Mercer University School of Medicine , Division of Basic Medical Sciences , Macon , Georgia , USA
| | - Rudolfs K Zalups
- a Mercer University School of Medicine , Division of Basic Medical Sciences , Macon , Georgia , USA
| |
Collapse
|
26
|
Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol 2016; 91:63-81. [PMID: 27422290 DOI: 10.1007/s00204-016-1803-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/07/2016] [Indexed: 01/16/2023]
Abstract
Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells.
Collapse
|
27
|
Wang H, Chen B, Zhu S, Yu X, He M, Hu B. Chip-Based Magnetic Solid-Phase Microextraction Online Coupled with MicroHPLC–ICPMS for the Determination of Mercury Species in Cells. Anal Chem 2015; 88:796-802. [DOI: 10.1021/acs.analchem.5b03130] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Han Wang
- Key Laboratory of Analytical Chemistry
for Biology and Medicine, Ministry of Education, Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry
for Biology and Medicine, Ministry of Education, Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Siqi Zhu
- Key Laboratory of Analytical Chemistry
for Biology and Medicine, Ministry of Education, Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiaoxiao Yu
- Key Laboratory of Analytical Chemistry
for Biology and Medicine, Ministry of Education, Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry
for Biology and Medicine, Ministry of Education, Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry
for Biology and Medicine, Ministry of Education, Department
of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
28
|
Rothenberg SE, Keiser S, Ajami NJ, Wong MC, Gesell J, Petrosino JF, Johs A. The role of gut microbiota in fetal methylmercury exposure: Insights from a pilot study. Toxicol Lett 2015; 242:60-67. [PMID: 26626101 DOI: 10.1016/j.toxlet.2015.11.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/03/2015] [Accepted: 11/21/2015] [Indexed: 12/11/2022]
Abstract
PURPOSE The mechanisms by which gut microbiota contribute to methylmercury metabolism remain unclear. Among a cohort of pregnant mothers, the objectives of our pilot study were to determine (1) associations between gut microbiota and mercury concentrations in biomarkers (stool, hair and cord blood) and (2) the contributions of gut microbial mercury methylation/demethylation to stool methylmercury. METHODS Pregnant women (36-39 weeks gestation, n=17) donated hair and stool specimens, and cord blood was collected for a subset (n=7). The diversity of gut microbiota was determined using 16S rRNA gene profiling (n=17). For 6 stool samples with highest/lowest methylmercury concentrations, metagenomic whole genome shotgun sequencing was employed to search for the mercury methylation gene (hgcA), and two mer operon genes involved in methylmercury detoxification (merA and merB). RESULTS Seventeen bacterial genera were significantly correlated (increasing or decreasing) with stool methylmercury, stool inorganic mercury, or hair total mercury; however, aside from one genus, there was no overlap between biomarkers. There were no definitive matches for hgcA or merB, while merA was detected at low concentrations in all six samples. MAJOR CONCLUSIONS Proportional differences in stool methylmercury were not likely attributed to gut microbiota through methylation/demethylation. Gut microbiota potentially altered methylmercury metabolism using indirect pathways.
Collapse
Affiliation(s)
- Sarah E Rothenberg
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly Street Room 401, Columbia, SC, USA.
| | - Sharon Keiser
- Greenville Health System, Maternal Fetal Medicine, 890 W. Faris Road, Suite 470, Greenville, SC 29605, USA.
| | - Nadim J Ajami
- The Alkek Center for Metagenomics and Microbiome Research (CMMR), Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Matthew C Wong
- The Alkek Center for Metagenomics and Microbiome Research (CMMR), Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Jonathan Gesell
- The Alkek Center for Metagenomics and Microbiome Research (CMMR), Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research (CMMR), Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, P.O. Box 2008, MS-6038 Oak Ridge, TN, USA.
| |
Collapse
|
29
|
Elli L, Rossi V, Conte D, Ronchi A, Tomba C, Passoni M, Bardella MT, Roncoroni L, Guzzi G. Increased Mercury Levels in Patients with Celiac Disease following a Gluten-Free Regimen. Gastroenterol Res Pract 2015; 2015:953042. [PMID: 25802516 PMCID: PMC4352902 DOI: 10.1155/2015/953042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
Background and Aim. Although mercury is involved in several immunological diseases, nothing is known about its implication in celiac disease. Our aim was to evaluate blood and urinary levels of mercury in celiac patients. Methods. We prospectively enrolled 30 celiac patients (20 treated with normal duodenal mucosa and 10 untreated with duodenal atrophy) and 20 healthy controls from the same geographic area. Blood and urinary mercury concentrations were measured by means of flow injection inductively coupled plasma mass spectrometry. Enrolled patients underwent dental chart for amalgam fillings and completed a food-frequency questionnaire to evaluate diet and fish intake. Results. Mercury blood/urinary levels were 2.4 ± 2.3/1.0 ± 1.4, 10.2 ± 6.7/2.2 ± 3.0 and 3.7 ± 2.7/1.3 ± 1.2 in untreated CD, treated CD, and healthy controls, respectively. Resulting mercury levels were significantly higher in celiac patients following a gluten-free diet. No differences were found regarding fish intake and number of amalgam fillings. No demographic or clinical data were significantly associated with mercury levels in biologic samples. Conclusion. Data demonstrate a fourfold increase of mercury blood levels in celiac patients following a gluten-free diet. Further studies are needed to clarify its role in celiac mechanism.
Collapse
Affiliation(s)
- Luca Elli
- Center for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Valentina Rossi
- Center for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
- Italian Association for Metals and Biocompatibility Research (AIRMEB), Via Banfi 4, 20122 Milan, Italy
| | - Dario Conte
- Center for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Anna Ronchi
- Pavia Poison Control Center and National Toxicology Information Centre, Toxicology Unit, IRCCS Maugeri Foundation and University of Pavia, Via Salvatore Maugeri 10, 27100 Pavia, Italy
| | - Carolina Tomba
- Center for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Manuela Passoni
- Italian Association for Metals and Biocompatibility Research (AIRMEB), Via Banfi 4, 20122 Milan, Italy
| | - Maria Teresa Bardella
- Center for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Leda Roncoroni
- Center for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Gianpaolo Guzzi
- Italian Association for Metals and Biocompatibility Research (AIRMEB), Via Banfi 4, 20122 Milan, Italy
| |
Collapse
|
30
|
Vázquez M, Vélez D, Devesa V. Participation of b0,+and B0,+systems in the transport of mercury bound to cysteine in intestinal cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00205a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The main source of exposure to mercury (Hg) as divalent inorganic Hg [Hg(ii)] and methylmercury (CH3Hg) is the diet, in which complexes with the amino acid cysteine (Hg–Cys) may be found.
Collapse
Affiliation(s)
- M. Vázquez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC)
- Avenida Agustín Escardino 7
- Valencia
- Spain
| | - D. Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC)
- Avenida Agustín Escardino 7
- Valencia
- Spain
| | - V. Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC)
- Avenida Agustín Escardino 7
- Valencia
- Spain
| |
Collapse
|
31
|
Vázquez M, Devesa V, Vélez D. Characterization of the intestinal absorption of inorganic mercury in Caco-2 cells. Toxicol In Vitro 2014; 29:93-102. [PMID: 25283090 DOI: 10.1016/j.tiv.2014.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 11/16/2022]
Abstract
The main form of mercury exposure in the general population is through food. Intestinal absorption is therefore a key step in the penetration of mercury into the systemic circulation, and should be considered when evaluating exposure risk. Many studies have investigated the transport of mercury species in different cell lines, though the mechanisms underlying their intestinal absorption are not clear. This study evaluates the accumulation and transport of Hg(II), one of the mercury species ingested in food, using Caco-2 cells as intestinal epithelium model with the purpose of clarifying the mechanisms involved in its absorption. Hg(II) shows moderate absorption, and its transport fundamentally takes place via a carrier-mediated transcellular mechanism. The experiments indicate the participation of an energy-dependent transport mechanism. In addition, H(+)- and Na(+)-dependent transport is also observed. These data, together with those obtained from inhibition studies using specific substrates or inhibitors of different transporter families, suggest the participation of divalent cation and amino acid transporters, and even some organic anion transporters, in Hg(II) intestinal transport. An important cellular accumulation of up to 51% is observed - a situation which in view of the toxic nature of this species could affect intestinal mucosal function. This study contributes new information on the mechanisms of transport of Hg(II) at intestinal level, and which may be responsible for penetration of this mercurial form into the systemic circulation.
Collapse
Affiliation(s)
- M Vázquez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - V Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - D Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
32
|
Vu LT, Less RR, Rajagopalan P. The promise of organotypic hepatic and gastrointestinal models. Trends Biotechnol 2014; 32:406-13. [PMID: 24845962 DOI: 10.1016/j.tibtech.2014.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 01/14/2023]
Abstract
Advances in the design and assembly of in vitro organotypic liver and gastrointestinal (GI) models can accelerate our understanding of metabolism, nutrient absorption, and the effect of microbial flora. Such models can provide comprehensive information on how of environmental toxins, drugs, and pharmaceuticals interact with and within these organs. Information obtained from such models could elucidate the complicated cascades of signaling mechanisms that occur in vivo. Because experiments on large-scale animal models are expensive and resource intensive, the design of organotypic models has renewed significance. The challenges and approaches to designing liver and GI models are similar. Because these organs are in close proximity and interact continually, we have described recent design considerations to guide future tissue models.
Collapse
Affiliation(s)
- Lucas T Vu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rebekah R Less
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
33
|
Vázquez M, Vélez D, Devesa V. In vitro characterization of the intestinal absorption of methylmercury using a Caco-2 cell model. Chem Res Toxicol 2014; 27:254-64. [PMID: 24397474 DOI: 10.1021/tx4003758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Methylmercury (CH3Hg) is one of the forms of mercury found in food, particularly in seafood. Exposure to CH3Hg is associated with neurotoxic effects during development. In addition, methylmercury has been classified by the International Agency for Research on Cancer as a possible human carcinogen. Although the diet is known to be the main source of exposure, few studies have characterized the mechanisms involved in the absorption of this contaminant. The present study examines the absorption process using the Caco-2 cell line as a model of the intestinal epithelium. The results indicate that transport across the intestinal cell monolayer in an absorptive direction occurs mainly through passive transcellular diffusion. This mechanism coexists with carrier-mediated transcellular transport, which has an active component. The participation of H(+)- and Na(+)-dependent transport was observed. Inhibition tests point to the possible participation of amino acid transporters (B(0,+) system, L system, and/or y(+)L system) and organic anion transporters (OATs). Our study suggests the participation in CH3Hg absorption of transporters that have already been identified as being responsible for the transport of this species in other systems, although further studies are needed to confirm their participation in intestinal absorption. It should be noted that CH3Hg experiences important cellular acumulation (48-78%). Considering the toxic nature of this contaminant, this fact could affect intestinal epithelium function.
Collapse
Affiliation(s)
- Marta Vázquez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | | | | |
Collapse
|