1
|
Ortega-Vallbona R, Palomino-Schätzlein M, Tolosa L, Benfenati E, Ecker GF, Gozalbes R, Serrano-Candelas E. Computational Strategies for Assessing Adverse Outcome Pathways: Hepatic Steatosis as a Case Study. Int J Mol Sci 2024; 25:11154. [PMID: 39456937 PMCID: PMC11508863 DOI: 10.3390/ijms252011154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The evolving landscape of chemical risk assessment is increasingly focused on developing tiered, mechanistically driven approaches that avoid the use of animal experiments. In this context, adverse outcome pathways have gained importance for evaluating various types of chemical-induced toxicity. Using hepatic steatosis as a case study, this review explores the use of diverse computational techniques, such as structure-activity relationship models, quantitative structure-activity relationship models, read-across methods, omics data analysis, and structure-based approaches to fill data gaps within adverse outcome pathway networks. Emphasizing the regulatory acceptance of each technique, we examine how these methodologies can be integrated to provide a comprehensive understanding of chemical toxicity. This review highlights the transformative impact of in silico techniques in toxicology, proposing guidelines for their application in evidence gathering for developing and filling data gaps in adverse outcome pathway networks. These guidelines can be applied to other cases, advancing the field of toxicological risk assessment.
Collapse
Affiliation(s)
- Rita Ortega-Vallbona
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| | - Martina Palomino-Schätzlein
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos, 28029 Madrid, Spain
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Gerhard F. Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Wien, Austria;
| | - Rafael Gozalbes
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
- MolDrug AI Systems S.L., Olimpia Arozena Torres 45, 46108 Valencia, Spain
| | - Eva Serrano-Candelas
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| |
Collapse
|
2
|
Jeong J, Kim J, Choi J. Identification of molecular initiating events (MIE) using chemical database analysis and nuclear receptor activity assays for screening potential inhalation toxicants. Regul Toxicol Pharmacol 2023; 141:105391. [PMID: 37068727 DOI: 10.1016/j.yrtph.2023.105391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/13/2022] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
An adverse outcome pathway (AOP) framework can facilitate the use of alternative assays in chemical regulations by providing scientific evidence. Previously, an AOP, peroxisome proliferative-activating receptor gamma (PPARγ) antagonism that leads to pulmonary fibrosis, was developed. Based on a literature search, PPARγ inactivation has been proposed as a molecular initiating event (MIE). In addition, a list of candidate chemicals that could be used in the experimental validation was proposed using toxicity database and deep learning models. In this study, the screening of environmental chemicals for MIE was conducted using in silico and in vitro tests to maximize the applicability of this AOP for screening inhalation toxicants. Initially, potential inhalation exposure chemicals that are active in three or more key events were selected, and in silico molecular docking was performed. Among the chemicals with low binding energy to PPARγ, nine chemicals were selected for validation of the AOP using in vitro PPARγ activity assay. As a result, rotenone, triorthocresyl phosphate, and castor oil were proposed as PPARγ antagonists and stressor chemicals of the AOP. Overall, the proposed tiered approach of the database-in silico-in vitro can help identify the regulatory applicability and assist in the development and experimental validation of AOP.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jiwan Kim
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Koh DH, Song WS, Kim EY. Multi-step structure-activity relationship screening efficiently predicts diverse PPARγ antagonists. CHEMOSPHERE 2022; 286:131540. [PMID: 34346341 DOI: 10.1016/j.chemosphere.2021.131540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
In discovering the potential antagonist of peroxisome proliferator-activated receptor gamma (PPARγ), the structure-activity relationship (SAR) is a useful in silico method. However, it is difficult for conventional SAR approaches to predict the activities of antagonists owing to the large structural diversity of antagonistic compounds. This study provides evidence that multi-step SAR screening is applicable for predicting PPARγ antagonists by combining different complementary methodologies. We constructed three models: read-across-like SAR, docking-simulation-interpreting SAR, and deep-learning-based SAR. To provide user-customized prediction results, our multi-step SAR screening model combined the three SAR models in a stepwise manner, which subdivided them according to potential levels of the PPARγ antagonist. The read-across-like SAR, which considered specific antagonist scaffolds, revealed the highest positive predictive value (PPV). The docking-simulation-interpreting SAR, which considered the molecular surface features, revealed high statistics for the PPV and the true-positive rate (TPR). The deep-learning-based SAR showed the highest TPR at the last classification step. This multi-step SAR screening covered the antagonists of high reliability provided by a read-across-like SAR, as well as the antagonists of diverse scaffolds provided by docking-simulation-interpreting SAR and deep-learning-based SAR. Therefore, to predict PPARγ antagonists, multi-step SAR screening could be as a useful tool.
Collapse
Affiliation(s)
- Dong-Hee Koh
- Department of Life and Nanopharmaceutical Science, South Korea
| | - Woo-Seon Song
- Department of Life and Nanopharmaceutical Science, South Korea
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science, South Korea; Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, South Korea.
| |
Collapse
|
4
|
Audouze K, Zgheib E, Abass K, Baig AH, Forner-Piquer I, Holbech H, Knapen D, Leonards PEG, Lupu DI, Palaniswamy S, Rautio A, Sapounidou M, Martin OV. Evidenced-Based Approaches to Support the Development of Endocrine-Mediated Adverse Outcome Pathways: Challenges and Opportunities. FRONTIERS IN TOXICOLOGY 2021; 3:787017. [PMID: 35295112 PMCID: PMC8915810 DOI: 10.3389/ftox.2021.787017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Elias Zgheib
- Université de Paris, T3S, Inserm U1124, Paris, France
| | - Khaled Abass
- Thule Institute, University of Arctic, University of Oulu, Oulu, Finland
- Department of Pesticides, Menoufia University, Menoufia, Egypt
| | - Asma H. Baig
- Centre for Pollution Research and Policy, Brunel University London, Uxbridge, United Kingdom
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Brunel University London, Uxbridge, United Kingdom
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Dries Knapen
- Zebrafishlab, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Pim E. G. Leonards
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Diana I. Lupu
- Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Saranya Palaniswamy
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Arja Rautio
- Thule Institute, University of Arctic, University of Oulu, Oulu, Finland
| | - Maria Sapounidou
- Department of Chemistry, Faculty of Science and Technology, Umeå University, Umeå, Sweden
| | - Olwenn V. Martin
- Centre for Pollution Research and Policy, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
5
|
Legler J, Zalko D, Jourdan F, Jacobs M, Fromenty B, Balaguer P, Bourguet W, Munic Kos V, Nadal A, Beausoleil C, Cristobal S, Remy S, Ermler S, Margiotta-Casaluci L, Griffin JL, Blumberg B, Chesné C, Hoffmann S, Andersson PL, Kamstra JH. The GOLIATH Project: Towards an Internationally Harmonised Approach for Testing Metabolism Disrupting Compounds. Int J Mol Sci 2020; 21:E3480. [PMID: 32423144 PMCID: PMC7279023 DOI: 10.3390/ijms21103480] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs. GOLIATH will generate the world's first integrated approach to testing and assessment (IATA) specifically tailored to MDCs. GOLIATH will focus on the main cellular targets of metabolic disruption-hepatocytes, pancreatic endocrine cells, myocytes and adipocytes-and using an adverse outcome pathway (AOP) framework will provide key information on MDC-related mode of action by incorporating multi-omic analyses and translating results from in silico, in vitro, and in vivo models and assays to adverse metabolic health outcomes in humans at real-life exposures. Given the importance of international acceptance of the developed test methods for regulatory use, GOLIATH will link with ongoing initiatives of the Organisation for Economic Development (OECD) for test method (pre-)validation, IATA, and AOP development.
Collapse
Affiliation(s)
- Juliette Legler
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands;
| | - Daniel Zalko
- INRAE Toxalim (Research Centre in Food Toxicology), Metabolism and Xenobiotics (MeX) Team, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (D.Z.); (F.J.)
| | - Fabien Jourdan
- INRAE Toxalim (Research Centre in Food Toxicology), Metabolism and Xenobiotics (MeX) Team, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (D.Z.); (F.J.)
| | - Miriam Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OXON. OX11 0RQ, UK;
| | - Bernard Fromenty
- Institut NUMECAN (Nutrition Metabolisms and Cancer) INSERM UMR_A 1341, UMR_S 1241, Université de Rennes, F-35000 Rennes, France;
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Université de Montpellier, 34298 Montpellier, France;
| | - William Bourguet
- Center for Structural Biochemistry (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France;
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Angel Nadal
- IDiBE and CIBERDEM, Universitas Miguel Hernandez, 03202 Elche (Alicante), Spain;
| | - Claire Beausoleil
- ANSES, Direction de l’Evaluation des Risques, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort CEDEX, France;
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences (BKV), Cell Biology, Medical Faculty, Linköping University, SE-581 85 Linköping, Sweden;
| | - Sylvie Remy
- Sustainable Health, Flemish Institute for Technological Research, VITO, 2400 Mol, Belgium;
| | - Sibylle Ermler
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.E.); (L.M.-C.)
| | - Luigi Margiotta-Casaluci
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.E.); (L.M.-C.)
| | - Julian L. Griffin
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK;
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California Irvine, 2011 BioSci 3, University of California, Irvine, CA 92697-2300, USA;
| | - Christophe Chesné
- Biopredic International, Parc d’Activité de la Bretèche Bâtiment A4, 35760 Saint Grégoire, France;
| | | | | | - Jorke H. Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands;
| |
Collapse
|
6
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
7
|
QSAR, molecular docking approach on the estrogenic activities of persistent organic pollutants using quantum chemical disruptors. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1624-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Wang J, Hallinger DR, Murr AS, Buckalew AR, Lougee RR, Richard AM, Laws SC, Stoker TE. High-throughput screening and chemotype-enrichment analysis of ToxCast phase II chemicals evaluated for human sodium-iodide symporter (NIS) inhibition. ENVIRONMENT INTERNATIONAL 2019; 126:377-386. [PMID: 30826616 PMCID: PMC9082575 DOI: 10.1016/j.envint.2019.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 05/26/2023]
Abstract
In support of the Endocrine Disruptor Screening Program (EDSP), the U.S.EPA's Office of Research and Development (ORD) is developing high-throughput screening (HTS) approaches to identify chemicals that alter target sites in the thyroid hormone (TH) pathway. The sodium iodide symporter (NIS) is a transmembrane glycoprotein that mediates iodide uptake into the thyroid as the initial step of TH biosynthesis. Previously, we screened 293 ToxCast chemicals (ph1v2) using a HEK293T cell line expressing human NIS in parallel radioactive iodide uptake (RAIU) and cell viability assays to identify potential environmental NIS inhibitors. Here, we expanded NIS inhibitor screening for a set of 768 ToxCast Phase II (ph2) chemicals, and applied a novel computational toxicology approach based on the ToxPrint chemotype to identify chemical substructures associated with NIS inhibition. Following single-concentration screening (at 1 × 10-4 M with a 20% inhibition cutoff), 235 samples (228 chemicals) were further tested in multiple-concentration (1 × 10-9 - 1 × 10-4 M) format in both RAIU and cell viability assays. The 167 chemicals that exhibited significant RAIU inhibition were then prioritized using combined RAIU and cell viability responses that were normalized relative to the known NIS inhibitor sodium perchlorate. Some of the highest ranked chemicals, such as PFOS, tributyltin chloride, and triclocarban, have been previously reported to be thyroid disruptors. In addition, several novel chemicals were identified as potent NIS inhibitors. The present results were combined with the previous ph1v2 screening results to produce two sets of binary hit-calls for 1028 unique chemicals, consisting of 273 positives exhibiting significant RAIU inhibition, and 63 positives following application of a cell viability filter. A ToxPrint chemotype-enrichment analysis identified >20 distinct chemical substructural features, represented in >60% of the active chemicals, as significantly enriched in each NIS inhibition hit-call space. A shared set of 9 chemotypes enriched in both hit-call sets indicates stable chemotype signals (insensitive to cytotoxicity filters) that can help guide structure-activity relationship (SAR) investigations and inform future research.
Collapse
Affiliation(s)
- Jun Wang
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA; Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA
| | - Daniel R Hallinger
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ashley S Murr
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Angela R Buckalew
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ryan R Lougee
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA; National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ann M Richard
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Susan C Laws
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Tammy E Stoker
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
9
|
Wang J, Wang B, Zhang Y. Agonism activities of lyso-phosphatidylcholines (LPC) Ligands binding to peroxisome proliferator-activated receptor gamma (PPARγ). J Biomol Struct Dyn 2019; 38:398-409. [PMID: 31025599 DOI: 10.1080/07391102.2019.1577175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PPARγ is an isoform of peroxisome proliferator-activated receptor (PPAR) belonging to a super family of nuclear receptors and is a primary target of the effective drug to treat the type II diabetes. The experiments found that Lyso-phosphatidylcholines (LPC) could bind to PPARγ, but the binding modes remain unknown. We used the Molecular Docking and Molecular Dynamic (MD) simulations to study the binding of four LPC ligands (LPC16:0, LPC18:0, LPC18:1-1 and LPC18:1-2) to PPARγ. The two-step MD simulations were employed to determine the final binding modes. The 20 ns MD simulations for four final LPC-PPARγ complexes were performed to analyze their structures, the binding key residues, and agonism activities. The results reveal that three LPC ligands (LPC16:0, LPC18:0 and LPC18:1-1) bind to Arm II and III regions of the Ligand Binding Domain (LBD) pocket, whereas they do not interact with Tyr473 of Helix 12 (H12). In contrast, LPC18:1-2 can form the hydrogen bonds with Tyr473 and bind into Arm I and II regions. Comparing with the paradigm systems of the full agonist (Rosiglitazone-PPARγ) and the partial agonist (MRL24-PPARγ), our results indicate that LPC16:0, LPC18:0 and LPC18:1-1 could be the potential partial agonists and LPC18:1-2 could be a full agonist. The in-depth analysis of the residue fluctuations and structure alignment confirm the present prediction of the LPC agonism activities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jiayue Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP) Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bohong Wang
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics (DICP) Chinese Academy of Sciences, Dalian, China
| | - Yan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP) Chinese Academy of Sciences, Dalian, China.,Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Jeong J, Kim H, Choi J. In Silico Molecular Docking and In Vivo Validation with Caenorhabditis elegans to Discover Molecular Initiating Events in Adverse Outcome Pathway Framework: Case Study on Endocrine-Disrupting Chemicals with Estrogen and Androgen Receptors. Int J Mol Sci 2019; 20:ijms20051209. [PMID: 30857347 PMCID: PMC6429066 DOI: 10.3390/ijms20051209] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
Molecular docking is used to analyze structural complexes of a target with its ligand for understanding the chemical and structural basis of target specificity. This method has the potential to be applied for discovering molecular initiating events (MIEs) in the Adverse Outcome Pathway framework. In this study, we aimed to develop in silico–in vivo combined approach as a tool for identifying potential MIEs. We used environmental chemicals from Tox21 database to identify potential endocrine-disrupting chemicals (EDCs) through molecular docking simulation, using estrogen receptor (ER), androgen receptor (AR) and their homology models in the nematode Caenorhabditis elegans (NHR-14 and NHR-69, respectively). In vivo validation was conducted on the selected EDCs with C. elegans reproductive toxicity assay using wildtype N2, nhr-14, and nhr-69 loss-of-function mutant strains. The chemicals showed high binding affinity to tested receptors and showed the high in vivo reproductive toxicity, and this was further confirmed using the mutant strains. The present study demonstrates that the binding affinity from the molecular docking potentially correlates with in vivo toxicity. These results prove that our in silico–in vivo combined approach has the potential to be applied for identifying MIEs. This study also suggests the potential of C. elegans as useful in the in vivo model for validating the in silico approach.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Korea.
| | - Hunbeen Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Korea.
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Korea.
| |
Collapse
|
11
|
Lynch AM, Eastmond D, Elhajouji A, Froetschl R, Kirsch-Volders M, Marchetti F, Masumura K, Pacchierotti F, Schuler M, Tweats D. Targets and mechanisms of chemically induced aneuploidy. Part 1 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403025. [PMID: 31699346 DOI: 10.1016/j.mrgentox.2019.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
An aneuploidy workgroup was established as part of the 7th International Workshops on Genotoxicity Testing. The workgroup conducted a review of the scientific literature on the biological mechanisms of aneuploidy in mammalian cells and methods used to detect chemical aneugens. In addition, the current regulatory framework was discussed, with the objective to arrive at consensus statements on the ramifications of exposure to chemical aneugens for human health risk assessment. As part of these efforts, the workgroup explored the use of adverse outcome pathways (AOPs) to document mechanisms of chemically induced aneuploidy in mammalian somatic cells. The group worked on two molecular initiating events (MIEs), tubulin binding and binding to the catalytic domain of aurora kinase B, which result in several adverse outcomes, including aneuploidy. The workgroup agreed that the AOP framework provides a useful approach to link evidence for MIEs with aneuploidy on a cellular level. The evidence linking chemically induced aneuploidy with carcinogenicity and hereditary disease was also reviewed and is presented in two companion papers. In addition, the group came to the consensus that the current regulatory test batteries, while not ideal, are sufficient for the identification of aneugens and human risk assessment. While it is obvious that there are many different MIEs that could lead to the induction of aneuploidy, the most commonly observed mechanisms involving chemical aneugens are related to tubulin binding and, to a lesser extent, inhibition of mitotic kinases. The comprehensive review presented here should help with the identification and risk management of aneugenic agents.
Collapse
Affiliation(s)
| | | | - Azeddine Elhajouji
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | | | | |
Collapse
|
12
|
Al Sharif M, Alov P, Diukendjieva A, Vitcheva V, Simeonova R, Krasteva I, Shkondrov A, Tsakovska I, Pajeva I. Molecular determinants of PPARγ partial agonism and related in silico/in vivo studies of natural saponins as potential type 2 diabetes modulators. Food Chem Toxicol 2017; 112:47-59. [PMID: 29247773 DOI: 10.1016/j.fct.2017.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/29/2022]
Abstract
The metabolic syndrome, which includes hypertension, type 2 diabetes (T2D) and obesity, has reached an epidemic-like scale. Saponins and sapogenins are considered as valuable natural products for ameliorating this pathology, possibly through the nuclear receptor PPARγ activation. The aims of this study were: to look for in vivo antidiabetic effects of a purified saponins' mixture (PSM) from Astragalus corniculatus Bieb; to reveal by in silico methods the molecular determinants of PPARγ partial agonism, and to investigate the potential PPARγ participation in the PSM effects. In the in vivo experiments spontaneously hypertensive rats (SHRs) with induced T2D were treated with PSM or pioglitazone as a referent PPARγ full agonist, and pathology-relevant biochemical markers were analysed. The results provided details on the PSM modulation of the glucose homeostasis and its potential mechanism. The in silico studies focused on analysis of the protein-ligand interactions in crystal structures of human PPARγ-partial agonist complexes, pharmacophore modelling and molecular docking. They outlined key pharmacophoric features, typical for the PPARγ partial agonists, which were used for pharmacophore-based docking of the main PSM sapogenin. The in silico studies, strongly suggest possible involvement of PPARγ-mediated mechanisms in the in vivo antidiabetic and antioxidant effects of PSM from A. corniculatus.
Collapse
Affiliation(s)
- Merilin Al Sharif
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Petko Alov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Antonia Diukendjieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Vessela Vitcheva
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Rumyana Simeonova
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Ilina Krasteva
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Aleksandar Shkondrov
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| |
Collapse
|
13
|
Berggren E, White A, Ouedraogo G, Paini A, Richarz AN, Bois FY, Exner T, Leite S, Grunsven LAV, Worth A, Mahony C. Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 4:31-44. [PMID: 29214231 PMCID: PMC5695905 DOI: 10.1016/j.comtox.2017.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
Abstract
We describe and illustrate a workflow for chemical safety assessment that completely avoids animal testing. The workflow, which was developed within the SEURAT-1 initiative, is designed to be applicable to cosmetic ingredients as well as to other types of chemicals, e.g. active ingredients in plant protection products, biocides or pharmaceuticals. The aim of this work was to develop a workflow to assess chemical safety without relying on any animal testing, but instead constructing a hypothesis based on existing data, in silico modelling, biokinetic considerations and then by targeted non-animal testing. For illustrative purposes, we consider a hypothetical new ingredient x as a new component in a body lotion formulation. The workflow is divided into tiers in which points of departure are established through in vitro testing and in silico prediction, as the basis for estimating a safe external dose in a repeated use scenario. The workflow includes a series of possible exit (decision) points, with increasing levels of confidence, based on the sequential application of the Threshold of Toxicological (TTC) approach, read-across, followed by an "ab initio" assessment, in which chemical safety is determined entirely by new in vitro testing and in vitro to in vivo extrapolation by means of mathematical modelling. We believe that this workflow could be applied as a tool to inform targeted and toxicologically relevant in vitro testing, where necessary, and to gain confidence in safety decision making without the need for animal testing.
Collapse
Affiliation(s)
- Elisabet Berggren
- Chemical Safety and Alternative Methods Unit, & EURL ECVAM, Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | | | | | - Alicia Paini
- Chemical Safety and Alternative Methods Unit, & EURL ECVAM, Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | - Andrea-Nicole Richarz
- Chemical Safety and Alternative Methods Unit, & EURL ECVAM, Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | | | | | - Sofia Leite
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrew Worth
- Chemical Safety and Alternative Methods Unit, & EURL ECVAM, Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | | |
Collapse
|