1
|
Steffens J, Michael S, Kuth K, Hollert H, Du Marchie Sarvaas M, Nesic A, Kraus T, Baumann R. Occupationally Relevant Zinc- and Copper-Containing Metal Fumes Inhibit Human THP-1 Macrophage TNF and IL-6 Responses to Bacterial Stimuli. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400302. [PMID: 40352634 PMCID: PMC12065103 DOI: 10.1002/gch2.202400302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Indexed: 05/14/2025]
Abstract
Metal workers have an increased risk of severe lobar pneumonia due to exposure to metal fume particles, which lead to recent pneumococcal vaccination recommendations. To investigate the effects of metal fume-derived zinc oxide (ZnO) and copper oxide (CuO) particles on airway immune responses, human THP-1-derived macrophages are exposed in vitro to the bacterial pathogen-associated molecular patterns (PAMPs) lipopolysaccharide (LPS), lipoteichoic Acid (LTA), or peptidoglycan (PGN), together with particle suspensions. Particles are generated through metal inert gas (MIG) soldering. Spectrometric and microscopic analysis confirms CuO and ZnO as main components. Macrophage IL-6 and TNF mRNAs are quantified by qPCR and secreted protein levels by electrochemiluminescent multi-spot assay. A dose-dependent increase in macrophage TNF and IL-6 mRNA (4 h) and protein (24 h) levels following exposure to PAMPs is significantly inhibited by 2 µg mL-1 CuO/ZnO particles (n = 5). Additionally, CuO/ZnO particles significantly inhibit TNF protein expression in unstimulated macrophages, while IL-6 protein levels are unaffected (n = 5). The presented in vitro immunotoxicity approach may extend existing new approach methodology (NAM) elements for chemical risk assessment and possibly exposure limit evaluation refinements. These findings implicate that CuO/ZnO particles suppress macrophage proinflammatory responses to PAMPs, potentially compromising lung immunity, underlining current vaccine recommendations and efforts for preventive occupational health guidelines.
Collapse
Affiliation(s)
- Jan Steffens
- Institute for Translational Medicine (ITM)Medical School Hamburg (MSH)20457HamburgGermany
- Institute for Occupational, Social and Environmental MedicineMedical FacultyUniversity Hospital RWTH Aachen University52074AachenGermany
| | - Sabrina Michael
- Institute for Occupational, Social and Environmental MedicineMedical FacultyUniversity Hospital RWTH Aachen University52074AachenGermany
- Institute of Hygiene and Environmental MedicineMedical FacultyUniversity Hospital RWTH Aachen University52074AachenGermany
| | - Katharina Kuth
- Institute for Occupational, Social and Environmental MedicineMedical FacultyUniversity Hospital RWTH Aachen University52074AachenGermany
- Institute of Hygiene and Environmental MedicineMedical FacultyUniversity Hospital RWTH Aachen University52074AachenGermany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental ToxicologyInstitute of Ecology, Evolution and DiversityFaculty Biological SciencesGoethe University Frankfurt60438FrankfurtGermany
| | - Miriam Du Marchie Sarvaas
- Institute for Occupational, Social and Environmental MedicineMedical FacultyUniversity Hospital RWTH Aachen University52074AachenGermany
| | - Andrijana Nesic
- Institute for Translational Medicine (ITM)Medical School Hamburg (MSH)20457HamburgGermany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental MedicineMedical FacultyUniversity Hospital RWTH Aachen University52074AachenGermany
| | - Ralf Baumann
- Institute for Translational Medicine (ITM)Medical School Hamburg (MSH)20457HamburgGermany
- Institute for Occupational, Social and Environmental MedicineMedical FacultyUniversity Hospital RWTH Aachen University52074AachenGermany
| |
Collapse
|
2
|
Steffens J, Kuth K, Kraus T, Dott W, Michael S, Baumann R. Inflammatory Responses to Zn/Cu-Containing Welding Fume in Human Alveolar Epithelial and Macrophage Cell Lines, with MIP-1β/CCL4 as a Much More Sensitive Macrophage Activation Marker than IL-8 and TNF-α. Int J Mol Sci 2025; 26:3843. [PMID: 40332485 PMCID: PMC12027897 DOI: 10.3390/ijms26083843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Zinc (Zn)- and copper (Cu)-containing welding fumes elevate inflammatory markers (CRP, TNF-α, IL-6, IL-8) in healthy individuals and welders. Zn- and Cu-containing nanoparticles are toxic to human macrophages. Therefore, ZnO exposure limits are under discussion. In this study, the effects of Zn/Cu-containing welding fume suspensions on A549 alveolar epithelial cells (exposure concentrations: 0.01/0.1/1/10/100 µg/mL) and THP-1 macrophages (additionally 0.001 µg/mL) were investigated over a period of 48 h. Effects on apoptosis, cytotoxicity, genotoxicity, superoxide dismutase (SOD) activity, and cytokine levels (IL-6, IL-8, MIP-1β/CCL4, TNF-α) were evaluated. Welding fume exposure increased SOD activity, and it increased Annexin-V binding and cytotoxicity effects starting at 10 µg/mL in A549 cells and particularly in THP-1 macrophages. A549 cells showed increased IL-6 at 10 and 100 µg/mL, and significant IL-8 release occurred at 10 µg/mL for A549 and 0.1 µg/mL for macrophages. Exposed macrophages released TNF-α at 1 µg/mL after 24 and 48 h and MIP-1β/CCL4 at 0.01 µg/mL after 6 h and at 0.001 µg/mL after 48 h. No genotoxic effects were detected. MIP-1β/CCL4 is a sensitive new biomarker for human macrophages exposed to Zn/Cu-containing welding fumes. The findings suggest that Zn/Cu particles affect lung cells already at doses below current occupational thresholds.
Collapse
Affiliation(s)
- Jan Steffens
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
- Institute for Translational Medicine, Medical Faculty, Medical School Hamburg (MSH), Am Kaiserkai 1, 20457 Hamburg, Germany
| | - Katharina Kuth
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
- Institute of Hygiene and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Wolfgang Dott
- Institute of Hygiene and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Sabrina Michael
- Institute of Hygiene and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Ralf Baumann
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
- Institute for Translational Medicine, Medical Faculty, Medical School Hamburg (MSH), Am Kaiserkai 1, 20457 Hamburg, Germany
| |
Collapse
|
3
|
Inhibition of cGAS ameliorates acute lung injury triggered by zinc oxide nanoparticles. Toxicol Lett 2022; 373:62-75. [PMID: 36368621 DOI: 10.1016/j.toxlet.2022.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Zinc oxide nanoparticles (ZnONPs) have been widely used in various industrial and biomedical fields. Occupational or accidental inhalation exposure to ZnONPs might lead to acute lung injury (ALI). Cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) are critical for the initiation and expansion of inflammation and contribute to tissue injury; however, the role and mechanism of the cGAS-STING pathway in ALI-induced by ZnONPs are unclear. METHODS Male C57BL/6 J mice were intratracheally injected with ZnONPs (0.6 mg/kg) or mock. The mice were euthanized and the degree of lung injury was determined 3 days after the instillation of ZnONPs. The BEAS-2B cell line was used as a cell model to investigate the cytotoxicity of ZnONPs in vitro. RESULTS We found that ZnONPs inhalation induced ALI in mice, manifested by exacerbated lung pathological changes, mitochondrial damage, oxidative stress and inflammation. Interestingly, cGAS and STING were activated in the lung tissues of the mice and BEAS-2B lung epithelial cells treated with ZnONPs. More importantly, we illustrated that the cGAS inhibitor RU.521 inhibited the activation of the cGAS-STING pathway, further decreased oxidative stress and inflammation, and led to ameliorated lung injury in mice treated with ZnONPs. CONCLUSION This study demonstrated that ZnONPs trigger the activation of the cGAS-STING pathway, which plays an important role in ZnONPs-induced ALI. Inhibition of cGAS with RU.521 mitigates the oxidative stress induced by ZnONPs, suggesting that targeting the cGAS-STING pathway may be a feasible strategy to ameliorate the pulmonary injury caused by nanoparticles.
Collapse
|
4
|
Luo X, Xie D, Hu J, Su J, Xue Z. Oxidative Stress and Inflammatory Biomarkers for Populations with Occupational Exposure to Nanomaterials: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2022; 11:2182. [PMID: 36358554 PMCID: PMC9687069 DOI: 10.3390/antiox11112182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2023] Open
Abstract
Exposure to nanomaterials (NMs) is suggested to have the potential to cause harmful health effects. Activations of oxidative stress and inflammation are assumed as main contributors to NM-induced toxicity. Thus, oxidative stress- and inflammation-related indicators may serve as biomarkers for occupational risk assessment. However, the correlation between NM exposure and these biomarkers remains controversial. This study aimed to perform a meta-analysis to systematically investigate the alterations of various biomarkers after NM exposure. Twenty-eight studies were found eligible by searching PubMed, EMBASE and Cochrane Library databases. The pooled results showed NM exposure was significantly associated with increases in the levels of malonaldehyde (MDA) [standardized mean difference (SMD) = 2.18; 95% confidence interval (CI), 1.50-2.87], 4-hydroxy-2-nonhenal (HNE) (SMD = 2.05; 95% CI, 1.13-2.96), aldehydes C6-12 (SMD = 3.45; 95% CI, 2.80-4.10), 8-hydroxyguanine (8-OHG) (SMD = 2.98; 95% CI, 2.22-3.74), 5-hydroxymethyl uracil (5-OHMeU) (SMD = 1.90; 95% CI, 1.23-2.58), o-tyrosine (o-Tyr) (SMD = 1.81; 95% CI, 1.22-2.41), 3-nitrotyrosine (3-NOTyr) (SMD = 2.63; 95% CI, 1.74-3.52), interleukin (IL)-1β (SMD = 1.76; 95% CI, 0.87-2.66), tumor necrosis factor (TNF)-α (SMD = 1.52; 95% CI, 1.03-2.01), myeloperoxidase (MPO) (SMD = 0.25; 95% CI, 0.16-0.34) and fibrinogen (SMD = 0.11; 95% CI, 0.02-0.21), and decreases in the levels of glutathione peroxidase (GPx) (SMD = -0.31; 95% CI, -0.52--0.11) and IL-6 soluble receptor (IL-6sR) (SMD = -0.18; 95% CI, -0.28--0.09). Subgroup analysis indicated oxidative stress biomarkers (MDA, HNE, aldehydes C6-12, 8-OHG, 5-OHMeU, o-Tyr, 3-NOTyr and GPx) in exhaled breath condensate (EBC) and blood samples were strongly changed by NM exposure; inflammatory biomarkers (IL-1β, TNF-α, MPO, fibrinogen and IL-6sR) were all significant in EBC, blood, sputum and nasal lavage samples. In conclusion, our findings suggest that these oxidative stress and inflammatory indicators may be promising biomarkers for the biological monitoring of occupationally NM-exposed workers.
Collapse
Affiliation(s)
- Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Jing Su
- Shanghai Institute of Spacecraft Equipment, 251 Huaning Road, Shanghai 200240, China
| | - Zhebin Xue
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| |
Collapse
|
5
|
Darras-Hostens M, Achour D, Muntaner M, Grare C, Zarcone G, Garçon G, Amouyel P, Zerimech F, Matran R, Guidice JML, Dauchet L. Short-term and residential exposure to air pollution: Associations with inflammatory biomarker levels in adults living in northern France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:154985. [PMID: 35398417 DOI: 10.1016/j.scitotenv.2022.154985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Air pollution has an impact on health, and low-grade inflammation might be one of the underlying mechanisms. The objective of the present study of adults from northern France was to assess the associations between short-term and residential exposure to air pollution and levels of various inflammatory biomarkers. METHODS The cross-sectional Enquête Littoral Souffle Air Biologie Environnement (ELISABET) study was conducted from 2011 to 2013 in the Lille and Dunkirk urban areas of northern France. Here, we evaluated the associations between PM10, NO2 and O3 exposure (on the day of the blood sample collection and on the day before, and the mean annual residential level) and levels of the inflammatory biomarkers high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-17A, IL-22, and tumor necrosis factor α. RESULTS We assessed 3074 participants for the association with hsCRP and a subsample of 982 non-smokers from Lille for the association with plasma cytokine levels. A 10 μg/m3 increment in PM10 and NO2 levels on the day of sample collection and on the day before was associated with a higher hsCRP concentration (3.43% [0.68; 6.25] and 1.75% [-1.96; 5.61], respectively, whereas a 10 μg/m3 increment in O3 was associated with lower hsCRP concentration (-1.2% [-3.95; 1.64]). The associations between mean annual exposure and the hsCRP level were not significant. Likewise, the associations between exposure and plasma cytokine levels were not statistically significant. CONCLUSION Short-term exposure to air pollution was associated with higher serum hsCRP levels in adult residents of two urban areas in northern France. Our results suggest that along with other factors, low-grade inflammation might explain the harmful effects of air pollution on health.
Collapse
Affiliation(s)
- Marion Darras-Hostens
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Djamal Achour
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Manon Muntaner
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Céline Grare
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Gianni Zarcone
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Philippe Amouyel
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Farid Zerimech
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Régis Matran
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Jean-Marc Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Luc Dauchet
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| |
Collapse
|
6
|
Scheurer T, Steffens J, Markert A, Du Marchie Sarvaas M, Roderburg C, Rink L, Tacke F, Luedde T, Kraus T, Baumann R. The human long noncoding RNAs CoroMarker, MALAT1, CDR1as, and LINC00460 in whole blood of individuals after controlled short-term exposure with ultrafine metal fume particles at workplace conditions, and in human macrophages in vitro. J Occup Med Toxicol 2022; 17:15. [PMID: 35915466 PMCID: PMC9344619 DOI: 10.1186/s12995-022-00356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term inhalation of occupationally relevant ultrafine zinc/copper (Zn/Cu) containing welding fumes has been shown to induce subclinical systemic inflammation, associated with an elevated risk for cardiovascular diseases. The involvement of noncoding RNAs (lncRNAs) in this setting is currently unknown. However, lncRNAs have been reported to fulfill essential roles in, e.g., cardiovascular diseases, inflammation, infectious diseases, and pollution-related lung disorders. METHODS In this study, the specific lncRNAs levels of the 4 lncRNAs CoroMarker, MALAT1, CDR1as and LINC00460 were determined by RT-qPCR in THP-1 macrophages exposed to Zn/Cu metal fume suspensions for 1, 2, and 4 hours in vitro. Furthermore, 14 subjects were exposed to Zn/Cu containing welding fumes (at 2.5 mg/m3) for 6 hours. Before, 6, 10, and 29 hours after exposure start, whole blood cell lncRNAs levels were determined by RT-qPCR. RESULTS In THP-1 macrophages, we observed a 2.3-fold increase of CDR1as at 1 h (Wilcoxon p = 0.03), a non-significant increase of CoroMarker at 1 h, and an increase of LINC00460 at 2 h (p = 0.03) and at 4 h (p = 0.06). In whole blood cells, we determined a non-significant upregulation of CDR1as at 6 h (p = 0.2), a significant downregulation of CoroMarker at 6 h (p = 0.04), and a significant upregulation of LINC00460 levels at 10 h (p = 0.04) and 29 h (p = 0.04). MALAT-1 remained unchanged in both settings. CONCLUSION The orientation of regulation of the lncRNAs is (except for CoroMarker) similar in the in vitro and in vivo experiments and in line with their described functions. Therefore, these results, e.g. the upregulation of the potential risk marker for cardiovascular diseases, CDR1as, contribute to understanding the underlying mechanisms of Zn/Cu-induced subclinical inflammation in metal workers.
Collapse
Affiliation(s)
- Theresa Scheurer
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jan Steffens
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
- Institute for Translational Medicine (ITM), Medical School Hamburg (MSH) - Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Agnieszka Markert
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Miriam Du Marchie Sarvaas
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tom Luedde
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ralf Baumann
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Institute for Translational Medicine (ITM), Medical School Hamburg (MSH) - Am Kaiserkai 1, 20457, Hamburg, Germany
| |
Collapse
|
7
|
Monsé C, Westphal G, Raulf M, Jettkant B, van Kampen V, Kendzia B, Schürmeyer L, Seifert CE, Marek EM, Wiegand F, Rosenkranz N, Wegener C, Merget R, Brüning T, Bünger J. No inflammatory effects after acute inhalation of barium sulfate particles in human volunteers. BMC Pulm Med 2022; 22:233. [PMID: 35710385 PMCID: PMC9205122 DOI: 10.1186/s12890-022-02021-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Most threshold limit values are based on animal experiments. Often, the question remains whether these data reflect the situation in humans. As part of a series of investigations in our exposure lab, this study investigates whether the results on the inflammatory effects of particles that have been demonstrated in animal models can be confirmed in acute inhalation studies in humans. Such studies have not been conducted so far for barium sulfate particles (BaSO4), a substance with very low solubility and without known substance-specific toxicity. Previous inhalation studies with zinc oxide (ZnO), which has a substance-specific toxicity, have shown local and systemic inflammatory respones. The design of these human ZnO inhalation studies was adopted for BaSO4 to compare the effects of particles with known inflammatory activity and supposedly inert particles. For further comparison, in vitro investigations on inflammatory processes were carried out. Methods Sixteen healthy volunteers were exposed to filtered air and BaSO4 particles (4.0 mg/m3) for two hours including one hour of ergometric cycling at moderate workload. Effect parameters were clinical signs, body temperature, and inflammatory markers in blood and induced sputum. In addition, particle-induced in vitro-chemotaxis of BaSO4 was investigated with regard to mode of action and differences between in vivo and in vitro effects. Results No local or systemic clinical signs were observed after acute BaSO4 inhalation and, in contrast to our previous human exposure studies with ZnO, no elevated values of biomarkers of inflammation were measured after the challenge. The in vitro chemotaxis induced by BaSO4 particles was minimal and 15-fold lower compared to ZnO. Conclusion The results of this study indicate that BaSO4 as a representative of granular biopersistent particles without specific toxicity does not induce inflammatory effects in humans after acute inhalation. Moreover, the in vitro data fit in with these in vivo results. Despite the careful and complex investigations, limitations must be admitted because the number of local effect parameters were limited and chronic toxicity could not be studied. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02021-y.
Collapse
Affiliation(s)
- Christian Monsé
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Götz Westphal
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Birger Jettkant
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Vera van Kampen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Benjamin Kendzia
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Leonie Schürmeyer
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Christoph Edzard Seifert
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Eike-Maximilian Marek
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Felicitas Wiegand
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Nina Rosenkranz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Christopher Wegener
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Rolf Merget
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Jürgen Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
8
|
Elfsmark L, Ekstrand-Hammarström B, Forsgren N, Lejon C, Hägglund L, Wingfors H. Characterization of toxicological effects of complex nano-sized metal particles using in vitro human cell and whole blood model systems. J Appl Toxicol 2021; 42:203-215. [PMID: 34050537 DOI: 10.1002/jat.4202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
Metal oxide fumes form at high temperatures, for instance, during welding or firing ammunition. Inhalation exposure to high levels of airborne metal oxide particles can cause metal fume fever, cardiovascular effects, and lung damage in humans, but the associated underlying pathological mechanisms are still not fully understood. Using human alveolar epithelial cells, vascular endothelial cells, and whole blood model systems, we aimed to elucidate the short-term effects of well-characterized metal particles emitted while firing pistol ammunition. Human lung epithelial cells exposed to gunshot smoke particles (0.1-50 μg/ml) produced reactive oxygen species (ROS) and pro-inflammatory cytokines (interleukin 8 (IL-8), granulocyte-macrophage colony-stimulating factor (GM-CSF)) that activate and recruit immune cells. Particles comprising high copper (Cu) and zinc (Zn) content activated human endothelial cells via a non-ROS-mediated mechanism that triggered immune activation (IL-8, GM-CSF), leukocyte adhesion to the endothelium (soluble intercellular adhesion molecule 1 (sICAM-1)), and secretion of regulators of the acute-phase protein synthesis (interleukin 6 (IL-6)). In human whole blood, metal oxides in gunshot smoke demonstrated intrinsic properties that activated platelets (release of soluble cluster of differentiation 40 ligand (sCD40L), platelet-derived growth factor B-chain homodimer(PDGF-BB), and vascular endothelial growth factor A (VEGF-A)) and blood coagulation and induced concomitant release of pro-inflammatory cytokines from blood leukocytes that further orchestrate thrombogenesis. The model systems applied provide useful tools for health risk assessment of particle exposures, but more studies are needed to further elucidate the mechanisms of metal fume fever and to evaluate the potential risk of long-term cardiovascular diseases.
Collapse
Affiliation(s)
- Linda Elfsmark
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | | | - Nina Forsgren
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Christian Lejon
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Lars Hägglund
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Håkan Wingfors
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| |
Collapse
|
9
|
The Effects of Exposure Time on Systemic Inflammation in Subjects With Exposure to Zinc- and Copper-Containing Brazing Fumes. J Occup Environ Med 2020; 61:806-811. [PMID: 31348430 DOI: 10.1097/jom.0000000000001676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Inhalation of copper and zinc containing brazing fumes (2.5 mg/m for 6 hours) is able to induce asymptomatic systemic inflammation which is supposed to be connected with an increased risk for cardiovascular disease. In this study it was investigated if inflammation can be prevented by reducing the exposure time. METHODS A total of 15 healthy male subjects were exposed to such brazing fumes in a crossover design for 3, 4, and 5 hours in randomized order. Before and 24 hours after exposure, blood samples were taken and c-reactive protein (CRP) as marker for an acute phase reaction was measured. RESULTS Five-hour exposure induced an increase of CRP, whereas the shorter exposure times did not result in a significant inflammatory reaction. CONCLUSIONS Reducing daily exposure times below 5 hours is able to prevent systemic inflammatory reactions.
Collapse
|
10
|
Vimercati L, Cavone D, Caputi A, De Maria L, Tria M, Prato E, Ferri GM. Nanoparticles: An Experimental Study of Zinc Nanoparticles Toxicity on Marine Crustaceans. General Overview on the Health Implications in Humans. Front Public Health 2020; 8:192. [PMID: 32509719 PMCID: PMC7253631 DOI: 10.3389/fpubh.2020.00192] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
The presence of products containing nanoparticles or nanofibers is rapidly growing. Nanotechnology involves a wide spectrum of industrial fields. There is a lack of information regarding the toxicity of these nanoparticles in aqueous media. The potential acute toxicity of ZnO NPs using two marine crustacean species: the copepod Tigriopus fulvus and the amphypod Corophium insidiosum was evaluated. Acute tests were conducted on adults of T. Fulvus nauplii and C. insidiosum. Both test species were exposed for 96 h to 5 increasing concentrations of ZnO NPs and ZnSO4H2O, and the endpoint was mortality. Statistical analysis revealed that the mean LC50 values of both ZnO NPs and ZnSO4H2O (ZnO NPs: F = 59.42; P < 0.0015; ZnSO4H2O: F = 25.57; P < 0.0015) were significantly lower for Tigriopus fulvus than for Corophium insidiosum. This result confirms that the toxic effect could be mainly attributed to the Zn ions, confirming that the dissolution processes play a crucial role in the toxicity of the ZnO NPs.
Collapse
Affiliation(s)
- Luigi Vimercati
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Domenica Cavone
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Antonio Caputi
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Luigi De Maria
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Michele Tria
- Marine Environment and Pollution Prevention, Department of Prevention, ASL TA Health Company, Taranto, Italy
| | - Ermelinda Prato
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Giovanni Maria Ferri
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| |
Collapse
|
11
|
Increased Neutrophil Granulocyte and Myeloperoxidase Levels Indicate Acute Inflammation Due to the Exposure of Zinc- and Copper-Containing Welding Fumes. J Occup Environ Med 2020; 62:618-627. [PMID: 32404823 DOI: 10.1097/jom.0000000000001905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Recent studies have shown an increase of C-reactive-protein (CRP) after exposure to zinc- and copper-containing welding fumes. The objective of this study was to determine the effects of exposure to zinc- and copper-containing welding fumes on leukocytes, their subtypes, and myeloperoxidase (MPO). METHODS Serum samples of male volunteers were examined after exposures to welding fumes in two settings: repeated exposure on 4 consecutive days for 6 hours and single exposures for different times (3, 4, 5 hours). RESULTS Neutrophil granulocyte and MPO levels showed increases 24 hours after single and repeated exposures for 6 hours similar to CRP increases reported in literature. Overall leukocyte levels and levels of monocytes and lymphocytes were not significantly affected. CONCLUSIONS This study indicates the involvement of neutrophil granulocytes in welding fume fever additional to mediator related effects.
Collapse
|
12
|
Hadrup N, Zhernovkov V, Jacobsen NR, Voss C, Strunz M, Ansari M, Schiller HB, Halappanavar S, Poulsen SS, Kholodenko B, Stoeger T, Saber AT, Vogel U. Acute Phase Response as a Biological Mechanism-of-Action of (Nano)particle-Induced Cardiovascular Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907476. [PMID: 32227434 DOI: 10.1002/smll.201907476] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 05/15/2023]
Abstract
Inhaled nanoparticles constitute a potential health hazard due to their size-dependent lung deposition and large surface to mass ratio. Exposure to high levels contributes to the risk of developing respiratory and cardiovascular diseases, as well as of lung cancer. Particle-induced acute phase response may be an important mechanism of action of particle-induced cardiovascular disease. Here, the authors review new important scientific evidence showing causal relationships between inhalation of particle and nanomaterials, induction of acute phase response, and risk of cardiovascular disease. Particle-induced acute phase response provides a means for risk assessment of particle-induced cardiovascular disease and underscores cardiovascular disease as an occupational disease.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Vadim Zhernovkov
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | - Carola Voss
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sarah S Poulsen
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Boris Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
- DTU Health, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
13
|
Welding Fumes, a Risk Factor for Lung Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072552. [PMID: 32276440 PMCID: PMC7177922 DOI: 10.3390/ijerph17072552] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022]
Abstract
(1) Background: Welding fumes (WFs) are composed of fine and ultrafine particles, which may reach the distal airways and represent a risk factor for respiratory diseases. (2) Methods: In vitro and in vivo studies to understand WFs pathogenesis were selected. Epidemiological studies, original articles, review, and meta-analysis to examine solely respiratory disease in welders were included. A systematic literature search, using PubMed, National Institute for Occupational Safety and Health Technical Information Center (NIOSHTIC), and Web of Science databases, was performed. (3) Results: Dose, time of exposure, and composition of WFs affect lung injury. Inflammation, lung defense suppression, oxidative stress, DNA damage, and genotoxic effects were observed after exposure both to mild and stainless steel WFs. (4) Conclusions: The detection of lung diseases associated with specific occupational exposure is crucial as complete avoidance or reduction of the exposure is difficult to achieve. Further studies in the area of particle research may aid the understanding of mechanisms involved in welding-related lung disease and to expand knowledge in welding-related cardiovascular diseases.
Collapse
|
14
|
Bortolotti D, Vitali E, Stendardo M, Fucili A, Rizzo R, Boschetto P. Plasma soluble HLA-G levels in a cohort of heart failure patients exposed to chemicals. Hum Immunol 2019; 81:151-155. [PMID: 31806379 DOI: 10.1016/j.humimm.2019.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 12/28/2022]
Abstract
Heart failure (HF) is a syndrome caused by structural and/or functional cardiac abnormalities, resulting in a reduced cardiac output and/or elevated intracardiac pressures. Several studies reported a crucial role of immune activation and inflammation in the chronic heart failure (HF) pathogenesis, suggesting that pro-inflammatory and anti-inflammatory mediators could be predictive markers of the HF development and/or progression. Human Leukocyte Antigen-G (HLA-G), a tolerogenic and anti-inflammatory class I non-classical major histocompatibility complex molecule, was reported to be upregulated in patients diagnosed with HF, suggesting a tentative to regulate the inflammatory condition. We evaluated soluble (s)HLA-G plasmatic levels in patients with stable chronic heart failure at baseline visit and after 6 and 12 months. The 14 bp Insertion/Deletion polymorphisms of the HLA-G gene was also analyzed. We showed that in HF subjects, sHLA-G levels were higher in NYHA class II and III subjects (mild-severe symptoms) (6.11 ± 1.15 ng/ml; 8.25 ± 2.27 ng/ml, respectively) in comparison with NYHA class I subjects (no symptoms) (2.35 ± 0.43 ng/ml) (I vs II: p = 0.0156; I vs III: p = 0.0122). Moreover, the exposure to chemicals seems to affect sHLA-G levels, with higher sHLA-G levels in exposed patients (3.36 ± 5.12 ng/ml) in comparison with unexposed subjects (2.01 ± 2.84 ng/ml). The HLA-G 3'UTR 14 bp INS/DEL polymorphism correlated with sHLA-G, with the 14 bp INS/INS genotype associated with higher sHLA-G levels during the 12 months follow-up in unexposed subjects (p = 0.008). In conclusion, these results support a correlation between sHLA-G levels, genetics and HF disease in presence of work chemical exposition.
Collapse
Affiliation(s)
- Daria Bortolotti
- University of Ferrara, Department of Chemical and Pharmaceutical Sciences, Ferrara, Italy
| | - Emanuela Vitali
- University of Ferrara, Department of Medical Sciences, Ferrara, Italy
| | | | - Alessandro Fucili
- Cardiology Unit, University-Hospital of Ferrara, Cona, Ferrara and Maria Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Ravenna, Italy
| | - Roberta Rizzo
- University of Ferrara, Department of Chemical and Pharmaceutical Sciences, Ferrara, Italy.
| | - Piera Boschetto
- University of Ferrara, Department of Medical Sciences, Ferrara, Italy
| |
Collapse
|
15
|
Hadrup N, Rahmani F, Jacobsen NR, Saber AT, Jackson P, Bengtson S, Williams A, Wallin H, Halappanavar S, Vogel U. Acute phase response and inflammation following pulmonary exposure to low doses of zinc oxide nanoparticles in mice. Nanotoxicology 2019; 13:1275-1292. [DOI: 10.1080/17435390.2019.1654004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Feriel Rahmani
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Anne T. Saber
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Petra Jackson
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Stefan Bengtson
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Håkan Wallin
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
- DTU Health Tech, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
16
|
Mingxing S, Haiying W, Congsong S, Chunyu Y, Liu C, Wang Q. Acute toxicity of intratracheal arsenic trioxide instillation in rat lungs. J Appl Toxicol 2019; 39:1578-1585. [PMID: 31319442 PMCID: PMC6852324 DOI: 10.1002/jat.3841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022]
Abstract
This study investigated the acute toxicity of different concentrations of arsenic trioxide (As2O3; ATO) on rat lungs. In total, 160 Wistar rats were randomly divided into the control, low‐, medium‐ and high‐dose groups, which were exposed to 0, 0.16, 1.60 and 16 μg/kg of ATO by intratracheal instillation, respectively. Samples were collected at 6, 12, 24, 48 and 72 hours after exposure and the dynamic changes indicative of acute lung toxicity were monitored. Compared with the control group, the exposure groups exhibited significant changes such as increased lung water content ratio and protein concentration in the bronchoalveolar lavage fluid, pulmonary interstitial thickening, cell membrane edema, increased inflammatory factor concentration, JNK and P38 were significantly activated, and the degree of phosphorylation was increased. Furthermore, all the changes in the exposure groups were exposure concentration‐dependent. ATO respiratory tract exposure can cause restrictive ventilatory disturbance in rats, and the degree of injury is exposure concentration‐dependent. To investigate the acute toxicity of arsenic trioxide on lungs, 160 Wistar rats were randomly divided into the control group, low‐, medium‐ and high‐dose groups. The results showed that there were significant changes in lung water content ratio, bronchoalveolar lavage fluid protein concentration, pulmonary interstitial thickening, cell membrane edema, inflammatory factor concentration, JNK and p38 phosphorylation in the exposed group. Collectively, acute atmospheric arsenic exposure may be associated with a risk of inflammatory lung injury, which is a health concern that deserves more attention.
Collapse
Affiliation(s)
- Su Mingxing
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Wang Haiying
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Sun Congsong
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Yuan Chunyu
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Chao Liu
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Qiang Wang
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| |
Collapse
|
17
|
The pro-inflammatory stimulus of zinc- and copper-containing welding fumes in whole blood assay via protein tyrosine phosphatase 1B inhibition. Sci Rep 2019; 9:1315. [PMID: 30718726 PMCID: PMC6362009 DOI: 10.1038/s41598-018-37803-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
An asymptomatic systemic inflammation after exposure to zinc- and copper-containing welding fumes has been described as mild form of metal fume fever in recent studies. Since chronic systemic inflammation leads to a higher cardiovascular risk, examining the inflammation with the underlying pathomechanism is necessary to estimate and hopefully prevent long-term effects of welding. We established a whole blood assay to investigate the effects of zinc- and copper-containing welding fume particles on the blood immune response. Increased levels of IL-6, IL-8, TNFα and IL-1β determined after 24 hours of exposure indicated an acute systemic inflammatory reaction. In vitro increases of IL-6 were comparable to in vivo increases of serum IL-6 levels in a study with welding fume exposure of human subjects. Inhibition of PTP1B was identified as one pathway responsible for the effects of zinc- and copper-containing welding fumes and therefore welding fume fever. In conclusion, the whole blood assay is a reliable and feasible method to investigate effects of zinc- and copper-containing welding fumes on the immune system and as a surrogate for systemic inflammation and welding fume fever. Future research can utilize whole blood assays to reduce and partially replace human exposure studies for further investigations of welding fume fever.
Collapse
|
18
|
The Effects of Repeated Exposure to Zinc- and Copper-Containing Welding Fumes on Healthy Volunteers. J Occup Environ Med 2019; 61:8-15. [PMID: 30256298 DOI: 10.1097/jom.0000000000001455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Baumann R, Brand P, Chaker A, Markert A, Rack I, Davatgarbenam S, Joraslafsky S, Gerhards B, Kraus T, Gube M. Human nasal mucosal C-reactive protein responses after inhalation of ultrafine welding fume particles: positive correlation to systemic C-reactive protein responses. Nanotoxicology 2018; 12:1130-1147. [DOI: 10.1080/17435390.2018.1498930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- R. Baumann
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - P. Brand
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - A. Chaker
- Department of Otorhinolaryngology and Center of Allergy and Environment (ZAUM), Technical University Munich, Munich, Germany
| | - A. Markert
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - I. Rack
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - S. Davatgarbenam
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - S. Joraslafsky
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - B. Gerhards
- Welding and Joining Institute (ISF), Aachen University of Technology, Aachen, Germany
| | - T. Kraus
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - M. Gube
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
- Health Office of the City and Area of Aachen, Aachen, Germany
| |
Collapse
|
20
|
Krabbe J, Esser A, Kanzler S, Braunschweig T, Kintsler S, Spillner J, Schröder T, Kalverkamp S, Balakirski G, Gerhards B, Rieg AD, Kraus T, Brand P, Martin C. The effects of zinc- and copper-containing welding fumes on murine, rat and human precision-cut lung slices. J Trace Elem Med Biol 2018; 49:192-201. [PMID: 29551464 DOI: 10.1016/j.jtemb.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/14/2023]
Abstract
Recently, the pro-inflammatory effects of metal inert gas brazing welding fumes containing zinc and copper have been demonstrated in humans. Here, murine, rat and human precision cut lung slices (PCLS) were incubated in welding fume containing media with 0.1, 1, 10 and 100 μg/ml for 24 or 48 h. 24 h incubation were determined either by incubation for the total time or for only 6 h followed by a 18 h post-incubation phase. Cytotoxicity, proliferation and DNA repair rates, and cytokine levels were determined. Welding fume particle concentrations of 0.1 and 1 μg/ml showed no toxic effects on PCLS of all three species, while for 10 and 100 μg/ml a concentration-dependent toxicity occurred. Proliferation and DNA repair rates were reduced for all tested concentrations and incubation times. Additionally, the cytokine levels in the supernatants were markedly reduced, while after 6 h of exposure with 18 h of post-incubation time a trend towards increased cytokine levels occurred. PCLS are a reliable and feasible method to assess and offer a prediction of toxic effects of welding fume particles on human lungs. Rat PCLS showed similar responses compared to human PCLS and are suitable for further evaluation of toxic effects exerted by welding fume particles.
Collapse
Affiliation(s)
- Julia Krabbe
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; Institute of Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - André Esser
- Institute of Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Stephanie Kanzler
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Svetlana Kintsler
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jan Spillner
- Departement of Thoracic and Cardiovascular Surgery, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Schröder
- Department of Surgery, Luisenhospital Aachen, Boxgraben 99, 52064 Aachen, Germany
| | - Sebastian Kalverkamp
- Departement of Thoracic and Cardiovascular Surgery, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Galina Balakirski
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; Departement of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Benjamin Gerhards
- ISF- Welding and Joining Institute, RWTH Aachen University, Pontstraße 49, 52062 Aachen, Germany
| | - Annette D Rieg
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Kraus
- Institute of Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Peter Brand
- Institute of Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
21
|
Shen S, Zhang R, Zhang J, Wei Y, Guo Y, Su L, Chen F, Christiani DC. Welding fume exposure is associated with inflammation: a global metabolomics profiling study. Environ Health 2018; 17:68. [PMID: 30134906 PMCID: PMC6106842 DOI: 10.1186/s12940-018-0412-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 08/09/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Increasing evidence suggests that welding fume exposure is associated with systemic inflammation. Although celluar metabolites may be associated with inflammation, there is limited information on metabolomic changes during welding fume exposure. Such changes may play an important role in the occurrence, development, and prevention of metal-associated diseases. We aim to investigate human metabolomics changes pre- and post-welding fume exposure. METHODS This study included 52 boilermakers totally. We collected plasma samples pre- and post-shift welding fume exposure and prepared samples using the automated MicroLab STAR® system. Metabolite concentrations were measured using ultra performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS) methods. Two-way analysis of variance was used to test the significance of metabolite changes with false discovery rate correction. RESULTS Analysis detected several metabolic changes after welding fume exposure, mainly involved in the lipid pathway [glucocorticoid class (cortisol, corticosterone, and cortisone), acylcarnitine class, and DiHOME species (9,10-DiHOME and 12,13-DiHOME)], amino acid utilization (isoleucine, proline and phenylalanine), and S-(3-hydroxypropyl) mercapturic acid (3-HPMA). These compounds are all associated with inflammation according to previous studies. Further, additive interaction effects linked smoking and 3-HPMA levels. In the metabolite set enrichment analysis for diseases, the top two disease-associated metabolite pathways were systemic inflammation-related diseases including rheumatoid arthritis and systemic lupus erythematosus. CONCLUSIONS This global metabolomics study shows evidence that metabolite changes during welding fume exposure are closely associated with systemic inflammation. The altered metabolites detected may be potential health monitoring biomarkers for boilermakers, especially for inflammation-related disease prevention.
Collapse
Affiliation(s)
- Sipeng Shen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jinming Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yichen Guo
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Medicine, Pulmonary and Critical Care Division, Massachusetts General Hospital and Harvard Medical School, 665 Huntington Avenue, Building I Room 1401, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Monsé C, Hagemeyer O, Raulf M, Jettkant B, van Kampen V, Kendzia B, Gering V, Kappert G, Weiss T, Ulrich N, Marek EM, Bünger J, Brüning T, Merget R. Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers. Part Fibre Toxicol 2018; 15:8. [PMID: 29429408 PMCID: PMC5808398 DOI: 10.1186/s12989-018-0246-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background Inhalation of high concentrations of zinc oxide particles (ZnO) may cause metal fume fever. In an earlier human inhalation study, no effects were observed after exposure to ZnO concentrations of 0.5 mg/m3. Further data from experimental studies with pure ZnO in the concentration range between 0.5 and 2.5 mg/m3 are not available. It was the aim of this experimental study to establish the concentration-response relationship of pure nano-sized ZnO particles. Methods Sixteen healthy subjects were exposed to filtered air and ZnO particles (0.5, 1.0 and 2.0 mg/m3) for 4 h on 4 different days, including 2 h of cycling with a low workload. The effects were assessed before, immediately after, and about 24 h after each exposure. Effect parameters were symptoms, body temperature, inflammatory markers and clotting factors in blood, and lung function. Results Concentration-dependent increases in symptoms, body temperature, acute phase proteins and neutrophils in blood were detected after ZnO inhalation. Significant effects were detected with ZnO concentrations of 1.0 mg/m3 or higher, with the most sensitive parameters being inflammatory markers in blood. Conclusion A concentration-response relationship with nano-sized ZnO particles in a low concentration range was demonstrated. Systemic inflammatory effects of inhaled nano-sized ZnO particles were observed at concentrations well below the occpational exposure limit for ZnO in many countries. It is recommended to reassess the exposure limit for ZnO at workplaces.
Collapse
Affiliation(s)
- Christian Monsé
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Olaf Hagemeyer
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Birger Jettkant
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Vera van Kampen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Benjamin Kendzia
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Vitali Gering
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Günther Kappert
- Gerinnungszentrum Rhein-Ruhr, Königstraße 13, 47051, Duisburg, Germany
| | - Tobias Weiss
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Nadin Ulrich
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Eike-Maximilian Marek
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Jürgen Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Rolf Merget
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|