1
|
Sinha A, Khosla S. Epigenetic landscape of intestinal cell line HT29 cocultured with Lacticaseibacillus. Epigenomics 2024; 16:1081-1096. [PMID: 39072448 PMCID: PMC11418294 DOI: 10.1080/17501911.2024.2377949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: To investigate the changes in epigenetic landscape of HT29 cells upon coculture with the Lacticaseibacillus.Materials & methods: Histone and m6A mRNA modifications were examined by biochemical and NGS-based methods including western blotting, colorimetric assays, ChIP-Seq and direct mRNA sequencing. LC-MS was performed to identify Lacticaseibacillus secretome.Results: In cocultured HT29 cells global enrichment of H3K9ac and H3K4me3 and depletion of H3K9me3 mark was observed; mean genic positional signals showed depletion of H3K9ac and H3K4me3 at the TSS but enrichment in the upstream region; m6A methylation was altered in mRNAs corresponding to specific gene pathways; Lacticaseibacillus HU protein interacts with histone H3.Conclusion: Lacticaseibacillus can epigenetically alter specific genetic pathways in human intestinal cells.
Collapse
Affiliation(s)
- Anunay Sinha
- Centre for DNA Fingerprinting & Diagnostics, Hyderabad, 500039, India
- Regional Centre for Biotechnology, Faridabad, 121001, India
- CSIR-Institute of Microbial Technology, Chandigarh, 160036,India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting & Diagnostics, Hyderabad, 500039, India
- CSIR-Institute of Microbial Technology, Chandigarh, 160036,India
| |
Collapse
|
2
|
Miranda RG, Guarache GC, Leão AHFF, Pereira GJ, Dorta DJ. BDE-47-mediated cytotoxicity via autophagy blockade in 3D HepaRG spheroids cultured in alginate microcapsules. Chem Biol Interact 2024; 388:110831. [PMID: 38101597 DOI: 10.1016/j.cbi.2023.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Polybrominated Diphenyl Ethers (PBDEs) are a major class of brominated flame retardants, and their widespread use has led them to be considered contaminants with emerging concern. PBDEs have been detected in the indoor air, house dust, food, and all environmental compartments. The congener BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) is the most prevalent, and hepatotoxicity, neurotoxicity, immunological changes, endocrine disruption, and genotoxic potential have been related to its exposure. Although the BDE-47 molecular toxicity pathway is directly related to intrinsic apoptotic cell death, the role of autophagy in BDE-47 toxicity remains unclear. In this context, three-dimensional cell culture has emerged as a good strategy for the replacement of animals in toxicological testing. Here, we used HepaRG spheroids cultured in alginate microcapsules to investigate the role of autophagy in BDE-47-mediated hepatotoxicity. We developed mature and functional HepaRG spheroids by culturing them in alginate microcapsules. Histological analysis revealed that HepaRG spheroids formed an extracellular matrix and stored glycogen. No apoptotic and/or necrotic cores were observed. BDE-47 showed concentration- and time-dependent cytotoxicity in HepaRG spheroids. In the early exposure period, BDE-47 initially disrupted mitochondrial activity and increased the formation of acid compartments that promoted the increase in autophagic activity; however, this autophagy was blocked, and long-term exposure to BDE-47 promoted efficient apoptotic cell death through autophagy blockade, as evidenced by an increased number of fragmented/condensed nuclei. Therefore, for the first time, we demonstrated BDE-47 toxicity and its cell pathway induces cell death using a three-dimensional liver cell culture, the HepaRG cell line.
Collapse
Affiliation(s)
- Raul Ghiraldelli Miranda
- Univesity of São Paulo (USP), School of Phamaceutical Science of Ribeirão Preto, Ribeirão Preto, SP, 14040-903, Brazil; Department of Life Science of the University of Coimbra, 3000, Coimbra, Portugal.
| | - Gabriel Cicolin Guarache
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Anderson Henrique F F Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Gustavo José Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Daniel Junqueira Dorta
- Universidade de São Paulo (USP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Ribeirão Preto, SP, 14040-903, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), São Paulo State University (UNESP), Institute os Chemistry, Araraquara, SP, 14800-060, Brazil.
| |
Collapse
|
3
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
4
|
Organophosphorus Flame Retardant TCPP Induces Cellular Senescence in Normal Human Skin Keratinocytes: Implication for Skin Aging. Int J Mol Sci 2022; 23:ijms232214306. [PMID: 36430782 PMCID: PMC9698913 DOI: 10.3390/ijms232214306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Tris (1-chloro-2-propyl) phosphate (TCPP) is one of the most frequently detected organophosphorus flames in the environment. Continuous daily exposure to TCPP may harm human skin. However, little is known about the adverse effects of TCPP on human skin. In this study, we first evaluated the detrimental effects and tried to uncover the underlying mechanisms of TCPP on human skin keratinocytes (HaCaT) after 24 h exposure. We found that TCPP caused a concentration-dependent decrease in HaCaT cell viability after exposure to 1.56-400 μg/mL for 24 h, with an IC50 of 275 μg/mL. TCPP also promoted the generation of intracellular reactive oxygen species (ROS) and triggered DNA damage, evidenced by an increase of phosphorylated histone H2A.X (γH2A.X) in the nucleus. Furthermore, the cell cycle was arrested at the G1 phase at 100 μg/mL by upregulation of the mRNA expression of p53 and p21 and downregulation of cyclin D1 and CDK4 expression. Additionally, both the senescence-associated-β-galactosidase activity and related proinflammatory cytokine IL-1β and IL-6 were elevated, indicating that TCPP exposure caused cellular senescence may be through the p53-dependent DNA damage signal pathway in HaCaT cells. Taken together, our data suggest that flame-retardant exposure may be a key precipitating factor for human skin aging.
Collapse
|
5
|
Saquib Q, Al-Salem AM, Siddiqui MA, Ansari SM, Zhang X, Al-Khedhairy AA. Tris(2-butoxyethyl) phosphate (TBEP): A flame retardant in solid waste display hepatotoxic and carcinogenic risks for humans. CHEMOSPHERE 2022; 296:133977. [PMID: 35216979 DOI: 10.1016/j.chemosphere.2022.133977] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Recent reports have confirmed that tris(2-butoxyethyl) phosphate (TBEP), an organophosphorous flame retardants (OPFRs), profoundly detected in the dust from solid waste (SW), e-waste dumping sites, landfills, and wastewater treatment facilities. Herein, we evaluated the hepatotoxic and carcinogenic potential of TBEP in human liver cells (HepG2). HepG2 cells exhibited cytotoxicity after 3 days of exposure, especially at greater concentrations (100-400 μM). TBEP induced severe DNA damage and cell cycle disturbances that trigger apoptosis in HepG2. TBEP treated cells showed an elevated level of esterase, nitric oxide (NO), reactive oxygen species (ROS), and influx of Ca2+ in exposed cells. Thereby, causing oxidative stress and proliferation inhibition. TBEP exposed HepG2 cells exhibited dysfunction in mitochondrial membrane potential (ΔΨm). Immunofluorescence analysis demonstrated cytoplasmic and nucleolar localization of DNA damage (P53) and apoptotic (caspase 3 and 9) proteins in HepG2 grown in the presence of TBEP for 3 days. Within the cohort of 84 genes of cancer pathway, 10 genes were upregulated and 3 genes were downregulated. The transcriptomic and toxicological data categorically emphasize that TBEP is hepatotoxic, and act as a putative carcinogenic agent. Thereby, direct or indirect ingestion of TBEP containing dusts by workers involved in handling and disposal of SW, as well as residents living nearby the disposal areas are prone to its adverse health risks.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Abdullah M Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Maqsood A Siddiqui
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha M Ansari
- Botany & Microbiology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Saquib Q, Al-Salem AM, Siddiqui MA, Ansari SM, Zhang X, Al-Khedhairy AA. Cyto-Genotoxic and Transcriptomic Alterations in Human Liver Cells by Tris (2-Ethylhexyl) Phosphate (TEHP): A Putative Hepatocarcinogen. Int J Mol Sci 2022; 23:ijms23073998. [PMID: 35409358 PMCID: PMC8999606 DOI: 10.3390/ijms23073998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Tris (2-ethylhexyl) phosphate (TEHP) is an organophosphate flame retardant (OPFRs) which is extensively used as a plasticizer and has been detected in human body fluids. Contemporarily, toxicological studies on TEHP in human cells are very limited and there are few studies on its genotoxicity and cell death mechanism in human liver cells (HepG2). Herein, we find that HepG2 cells exposed to TEHP (100, 200, 400 µM) for 72 h reduced cell survival to 19.68%, 49.83%, 58.91% and 29.08%, 47.7% and 57.90%, measured by MTT and NRU assays. TEHP did not induce cytotoxicity at lower concentrations (5, 10, 25, 50 µM) after 24 h and 48 h of exposure. Flow cytometric analysis of TEHP-treated cells elevated intracellular reactive oxygen species (ROS), nitric oxide (NO), Ca++ influx and esterase levels, leading to mitochondrial dysfunction (ΔΨm). DNA damage analysis by comet assay showed 4.67, 9.35, 13.78-fold greater OTM values in TEHP (100, 200, 400 µM)-treated cells. Cell cycle analysis exhibited 23.1%, 29.6%, and 50.8% of cells in SubG1 apoptotic phase after TEHP (100, 200 and 400 μM) treatment. Immunofluorescence data affirmed the activation of P53, caspase 3 and 9 proteins in TEHP-treated cells. In qPCR array of 84 genes, HepG2 cells treated with TEHP (100 µM, 72 h) upregulated 10 genes and downregulated 4 genes belonging to a human cancer pathway. Our novel data categorically indicate that TEHP is an oxidative stressor and carcinogenic entity, which exaggerates mitochondrial functions to induce cyto- and genotoxicity and cell death, implying its hepatotoxic features.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
- Correspondence: or ; Tel.: +966-114-675-768
| | - Abdullah M. Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
| | - Maqsood A. Siddiqui
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
| | - Sabiha M. Ansari
- Botany and Microbiology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
| | - Abdulaziz A. Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (M.A.S.); (A.A.A.-K.)
| |
Collapse
|
7
|
Li T, Sun Y, Zeng Y, Sanganyado E, Liang B, Liu W. 6-OH-BDE-47 inhibited proliferation of skin fibroblasts from pygmy killer whale by inducing cell cycle arrest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150561. [PMID: 34624692 DOI: 10.1016/j.scitotenv.2021.150561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/16/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-BDEs) are major transformation products of PBDEs that readily bioaccumulate in the marine food web. Although 6-OH-BDE-47 is frequently and abundantly detected in cetaceans, its potential toxic effects are largely unknown. We explored the toxicological pathways and mechanisms of OH-BDEs by exposing pygmy killer whale skin fibroblast cell lines (PKW-LWHT) to 6-OH-BDE-47 at concentrations ranging from 0.02, 0.2, 2 to 4 μM. The result showed that 6-OH-BDE-47 inhibited cell proliferation in a concentration- and time-dependent manner. The cell cycle data revealed that the cell cycle was arrest at the G0/G1 phase by 6-OH-BDE-47. Using qPCR and Western blot assay, we found that 6-OH-BDE-47 up-regulated the transcription and expression level of p21 and RB1 and down-regulated the expression level of Proliferating Cell Nuclear Antigen (PCNA), CDK2, CDK4, cyclin D1, cyclin E2, E2F1, and E2F3 and the cellular phosphorylated RB1. The results showed that 6-OH-BDE-47 was able to arrest the cell cycle of PKW-LWHT cells at G1 phase by changing the expression level of related regulatory genes in G1 stage, and finally inhibit cell proliferation.
Collapse
Affiliation(s)
- Tong Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Ying Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
8
|
Saquib Q, Al-Salem AM, Siddiqui MA, Ansari SM, Zhang X, Al-Khedhairy AA. Organophosphorus Flame Retardant TDCPP Displays Genotoxic and Carcinogenic Risks in Human Liver Cells. Cells 2022; 11:195. [PMID: 35053312 PMCID: PMC8773750 DOI: 10.3390/cells11020195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
Tris(1,3-Dichloro-2-propyl)phosphate (TDCPP) is an organophosphorus flame retardant (OPFR) widely used in a variety of consumer products (plastics, furniture, paints, foams, and electronics). Scientific evidence has affirmed the toxicological effects of TDCPP in in vitro and in vivo test models; however, its genotoxicity and carcinogenic effects in human cells are still obscure. Herein, we present genotoxic and carcinogenic properties of TDCPP in human liver cells (HepG2). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and neutral red uptake (NRU) assays demonstrated survival reduction in HepG2 cells after 3 days of exposure at higher concentrations (100-400 μM) of TDCPP. Comet assay and flow cytometric cell cycle experiments showed DNA damage and apoptosis in HepG2 cells after 3 days of TDCPP exposure. TDCPP treatment incremented the intracellular reactive oxygen species (ROS), nitric oxide (NO), Ca2+ influx, and esterase level in exposed cells. HepG2 mitochondrial membrane potential (ΔΨm) significantly declined and cytoplasmic localization of P53, caspase 3, and caspase 9 increased after TDCPP exposure. qPCR array quantification of the human cancer pathway revealed the upregulation of 11 genes and downregulation of two genes in TDCPP-exposed HepG2 cells. Overall, this is the first study to explicitly validate the fact that TDCPP bears the genotoxic, hepatotoxic, and carcinogenic potential, which may jeopardize human health.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Maqsood A Siddiqui
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sabiha M Ansari
- Botany and Microbiology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Saquib Q, Siddiqui M, Al-Khedhairy A. Organophosphorus flame-retardant tris(1-chloro-2-propyl)phosphate is genotoxic and apoptotic inducer in human umbilical vein endothelial cells. J Appl Toxicol 2021; 41:861-873. [PMID: 33641188 DOI: 10.1002/jat.4158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 11/08/2022]
Abstract
Tris(1-chloro-2-propyl)phosphate (TCPP) is a chlorinated organophosphorus flame retardant (OPFR) widely used in consumer goods after the phaseout of brominated flame retardants (BFRs). TCPP can percolate into the indoor and outdoor dusts, leading to its detection in the human body fluids (urine, breast milk) and placenta. However, TCPP has not been studied so far for its toxicity in the human vascular system. Hence, we have used human umbilical vein endothelial cells (HUVECs) and exposed them to TCPP ranging from low to high (5-400 μM) concentrations for 24 h. Cytotoxicity analysis by MTT and NRU assays exhibited 15.27% and 20.56%, 21.67%, and 48.67% survival decline of cells only at 200 and 400 μM. Comet assay data showed DNA damage from 50 to 400 μM with Olive tail moment (OTM) values between 1.03 and 35.59, respectively. TCPP-exposed HUVECs exhibited 1.09 and 1.39-fold greater intracellular reactive oxygen species (ROS) at 25 and 400 μM, indicating oxidative stress. HUVEC mitochondrial membrane potential (ΔΨm) measurements showed 1.16 and 1.48-fold higher fluorescence of Rh123 dye at 25 and 400 μM, confirming mitochondrial dysfunction. Flow cytometric data demonstrated 5.1%-58.8% cells in SubG1 apoptotic phase at 5 and 400 μM TCPP. Our novel data revealed that TCPP is a genotoxic and apoptotic inducer, which may trigger alike responses in human vascular system. Overall, detailed in vivo studies are warranted on the transcriptional and translations effects of TCPP.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia.,Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maqsood Siddiqui
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia.,Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Tris(2-chloroethyl) Phosphate (TCEP) Elicits Hepatotoxicity by Activating Human Cancer Pathway Genes in HepG2 Cells. TOXICS 2020; 8:toxics8040109. [PMID: 33233533 PMCID: PMC7712049 DOI: 10.3390/toxics8040109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) is one of the organophosphorus flame retardants (OPFRs) used in consumer commodities and have been detected in human body fluids. Research on TCEP-induced transcriptomic alterations and toxicological consequences in liver cells is still lacking. Herein, human hepatocellular (HepG2) cells were treated with 100, 200, and 400 μM TCEP for 3 days to quantify hepatotoxicity by MTT, NRU, and comet assays. Apoptosis, mitochondrial membrane potential (ΔΨm), oxidative stress, and Ca2+ influx were measured by flow cytometry. A qPCR array was employed for transcriptomic analysis. MTT and NRU data showed 70.92% and 75.57% reduction in cell survival at 400 μM. In addition, 20-fold greater DNA damage was recorded at 400 μM. Cell cycle data showed 65.96% subG1 apoptotic peak in 400 μM treated cells. An elevated level of oxidative stress, esterase, Ca2+ influx, and ΔΨm dysfunction were recorded in TCEP-treated cells. Out of 84 genes, the qPCR array showed upregulation of 17 genes and downregulation of 10 key genes belonging to human cancer pathways. Our study endorses the fact that TCEP possesses hepatotoxic potential at higher concentrations and prolonged exposure. Hence, TCEP may act as a cancer-inducing entity by provoking the gene network of human cancer pathways.
Collapse
|
11
|
Saquib Q, Ahmed S, Ahmad MS, Al-Rehaily AJ, Siddiqui MA, Faisal M, Ahmad J, Alsaleh AN, Alatar AA, Al-Khedhairy AA. Anticancer efficacies of persicogenin and homoeriodictyol isolated from Rhus retinorrhoea. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Li P, Gao H, Dong L, Liu L, Zhou G, Luo C, Tian Z, Xia T, Wang A, Zhang S. Perinatal low-dose PBDE-47 exposure hampered thyroglobulin turnover and induced thyroid cell apoptosis by triggering ER stress and lysosomal destabilization contributing to thyroid toxicity in adult female rats. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122265. [PMID: 32078969 DOI: 10.1016/j.jhazmat.2020.122265] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Evidence demonstrates that 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) is able to disturb thyroid hormones (THs) homeostasis, yet the mechanisms remain unknown. We sought to investigate the effects of PBDE-47 on endoplasmic reticulum (ER) and lysosomes in thyroids. Using female Sprague-Dawley rats orally administered PBDE-47 at environmentally relevant doses (0.1, 1.0, 10 mg/kg/day) beginning ten days before breeding and ending at weaning, we showed that perinatal PBDE-47 exposure resulted in a reduction in serum THs levels and relative thyroid weight in adult female rats. These were accompanied by thyroid structural abnormalities with cell apoptosis. Mechanistically, PBDE-47 caused ER stress and activation of unfolded protein response (UPR). Moreover, PBDE-47 elicited lysosomal membrane permeabilization and the release of cathepsin. Importantly, the apoptotic cells co-localized with IRE1α, a stress sensor protein of UPR branch that mediates ER stress-induced apoptosis, or cathepsin B, a lysosomal cysteine protease that is involved in thyroglobulin, the precursor of THs, degradation and apoptosis induction. Interestingly, thyroglobulin was accumulated and predominantly presented in cells harboring compromised ER or lysosomal activity. Collectively, our findings suggest that perinatal low-dose PBDE-47 exposure hampers thyroglobulin turnover and induces thyroid cell apoptosis by triggering ER stress and lysosomal destabilization contributing to thyroid toxicity in adult female rats.
Collapse
Affiliation(s)
- Pei Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lixin Dong
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Luming Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Chen Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zhiyuan Tian
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Shun Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
13
|
Bio-functionalized CuO nanoparticles induced apoptotic activities in human breast carcinoma cells and toxicity against Aspergillus flavus: An in vitro approach. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Al-Salem AM, Saquib Q, Siddiqui MA, Ahmad J, Wahab R, Al-Khedhairy AA. Organophosphorus flame retardant (tricresyl phosphate) trigger apoptosis in HepG2 cells: Transcriptomic evidence on activation of human cancer pathways. CHEMOSPHERE 2019; 237:124519. [PMID: 31549646 DOI: 10.1016/j.chemosphere.2019.124519] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Tricresyl phosphate (TCP) is one of the organophosphorus flame retardants (OPFRs) used as plasticizer in consumer products and mixed as a lubricant in commercial jet engine oil, reportedly induce neurotoxicity and aerodynamic syndrome. No studies have been attempted so far on TCP to induce hepatotoxicity in human cells. This study for the first time confirms the hepatotoxic potential and activation of cancer pathways in TCP treated human hepatocellular cells (HepG2). MTT and NRU data showed 39.3% and 49.85% decline in HepG2 survival when exposed to the highest concentration of TCP (400 μM) for 3 days. Comet assay showed 27.1-fold greater DNA damage in cells treated with TCP (400 μM). Flow cytometric analysis revealed an upsurge in the intracellular reactive oxygen species (ROS) and nitric oxide (NO) production in cells, affirming oxidative stress. TCP (400 μM) exposure resulted in 27% reduction in Rh123 fluorescence, indicating dysfunction of mitochondrial membrane potential (ΔΨm). Cell cycle analysis exhibited 62.53% cells in the subG1 apoptotic phase after TCP (400 μM) treatment, also a massive increase in Ca2+ influx validate the on-set of apoptosis in cells. Immunofluorescence of TCP exposed cells showed activation of p53, caspase3, caspase9 reaffirming the involvement of mitochondrial-dependent intrinsic apoptotic signaling. qPCR array of 84 genes unravel the transcriptomic alterations in HepG2 cells after TCP treatment. mRNA transcripts of ATP5A1, GADD45A, IGFBP5, SOD1, STMN1 genes were prominently upregulated providing candid evidence on TCP mediated activation of human cancer pathways to orchestrate the apoptotic death of HepG2 cells, specifying hepatotoxic potential of TCP.
Collapse
Affiliation(s)
- Abdullah M Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Maqsood A Siddiqui
- A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Javed Ahmad
- A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rizwan Wahab
- A.R. Al-Jeraisy Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
15
|
Chen J, Le XC, Zhu L. Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2',4,4'-tetrabromodiphenyl ether. ENVIRONMENT INTERNATIONAL 2019; 133:105154. [PMID: 31521816 DOI: 10.1016/j.envint.2019.105154] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a predominant polybrominated diphenyl ether (PBDE), has received extensive attention for its potential environmental impact. An integrated study of metabolomics and transcriptomics was conducted on two rice (Oryza sativa) cultivars, Lianjing-7 (LJ-7) and Yongyou-9 (YY-9), which have been identified as tolerant and sensitive cultivars to BDE-47, respectively. The objective was to investigate the molecular mechanisms of their different ability to tolerate BDE-47. Both rice plants were cultivated to maturity in soils containing three concentrations of BDE-47 (10, 20, and 50 mg/kg). Metabolomic analyses of rice grains identified 65 metabolites in LJ-7 and 45 metabolites in YY-9, including amino acids, saccharides, organic acids, fatty acids, and secondary metabolites. In the tolerant cultivar LJ-7 exposed to 50 mg/kg BDE-47, concentrations of most of the metabolites increased significantly, with α-ketoglutaric acid increased by 20-fold and stigmastanol increased by 12-fold. In the sensitive cultivar YY-9, the concentrations of most metabolites increased after the plant was exposed to 1 and 10 mg/kg BDE-47 but decreased after the plant was exposed to 50 mg/kg BDE-47. Transcriptomic data demonstrated that regulation of gene expressions was affected most in LJ-7 exposed to 50 mg/kg BDE-47 (966 genes up-regulated and 620 genes down-regulated) and in YY-9 exposed to 10 mg/kg BDE-47 (85 genes up-regulated and 291 genes down-regulated), in good accordance with the observed metabolic alternation in the two cultivars. Analyses of metabolic pathways and KEGG enrichment revealed that many biological processes, including energy consumption and biosynthesis, were perturbed in the two rice cultivars by BDE-47. A majority of metabolites and genes involved in dominating pathways of energy consumption (e.g., tricarboxylic acid cycle) and the biosynthesis (e.g., metabolism of saccharides and amino acids) were enhanced in LJ-7 by BDE-47. In contrast, energy consumption was increased while biosynthetic processes were inhibited in YY-9 by BDE-47, which could lead to the sensitivity of YY-9 to BDE-47. The combined results suggest that the different defensive abilities of these two rice cultivars in response to BDE-47 could be attributed to their differences in energy-consumption strategy and biosynthesis of nutritional components in grains. This study provides a useful reference for rice cultivation in PBDE-polluted areas.
Collapse
Affiliation(s)
- Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
16
|
Evaluation of Graphene Oxide Induced Cellular Toxicity and Transcriptome Analysis in Human Embryonic Kidney Cells. NANOMATERIALS 2019; 9:nano9070969. [PMID: 31269699 PMCID: PMC6669460 DOI: 10.3390/nano9070969] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
Graphene, a two-dimensional carbon sheet with single-atom thickness, shows immense promise in several nanoscientific and nanotechnological applications, including in sensors, catalysis, and biomedicine. Although several studies have shown the cytotoxicity of graphene oxide in different cell types, there are no comprehensive studies on human embryonic kidney (HEK293) cells that include transcriptomic analysis and an in vitro investigation into the mechanisms of cytotoxicity following exposure to graphene oxide. Therefore, we exposed HEK293 cells to different concentrations of graphene oxide for 24 h and performed several cellular assays. Cell viability and proliferation assays revealed a significant dose-dependent cytotoxic effect on HEK293 cells. Cytotoxicity assays showed increased lactate dehydrogenase (LDH) leakage and reactive oxygen species (ROS) generation, and decreased levels of reduced glutathione (GSH) and increased level of oxidized glutathione indicative of oxidative stress. This detailed mechanistic approach showed that graphene oxide exposure elicits significant decreases in mitochondrial membrane potential and ATP synthesis, as well as in DNA damage and caspase 3 activity. Furthermore, our RNA-Seq analysis revealed that HEK293 cells exposed to graphene oxide significantly altered the expression of genes involved in multiple apoptosis-related biological pathways. Moreover, graphene oxide exposure perturbed the expression of key transcription factors, promoting these apoptosis-related pathways by regulating their downstream genes. Our analysis provides mechanistic insights into how exposure to graphene oxide induces changes in cellular responses and massive cell death in HEK293 cells. To our knowledge, this is the first study describing a combination of cellular responses and transcriptome in HEK293 cells exposed to graphene oxide nanoparticles, providing a foundation for understanding the molecular mechanisms of graphene oxide-induced cytotoxicity and for the development of new therapeutic strategies.
Collapse
|
17
|
Abdallah MAE, Nguyen KH, Moehring T, Harrad S. First insight into human extrahepatic metabolism of flame retardants: Biotransformation of EH-TBB and Firemaster-550 components by human skin subcellular fractions. CHEMOSPHERE 2019; 227:1-8. [PMID: 30981098 DOI: 10.1016/j.chemosphere.2019.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and a mixture of EH-TBB, Bis(2-ethylhexyl)tetrabromphthalate (BEH-TEBP) and Triphenyl phosphate (TPhP), prepared in a ratio similar to the Firemaster-550™ (FM550) flame retardant formulation, were exposed to human skin subcellular fractions (S9) to evaluate their dermal in vitro metabolism for the first time. After 60 min of incubation, tetrabromobenzoic acid (TBBA) and diphenyl phosphate (DPhP) were identified as the major metabolites of EH-TBB and TPhP, respectively using UPLC-Q-Exactive Orbitrap™-MS analysis. Dermal biotransformation of EH-TBB and TPhP was catalyzed by skin carboxylesterases rather than CYP450 enzymes, while no stable metabolites could be identified for BEH-TEBP. Metabolite formation rates of EH-TBB as individual compound and as a component of FM550 fitted the Michaelis-Menten model, while no steady state could be reached for TPhP under experimental conditions. Estimated maximum metabolic rate (Vmax) for TBBA formation upon exposure to FM550 was lower than Vmax for EH-TBB (1.08 and 15.2 pmol min-1 mg protein-1, respectively). This indicates dermal metabolism would contribute less to the clearance of EH-TBB body burden than hepatic metabolism (Vmax = 644 pmol min-1 mg protein-1). Implications for human exposure include EH-TBB accumulation in skin tissue and human exposure to dermal metabolic products, which may have different toxicokinetic and toxicodynamic parameters than parent flame retardants.
Collapse
Affiliation(s)
- Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B5 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526, Assiut, Egypt.
| | - Khanh-Hoang Nguyen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B5 2TT, United Kingdom
| | - Thomas Moehring
- Thermo Fisher Scientific (GmbH) Bremen, Hanna-Kunath-Str. 11, 28199, Bremen, Germany
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B5 2TT, United Kingdom
| |
Collapse
|
18
|
Wang C, Yang L, Hu Y, Zhu J, Xia R, Yu Y, Shen J, Zhang Z, Wang SL. Isoliquiritigenin as an antioxidant phytochemical ameliorates the developmental anomalies of zebrafish induced by 2,2',4,4'-tetrabromodiphenyl ether. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:390-398. [PMID: 30802654 DOI: 10.1016/j.scitotenv.2019.02.272] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE47) is the most abundant PBDE congeners in biological samples. It has strong tendencies to bioaccumulate and potentially endangers development of mammals through oxidative stress. Isoliquiritigenin (ISL), an emerging natural chalcone-type flavonoid, possesses various biological and pharmacological properties, including antioxidant, anti-allergic, anti-inflammatory, anti-tumor and estrogenic activities. The purpose of the study is to explore the antioxidant effect of ISL on the amelioration of developmental anomalies induced by BDE47. Zebrafish (Danio rerio) embryos were exposed to BDE47 (1 and 10 μM) and/or ISL (4 μM) for 4 to 120 hours post fertilization (hpf), and the morphology, development, behavior, oxidative stress status and related genes expression were assessed. The results showed that BDE47 contributed to dose-dependent growth retardation and deformities, including delayed hatching, spinal curvature, reduced body length, increased death rate, aberrant behaviors and impaired dark-adapted vision, which were significantly mitigated by ISL. Besides, ISL ameliorated excessive ROS accumulation, and exaggerated the expressions of apoptosis-related genes p53, Bcl-2, caspase 3 and caspase 9 induced by BDE47, suggesting that ISL protected zebrafish from the developmental toxicity of BDE47 by inactivation of programmed apoptosis and activation of antioxidant signaling pathways. Taken together, developing ISL as a dietary supplement might be a promising preventive strategy for the amelioration of developmental toxicity induced by environmental pollutants.
Collapse
Affiliation(s)
- Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Lu Yang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Yuhuan Hu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jiansheng Zhu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jiemiao Shen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| |
Collapse
|