1
|
Wang S, Xu H, Liu G, Chen L. Non-pharmacological treatment of Alzheimer's disease: an update. Front Aging Neurosci 2025; 17:1527242. [PMID: 40018518 PMCID: PMC11865074 DOI: 10.3389/fnagi.2025.1527242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impairs memory, cognitive function, and the ability to perform daily tasks. The pathological features of AD include β-amyloid plaques, neurofibrillary tangles, and neuronal loss. Current AD treatments target pathological changes but often fail to noticeably slow disease progression and can cause severe complications, limiting their effectiveness. In addition to therapies targeting the core pathology of AD, a more comprehensive approach may be needed for its treatment. In recent years, non-pharmacological treatments such as physical therapy, exercise therapy, cell therapy, and nanoparticles have shown great potential in mitigating disease progression and alleviating clinical symptoms. This article reviews recent advances in non-pharmacological treatment approaches for AD, highlighting their contributions to AD management and facilitating the exploration of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shaofen Wang
- West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Haochen Xu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guangdong Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Limei Chen
- West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Singh G, Thakur N, Kumar R. Nanoparticles in drinking water: Assessing health risks and regulatory challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174940. [PMID: 39047836 DOI: 10.1016/j.scitotenv.2024.174940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Nanoparticles (NPs) pose a significant concern in drinking water due to their potential health risks and environmental impact. This review provides a comprehensive analysis of the current understanding of NP sources and contamination in drinking water, focusing on health concerns, mitigation strategies, regulatory frameworks, and future perspectives. This review highlights the importance of nano-specific pathways, fate processes, health risks & toxicity, and the need for realistic toxicity assessments. Different NPs like titanium dioxide, silver, nanoplastics, nanoscale liquid crystal monomers, copper oxide, and others pose potential health risks through ingestion, inhalation, or dermal exposure, impacting organs and potentially leading to oxidative stress, inflammatory responses, DNA damage, cytotoxicity, disrupt intracellular energetic mechanisms, reactive oxygen species generation, respiratory and immune toxicity, and genotoxicity in humans. Utilizing case studies and literature reviews, we investigate the health risks associated with NPs in freshwater environments, emphasizing their relevance to drinking water quality. Various mitigation and treatment strategies, including filtration systems (e.g., reverse osmosis, and ultra/nano-filtration), adsorption processes, coagulation/flocculation, electrocoagulation, advanced oxidation processes, membrane distillation, and ultraviolet treatment, all of which demonstrate high removal efficiencies for NPs from drinking water. Regulatory frameworks and challenges for the production, applications, and disposal of NPs at both national and international levels are discussed, emphasizing the need for tailored regulations to address NP contamination and standardize safety testing and risk assessment practices. Looking ahead, this review underscores the necessity of advancing detection methods and nanomaterial-based treatment technologies while stressing the pivotal role of public awareness and tailored regulatory guidelines in upholding drinking water quality standards. This review emphasizes the urgency of addressing NP contamination in drinking water and provides insights into potential solutions and future research directions. Lastly, this review worth concluded with future recommendations on advanced analytical techniques and sensitive sensors for NP detection for safeguarding public health and policy implementations.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Campus, Mandi, Himachal Pradesh 175001, India.
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
3
|
Behera A, Sa N, Pradhan SP, Swain S, Sahu PK. Metal Nanoparticles in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:791-810. [PMID: 37662608 PMCID: PMC10473155 DOI: 10.3233/adr-220112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Nanotechnology has emerged in different fields of biomedical application, including lifestyle diseases like diabetes, hypertension, and chronic kidney disease, neurodegenerative diseases like Alzheimer's disease (AD), Parkinson's disease, and different types of cancers. Metal nanoparticles are one of the most used drug delivery systems due to the benefits of their enhanced physicochemical properties as compared to bulk metals. Neurodegenerative diseases are the second most cause affecting mortality worldwide after cancer. Hence, they require the most specific and targeted drug delivery systems for maximum therapeutic benefits. Metal nanoparticles are the preferred drug delivery system, possessing greater blood-brain barrier permeability, biocompatibility, and enhanced bioavailability. But some metal nanoparticles exhibit neurotoxic activity owing to their shape, size, surface charge, or surface modification. This review article has discussed the pathophysiology of AD. The neuroprotective mechanism of gold, silver, selenium, ruthenium, cerium oxide, zinc oxide, and iron oxide nanoparticles are discussed. Again, the neurotoxic mechanisms of gold, iron oxide, titanium dioxide, and cobalt oxide are also included. The neuroprotective and neurotoxic effects of nanoparticles targeted for treating AD are discussed elaborately. The review also focusses on the biocompatibility of metal nanoparticles for targeting the brain in treating AD. The clinical trials and the requirement to develop new drug delivery systems are critically analyzed. This review can show a path for the researchers involved in the brain-targeted drug delivery for AD.
Collapse
Affiliation(s)
- Anindita Behera
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Sunsita Swain
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Bozoglu S, Arvas MB, Varlı HS, Ucar B, Acar T, Karatepe N. Agglomerated serum albumin adsorbed protocatechuic acid coated superparamagnetic iron oxide nanoparticles as a theranostic agent. NANOTECHNOLOGY 2023; 34:145602. [PMID: 36623313 DOI: 10.1088/1361-6528/acb15b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Iron oxide nanoparticles have been one of the most widely used nanomaterials in biomedical applications. However, the incomplete understanding of the toxicity mechanisms limits their use in diagnosis and treatment processes. Many parameters are associated with their toxicity such as size, surface modification, solubility, concentration and immunogenicity. Further research needs to be done to address toxicity-related concerns and to increase its effectiveness in various applications. Herein, colloidally stable nanoparticles were prepared by coating magnetic iron oxide nanoparticles (MIONPs) with protocatechuic acid (PCA) which served as a stabilizer and a linkage for a further functional layer. A new perfusion agent with magnetic imaging capability was produced by the adsorption of biocompatible passivating agent macro-aggregated albumin (MAA) on the PCA-coated MIONPs. PCA-coated MIONPs were investigated using infrared spectroscopy, thermogravimetric analysis and dynamic light scattering while adsorption of MAA was analysed by transmission electron microscopy, Fourier-transform infrared spectroscopy and x-ray diffraction methods. Magnetic measurements of samples indicated that all samples showed superparamagnetic behaviour. Cytotoxicity results revealed that the adsorption of MAA onto PCA-coated MIONPs provided an advantage by diminishing their toxicity against the L929 mouse fibroblast cell line compared to bare Fe3O4.
Collapse
Affiliation(s)
- Serdar Bozoglu
- Institute of Energy, Renewable Energy Division, Istanbul Technical University, Istanbul, Turkey
| | - Melih Besir Arvas
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Hanife Sevgi Varlı
- Science and Technology Application and Research Center, Yildiz Technical University, Istanbul, Turkey
| | - Burcu Ucar
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul, Turkey
| | - Tayfun Acar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Nilgün Karatepe
- Institute of Energy, Renewable Energy Division, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
6
|
Magnetic Hyperthermia Nanoarchitectonics via Iron Oxide Nanoparticles Stabilised by Oleic Acid: Anti-Tumour Efficiency and Safety Evaluation in Animals with Transplanted Carcinoma. Int J Mol Sci 2022; 23:ijms23084234. [PMID: 35457052 PMCID: PMC9025391 DOI: 10.3390/ijms23084234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we developed iron oxide nanoparticles stabilised with oleic acid/sodium oleate that could exert therapeutic effects for curing tumours via magnetic hyperthermia. A suspension of iron oxide nanoparticles was produced and characterised. The toxicity of the synthesised composition was examined in vivo and found to be negligible. Histological examination showed a low local irritant effect and no effect on the morphology of the internal organs. The efficiency of magnetic hyperthermia for the treatment of transplanted Walker 256 carcinoma was evaluated. The tumour was infiltrated with the synthesised particles and then treated with an alternating magnetic field. The survival rate was 85% in the studied therapy group of seven animals, while in the control group (without treatment), all animals died. The physicochemical and pharmaceutical properties of the synthesised fluid and the therapeutic results, as seen in the in vivo experiments, provide insights into therapeutic hyperthermia using injected magnetite nanoparticles.
Collapse
|
7
|
Gong JY, Holt MG, Hoet PHM, Ghosh M. Neurotoxicity of four frequently used nanoparticles: a systematic review to reveal the missing data. Arch Toxicol 2022; 96:1141-1212. [DOI: 10.1007/s00204-022-03233-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022]
|
8
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Suitability of the In Vitro Cytokinesis-Block Micronucleus Test for Genotoxicity Assessment of TiO 2 Nanoparticles on SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms22168558. [PMID: 34445265 PMCID: PMC8395234 DOI: 10.3390/ijms22168558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Standard toxicity tests might not be fully adequate for evaluating nanomaterials since their unique features are also responsible for unexpected interactions. The in vitro cytokinesis-block micronucleus (CBMN) test is recommended for genotoxicity testing, but cytochalasin-B (Cyt-B) may interfere with nanoparticles (NP), leading to inaccurate results. Our objective was to determine whether Cyt-B could interfere with MN induction by TiO2 NP in human SH-SY5Y cells, as assessed by CBMN test. Cells were treated for 6 or 24 h, according to three treatment options: co-treatment with Cyt-B, post-treatment, and delayed co-treatment. Influence of Cyt-B on TiO2 NP cellular uptake and MN induction as evaluated by flow cytometry (FCMN) were also assessed. TiO2 NP were significantly internalized by cells, both in the absence and presence of Cyt-B, indicating that this chemical does not interfere with NP uptake. Dose-dependent increases in MN rates were observed in CBMN test after co-treatment. However, FCMN assay only showed a positive response when Cyt-B was added simultaneously with TiO2 NP, suggesting that Cyt-B might alter CBMN assay results. No differences were observed in the comparisons between the treatment options assessed, suggesting they are not adequate alternatives to avoid Cyt-B interference in the specific conditions tested.
Collapse
|
10
|
Valdiglesias V, Fernández-Bertólez N, Lema-Arranz C, Rodríguez-Fernández R, Pásaro E, Reis AT, Teixeira JP, Costa C, Laffon B. Salivary Leucocytes as In Vitro Model to Evaluate Nanoparticle-Induced DNA Damage. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1930. [PMID: 34443762 PMCID: PMC8400528 DOI: 10.3390/nano11081930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Metal oxide nanoparticles (NPs) have a wide variety of applications in many consumer products and biomedical practices. As a result, human exposure to these nanomaterials is highly frequent, becoming an issue of concern to public health. Recently, human salivary leucocytes have been proposed as an adequate non-invasive alternative to peripheral blood leucocytes to evaluate genotoxicity in vitro. The present study focused on proving the suitability of salivary leucocytes as a biomatrix in the comet assay for in vitro nanogenotoxicity studies, by testing some of the metal oxide NPs most frequently present in consumer products, namely, titanium dioxide (TiO2), zinc oxide (ZnO), and cerium dioxide (CeO2) NPs. Primary and oxidative DNA damage were evaluated by alkaline and hOGG1-modified comet assay, respectively. Any possible interference of the NPs with the methodological procedure or the hOGG1 activity was addressed before performing genotoxicity evaluation. Results obtained showed an increase of both primary and oxidative damage after NPs treatments. These data support the use of salivary leucocytes as a proper and sensitive biological sample for in vitro nanogenotoxicity studies, and contribute to increase the knowledge on the impact of metal oxide NPs on human health, reinforcing the need for a specific regulation of the nanomaterials use.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain;
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
| | - Natalia Fernández-Bertólez
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Carlota Lema-Arranz
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain;
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
| | - Raquel Rodríguez-Fernández
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Eduardo Pásaro
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Ana Teresa Reis
- Environmental Health Department, National Institute of Health, 4000-055 Porto, Portugal; (A.T.R.); (J.P.T.); (C.C.)
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, 4000-055 Porto, Portugal; (A.T.R.); (J.P.T.); (C.C.)
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Carla Costa
- Environmental Health Department, National Institute of Health, 4000-055 Porto, Portugal; (A.T.R.); (J.P.T.); (C.C.)
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| |
Collapse
|
11
|
Basaki M, Keykavusi K, Sahraiy N, Ali Shahbazfar A. Maternal exposure to iron oxide nanoparticles is associated with ferroptosis in the brain: A chicken embryo model analysis. J Anim Physiol Anim Nutr (Berl) 2021; 105:1127-1135. [PMID: 33719111 DOI: 10.1111/jpn.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
Ferroptosis is a form of cell death associated with iron-dependent lipid peroxidation. We used a chicken embryo model to investigate if ferroptosis was implicated in the molecular mechanism underlying the potential effects of maternal exposure to iron oxide nanoparticles (IONPs) on the developing brain. One hundred and eighty fertilized eggs were randomly divided into six groups (30 eggs/group; 10 eggs/replicate). Groups I and II received maghemite (γ-Fe2 O3 ) NPs (MGMNPs), while groups III and IV received magnetite (Fe3 O4 ) NPs (MGTNPs). Both MGMNP and MGTNP were administrated at the concentrations of 100 and 250 ppm. One group (placebo) received saline, and the other remained untreated (control). The compounds were given by in ovo method (0.3 ml/egg) only once on the first day of the embryonic period. Samples from cerebral tissue were collected on day 20 for histopathological, biochemical and gene expression analyses. Total antioxidant capacity (TAC) and malondialdehyde (MDA) increased; glutathione peroxidase (GPX) expression and activity decreased in IONPs-treated groups. Ferroptotic cells appeared in the cerebral tissue following exposure to the low dose of MGMNP and MGTNP. Oxidative stress and ferroptotic cells were more evident for MGMNP compared to MGTNP. The low dose of MGMNP and MGTNP induced more severe oxidative stress in the cerebral tissue. According to the results, maternal exposure to IONPs is associated with ferroptosis in the brain. This work could encourage future researches to investigate inhibitors of ferroptosis as a protective strategy against iron-induced cell injuries and cell death.
Collapse
Affiliation(s)
- Mehdi Basaki
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Kamran Keykavusi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Nazila Sahraiy
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Ali Shahbazfar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
12
|
Chrishtop VV, Mironov VA, Prilepskii AY, Nikonorova VG, Vinogradov VV. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 2020; 15:167-204. [PMID: 33216662 DOI: 10.1080/17435390.2020.1842934] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unique properties of magnetic iron oxide nanoparticles determined their widespread use in medical applications, the food industry, textile industry, which in turn led to environmental pollution. These factors determine the long-term nature of the effect of iron oxide nanoparticles on the body. However, studies in the field of chronic nanotoxicology of magnetic iron particles are insufficient and scattered. Studies show that toxicity may be increased depending on oral and inhalation routes of administration rather than injection. The sensory nerve pathway can produce a number of specific effects not seen with other routes of administration. Organ systems showing potential toxic effects when injected with iron oxide nanoparticles include the nervous system, heart and lungs, the thyroid gland, and organs of the mononuclear phagocytic system (MPS). A special place is occupied by the reproductive system and the effect of nanoparticles on the health of the first and second generations of individuals exposed to the toxic effects of iron oxide nanoparticles. This knowledge should be taken into account for subsequent studies of the toxicity of iron oxide nanoparticles. Particular attention should be paid to tests conducted on animals with pathologies representing human chronic socially significant diseases. This part of preclinical studies is almost in its infancy but of great importance for further medical translation on nanomaterials to practice.
Collapse
Affiliation(s)
| | | | | | - Varvara G Nikonorova
- Ivanovo State Agricultural Academy named after D.K. Belyaev, Peterburg, Russian Federation
| | | |
Collapse
|
13
|
Auclair J, Quinn B, Peyrot C, Wilkinson KJ, Gagné F. Detection, biophysical effects, and toxicity of polystyrene nanoparticles to the cnidarian Hydra attenuata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11772-11781. [PMID: 31975008 DOI: 10.1007/s11356-020-07728-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
The occurrence of nanoplastic particles (NPs) in the environment has raised concerns about the ecotoxicological risk to aquatic ecosystems. The purpose of this study was to examine the bioavailability and toxicity of 50- and 100-nm transparent polystyrene NPs to the cnidarian Hydra attenuata. The hydras were exposed to increasing concentrations of 50- and 100-nm NPs (1.25, 2.5, 5, 10, 20, 40, and 80 mg/L) for 96 h at 20 °C followed by a 24-h depuration step. Hydras were analyzed for morphological changes, bioaccumulation of NPs using a novel assay for polystyrene NPs, oxidative stress (lipid peroxidation), polar lipids, lipid-like liquid crystals (LCs), and viscosity changes in the post-mitochondrial fraction. The results revealed that the organisms accumulated detectable amounts of NP in a concentration-dependent manner for both the 50- and 100-nm NP that persisted after 24 h in clean media. Changes in morphology were observed with a 50% effect concentration of 3.6 and 18 mg/L for the 50- and 100-nm-diameter NPs respectively. However, based on the particle concentration, the 100 nm proved to be 1.7 times more toxic than the 50-nm NPs. Exposure to NPs led to decreased biomass, lipid peroxidation (LPO), increased polar lipid levels, viscosity, and formation of LCs at the intracellular level. In the more toxic NP (100 nm), NPs in tissues were correlated with LCs, polar lipids, and LPO levels. It appears that the formation of organized LCs and polar lipids of NPs in cells was involved with NP toxicity and could represent a yet unidentified, detoxifying/bioactivation mechanism against colloidal plastics in cells. In conclusion, NPs are bioavailable to hydra and lead to LPO and lipid mobilization in hydra. The capacity of increasing lipid mobilization and LCs could determine the size-dependence toxicity of NPs.
Collapse
Affiliation(s)
- Joëlle Auclair
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
- School of Health and Life Sciences, University of the West of Scotland, Paisley, Scotland, PA1 2BE, UK
- Chemistry Department, Montreal University, Montréal, Québec, H2V 2B8, Canada
| | - Brian Quinn
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
- School of Health and Life Sciences, University of the West of Scotland, Paisley, Scotland, PA1 2BE, UK
- Chemistry Department, Montreal University, Montréal, Québec, H2V 2B8, Canada
| | - Caroline Peyrot
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
- School of Health and Life Sciences, University of the West of Scotland, Paisley, Scotland, PA1 2BE, UK
- Chemistry Department, Montreal University, Montréal, Québec, H2V 2B8, Canada
| | - Kevin James Wilkinson
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
- School of Health and Life Sciences, University of the West of Scotland, Paisley, Scotland, PA1 2BE, UK
- Chemistry Department, Montreal University, Montréal, Québec, H2V 2B8, Canada
| | - François Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada.
- School of Health and Life Sciences, University of the West of Scotland, Paisley, Scotland, PA1 2BE, UK.
- Chemistry Department, Montreal University, Montréal, Québec, H2V 2B8, Canada.
| |
Collapse
|
14
|
Ru Q, Xiong Q, Tian X, Chen L, Zhou M, Li Y, Li C. Tea Polyphenols Attenuate Methamphetamine-Induced Neuronal Damage in PC12 Cells by Alleviating Oxidative Stress and Promoting DNA Repair. Front Physiol 2019; 10:1450. [PMID: 31920684 PMCID: PMC6915097 DOI: 10.3389/fphys.2019.01450] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023] Open
Abstract
DNA integrity plays a crucial role in cell survival. Methamphetamine (METH) is an illegal psychoactive substance that is abused worldwide, and repeated exposure to METH could form mass free radicals and induce neuronal apoptosis. It has been reported that free radicals generated by METH treatment can oxidize DNA and hence produce strand breaks, but whether oxidative DNA damage is involved in the neurotoxicity caused by METH remains unclear. Tea polyphenols exert bioactivities through antioxidant-related mechanisms. However, the potential neuroprotective effect of tea polyphenols on METH-induced nerve cell damage and the underlying mechanism remain to be clarified. In this study, oxidative stress, DNA damage, and cell apoptosis were increased after METH exposure, and the expressions of DNA repair-associated proteins, including the phosphorylation of ataxia telangiectasia mutant (p-ATM) and checkpoint kinase 2 (p-Chk2), significantly declined in PC12 cells after high-dose or long-time METH treatment. Additionally, tea polyphenols could protect PC12 cells against METH-induced cell viability loss, reactive oxide species and nitric oxide production, and mitochondrial dysfunction and suppress METH-induced apoptosis. Furthermore, tea polyphenols could increase the antioxidant capacities and expressions of p-ATM and p-Chk2 and then attenuate DNA damage via activating the DNA repair signaling pathway. These findings indicate that METH is likely to induce neurotoxicity by inducing DNA damage, which can be reversed by tea polyphenols. Supplementation with tea polyphenols could be an effective nutritional prevention strategy for METH-induced neurotoxicity and neurodegenerative disease.
Collapse
Affiliation(s)
- Qin Ru
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiang Tian
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lin Chen
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Mei Zhou
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yi Li
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Chaoying Li
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
15
|
Fernández-Bertólez N, Costa C, Brandão F, Duarte JA, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Evaluation of cytotoxicity and genotoxicity induced by oleic acid-coated iron oxide nanoparticles in human astrocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:816-829. [PMID: 31415110 DOI: 10.1002/em.22323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/23/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Iron oxide nanoparticles (ION) are gaining importance as diagnostic and therapeutic tool of central nervous system diseases. Although oleic acid-coated ION (O-ION) have been described as stable and biocompatible, their potential neurotoxicity was scarcely evaluated in human nervous cells so far. The primary aim of this work was to assess the molecular and cellular effects of O-ION on human astrocytes (A172 cells) under different experimental conditions. An extensive set of cyto- and genotoxicity tests was carried out, including lactate dehydrogenase release assay, cell cycle alterations, and cell death production, as well as comet assay, γH2AX assay, and micronucleus (MN) test, considering also iron ion release capacity and alterations in DNA repair ability. Results showed a moderate cytotoxicity related to cell cycle arrest and cell death promotion, regardless of serum presence. O-ION induced genotoxic effects, namely primary DNA damage, as detected by the comet assay and H2AX phosphorylation, but A172 cells were able to repair this particular damage because no chromosome alterations were found (confirmed by MN test results). Accordingly, no effects on the DNA repair ability were observed. The presence of serum proteins did not influence O-ION toxicity. Iron ions released from the O-ION surface seemed not to be responsible for the cytotoxic and genotoxic effects observed. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalia Fernández-Bertólez
- Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, DICOMOSA Group, Campus Elviña s/n, 15071-A Coruña, Spain
- Department of Cell and Molecular Biology, Facultad de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, 15071-A Coruña, Spain
| | - Carla Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Fátima Brandão
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - José Alberto Duarte
- CIAFEL, Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal
| | - Joao Paulo Teixeira
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Eduardo Pásaro
- Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, DICOMOSA Group, Campus Elviña s/n, 15071-A Coruña, Spain
| | - Vanessa Valdiglesias
- Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, DICOMOSA Group, Campus Elviña s/n, 15071-A Coruña, Spain
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Blanca Laffon
- Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, DICOMOSA Group, Campus Elviña s/n, 15071-A Coruña, Spain
| |
Collapse
|
16
|
Comet assay in neural cells as a tool to monitor DNA damage induced by chemical or physical factors relevant to environmental and occupational exposure. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:402990. [DOI: 10.1016/j.mrgentox.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
|
17
|
Ma W, Gehret PM, Hoff RE, Kelly LP, Suh WH. The Investigation into the Toxic Potential of Iron Oxide Nanoparticles Utilizing Rat Pheochromocytoma and Human Neural Stem Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E453. [PMID: 30889833 PMCID: PMC6474111 DOI: 10.3390/nano9030453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022]
Abstract
Magnetic iron oxide (Magnetite, Fe₃O₄) nanoparticles are widely utilized in magnetic resonance imaging (MRI) and drug delivery applications due to their superparamagnetism. Surface coatings are often employed to change the properties of the magnetite nanoparticles or to modulate their biological responses. In this study, magnetite nanoparticles were fabricated through hydrothermal synthesis. Hydrophobicity is often increased by surface modification with oleic acid. In this study, however, hydrophobicity was introduced through surface modification with n-octyltriethoxysilane. Both the uncoated (hydrophilic) and coated (hydrophobic) individual nanoparticle sizes measured below 20 nm in diameter, a size range in which magnetite nanoparticles exhibit superparamagnetism. Both types of nanoparticles formed aggregates which were characterized by SEM, TEM, and dynamic light scattering (DLS). The coating process significantly increased both individual particle diameter and aggregate sizes. We tested the neurotoxicity of newly synthesized nanoparticles with two mammalian cell lines, PC12 (rat pheochromocytoma) and ReNcell VM (human neural stem cells). Significant differences were observed in cytotoxicity profiles, which suggests that the cell type (rodent versus human) or the presence of serum matters for nanoparticle toxicology studies. Differences in nanoparticle associations/uptake between the two cell types were observed with Prussian Blue staining. Finally, safe concentrations which did not significantly affect neuronal differentiation profiles were identified for further development of the nanoparticles.
Collapse
Affiliation(s)
- Weili Ma
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Paul M Gehret
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Richard E Hoff
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Liam P Kelly
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Won Hyuk Suh
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
18
|
Fernández-Bertólez N, Costa C, Bessa MJ, Park M, Carriere M, Dussert F, Teixeira JP, Pásaro E, Laffon B, Valdiglesias V. Assessment of oxidative damage induced by iron oxide nanoparticles on different nervous system cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 845:402989. [PMID: 31561889 DOI: 10.1016/j.mrgentox.2018.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/02/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022]
Abstract
Iron oxide nanoparticles (ION) have received much attention for their utility in biomedical applications, such as magnetic resonance imaging, drug delivery and hyperthermia, but concerns regarding their potential harmful effects are also growing. Even though ION may induce different toxic effects in a wide variety of cell types and animal systems, there is a notable lack of toxicological data on the human nervous system, particularly important given the increasing number of applications on this specific system. An important mechanism of nanotoxicity is reactive oxygen species (ROS) generation and oxidative stress. On this basis, the main objective of this work was to assess the oxidative potential of silica-coated (S-ION) and oleic acid-coated (O-ION) ION on human SH-SY5Y neuronal and A172 glial cells. To this aim, ability of ION to generate ROS (both in the absence and presence of cells) was determined, and consequences of oxidative potential were assessed (i) on DNA by means of the 8-oxo-7,8-dihydroguanine DNA glycosylase (OGG1)-modified comet assay, and (ii) on antioxidant reserves by analyzing ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). Conditions tested included a range of concentrations, two exposure times (3 and 24 h), and absence and presence of serum in the cell culture media. Results confirmed that, even though ION were not able to produce ROS in acellular environments, ROS formation was increased in the neuronal and glial cells by ION exposure, and was parallel to induction of oxidative DNA damage and, only in the case of neuronal cells treated with S-ION, to decreases in the GSH/GSSG ratio. Present findings suggest the production of oxidative stress as a potential action mechanism leading to the previously reported cellular effects, and indicate that ION may pose a health risk to human nervous system cells by generating oxidative stress, and thus should be used with caution.
Collapse
Affiliation(s)
- Natalia Fernández-Bertólez
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain; Universidade da Coruña, Department of Cell and Molecular Biology, Facultad de Ciencias, Campus A Zapateira s/n, 15071-A Coruña, Spain
| | - Carla Costa
- Portuguese National Institute of Health, Department of Environmental Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; Universidade do Porto, EPIUnit - Instituto de Saúde Pública, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Maria João Bessa
- Portuguese National Institute of Health, Department of Environmental Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; Universidade do Porto, EPIUnit - Instituto de Saúde Pública, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Margriet Park
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marie Carriere
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000 Grenoble, France
| | - Fanny Dussert
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000 Grenoble, France
| | - João Paulo Teixeira
- Portuguese National Institute of Health, Department of Environmental Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; Universidade do Porto, EPIUnit - Instituto de Saúde Pública, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Eduardo Pásaro
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain
| | - Blanca Laffon
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain.
| | - Vanessa Valdiglesias
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain; Universidade do Porto, EPIUnit - Instituto de Saúde Pública, Rua das Taipas, 135, 4050-600 Porto, Portugal
| |
Collapse
|