1
|
Komal S, Gao Y, Wang ZM, Yu QW, Wang P, Zhang LR, Han SN. Epigenetic Regulation in Myocardial Fibroblasts and Its Impact on Cardiovascular Diseases. Pharmaceuticals (Basel) 2024; 17:1353. [PMID: 39458994 PMCID: PMC11510975 DOI: 10.3390/ph17101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Myocardial fibroblasts play a crucial role in heart structure and function. In recent years, significant progress has been made in understanding the epigenetic regulation of myocardial fibroblasts, which is essential for cardiac development, homeostasis, and disease progression. In healthy hearts, cardiac fibroblasts (CFs) play a crucial role in synthesizing the extracellular matrix (ECM) when in a dormant state. However, under pathological and environmental stress, CFs transform into activated fibroblasts known as myofibroblasts. These myofibroblasts produce an excess of ECM, which promotes cardiac fibrosis. Although multiple molecular mechanisms are associated with CF activation and myocardial dysfunction, emerging evidence highlights the significant involvement of epigenetic regulation in this process. Epigenetics refers to the heritable changes in gene expression that occur without altering the DNA sequence. These mechanisms have emerged as key regulators of myocardial fibroblast function. This review focuses on recent advancements in the understanding of the role of epigenetic regulation and emphasizes the impact of epigenetic modifications on CF activation. Furthermore, we present perspectives and prospects for future research on epigenetic modifications and their implications for myocardial fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.K.); (Y.G.); (Z.-M.W.); (Q.-W.Y.); (P.W.); (L.-R.Z.)
| |
Collapse
|
2
|
Xing X, Rodeo SA. Emerging roles of non-coding RNAs in fibroblast to myofibroblast transition and fibrotic diseases. Front Pharmacol 2024; 15:1423045. [PMID: 39114349 PMCID: PMC11303237 DOI: 10.3389/fphar.2024.1423045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The transition of fibroblasts to myofibroblasts (FMT) represents a pivotal process in wound healing, tissue repair, and fibrotic diseases. This intricate transformation involves dynamic changes in cellular morphology, gene expression, and extracellular matrix remodeling. While extensively studied at the molecular level, recent research has illuminated the regulatory roles of non-coding RNAs (ncRNAs) in orchestrating FMT. This review explores the emerging roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating this intricate process. NcRNAs interface with key signaling pathways, transcription factors, and epigenetic mechanisms to fine-tune gene expression during FMT. Their functions are critical in maintaining tissue homeostasis, and disruptions in these regulatory networks have been linked to pathological fibrosis across various tissues. Understanding the dynamic roles of ncRNAs in FMT bears therapeutic promise. Targeting specific ncRNAs holds potential to mitigate exaggerated myofibroblast activation and tissue fibrosis. However, challenges in delivery and specificity of ncRNA-based therapies remain. In summary, ncRNAs emerge as integral regulators in the symphony of FMT, orchestrating the balance between quiescent fibroblasts and activated myofibroblasts. As research advances, these ncRNAs appear to be prospects for innovative therapeutic strategies, offering hope in taming the complexities of fibrosis and restoring tissue equilibrium.
Collapse
Affiliation(s)
- Xuewu Xing
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| | - Scott A. Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| |
Collapse
|
3
|
Emon IM, Al-Qazazi R, Rauh MJ, Archer SL. The Role of Clonal Hematopoiesis of Indeterminant Potential and DNA (Cytosine-5)-Methyltransferase Dysregulation in Pulmonary Arterial Hypertension and Other Cardiovascular Diseases. Cells 2023; 12:2528. [PMID: 37947606 PMCID: PMC10650407 DOI: 10.3390/cells12212528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression without altering gene sequences in health and disease. DNA methyltransferases (DNMTs) are enzymes responsible for DNA methylation, and their dysregulation is both a pathogenic mechanism of disease and a therapeutic target. DNMTs change gene expression by methylating CpG islands within exonic and intergenic DNA regions, which typically reduces gene transcription. Initially, mutations in the DNMT genes and pathologic DNMT protein expression were found to cause hematologic diseases, like myeloproliferative disease and acute myeloid leukemia, but recently they have been shown to promote cardiovascular diseases, including coronary artery disease and pulmonary hypertension. We reviewed the regulation and functions of DNMTs, with an emphasis on somatic mutations in DNMT3A, a common cause of clonal hematopoiesis of indeterminant potential (CHIP) that may also be involved in the development of pulmonary arterial hypertension (PAH). Accumulation of somatic mutations in DNMT3A and other CHIP genes in hematopoietic cells and cardiovascular tissues creates an inflammatory environment that promotes cardiopulmonary diseases, even in the absence of hematologic disease. This review summarized the current understanding of the roles of DNMTs in maintenance and de novo methylation that contribute to the pathogenesis of cardiovascular diseases, including PAH.
Collapse
Affiliation(s)
- Isaac M. Emon
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (I.M.E.); (R.A.-Q.)
| |
Collapse
|
4
|
Xu S, Zhang Y, Zhou G, Liu A. Bidirectional negative feedback actions of DNMT3A and miR-145 in regulating autophagy in cardiac fibroblasts and affecting myocardial fibrosis. J Bioenerg Biomembr 2023; 55:341-352. [PMID: 37610521 DOI: 10.1007/s10863-023-09980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Epigenetic regulation has crucial implications for myocardial fibrosis. It has been reported that autophagy, regulated by miR-145, is implicated in the proliferation and fibrosis of cardiac fibroblasts (CFs). However, how it works during the process remains unclear. This study explored the exact effects of epigenetic regulation of miR-145 expression on autophagy, proliferation, and fibrosis of CFs. To examine the expression levels of myocardial fibrosis markers (α-SMA and collagen I), autophagy-related proteins (LC3I, LC3II, p62), DNMT3A, and miR-145, qRT-PCR and western blot were employed. And the proliferation of CFs was detected by CCK-8 and ErdU. As for the determination of the binding relationship between DNMT3A and miR-145, dual-luciferase assay was conducted. Next, the detection of the methylation level of the pre-miR-145 promoter region was completed by MSP. And the verification of the effect of the DNMT3A/miR-145 axis on myocardial fibrosis was accomplished by constructing mouse myocardial infarction (MI) models based on the ligation of the left anterior descending method. In TGF-β1-activated CFs, remarkable up-regulation of DNMT3 and considerable down-regulation of miR-145 were observed. And further experiments indicated that DNMT3A was able to down-regulate miR-145 expression by maintaining the hypermethylation level of the pre-miR-145 promoter region. In addition, DNMT3A expression could be directly targeted and negatively modulated by miR-145. Moreover, in vitro cell experiments and mouse MI models demonstrated that DNMT3A overexpression could inhibit autophagy, and promote cell proliferation and fibrosis of CFs. However, this kind of effect could be reversed by miR-145 overexpression. In summary, myocardial fibroblast autophagy can be regulated by bidirectional negative feedback actions of DNMT3A and miR-145, thus affecting myocardial fibrosis. This finding will provide a potential target for the clinical treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Shucan Xu
- Department of Cardiology, Binhai People's Hospital, No. 248 Fudong-Middle Road, Dongkan Town, Jiangsu, Yancheng, 224500, China
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, No. 248 Fudong-Middle Road, Dongkan Town, Jiangsu, Yancheng, 224500, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, No. 248 Fudong-Middle Road, Dongkan Town, Jiangsu, Yancheng, 224500, China
| | - Aijun Liu
- Department of Cardiology, Binhai People's Hospital, No. 248 Fudong-Middle Road, Dongkan Town, Jiangsu, Yancheng, 224500, China.
| |
Collapse
|
5
|
Gaytan SL, Beaven E, Gadad SS, Nurunnabi M. Progress and prospect of nanotechnology for cardiac fibrosis treatment. INTERDISCIPLINARY MEDICINE 2023; 1:e20230018. [PMID: 38089921 PMCID: PMC10712437 DOI: 10.1002/inmd.20230018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 02/01/2024]
Abstract
Cardiac fibrosis is the excessive accumulation of extracellular matrix components in the heart, leading to reduced cardiac functionality and heart failure. This review provides an overview of the therapeutic applications of nanotechnology for the treatment of cardiac fibrosis. We first delve into the fundamental pathophysiology of cardiac fibrosis, highlighting the key molecular players, including Matrix Metalloproteinases, Transforming Growth Factor-beta, and several growth factors, cytokines, and signaling molecules. Each target presents a unique opportunity to develop targeted nano-therapies. We then focus on recent advancements in nanotechnology and how nanoparticles can be engineered to deliver drugs or therapeutic genes. These advanced delivery approaches have shown significant potential to inhibit fibrosis-promoting factors, thereby mitigating the fibrotic response and potentially reversing disease progression. In addition, we discuss the challenges associated with developing and translating nanotechnology-based drug delivery systems, including ensuring biocompatibility, safety, and regulatory compliance. This review highlights how nanotechnology can bridge the gap between lab research and clinical practice for treating cardiac fibrosis.
Collapse
Affiliation(s)
- Samantha L. Gaytan
- Department of Pharmaceutical SciencesSchool of PharmacyThe University of Texas El PasoEl PasoTexasUSA
- Department of Interdisciplinary Health SciencesCollege of Health SciencesThe University of Texas El PasoEl PasoTexasUSA
| | - Elfa Beaven
- Department of Pharmaceutical SciencesSchool of PharmacyThe University of Texas El PasoEl PasoTexasUSA
- Department of Biomedical EngineeringCollege of EngineeringThe University of Texas El PasoEl PasoTexasUSA
| | - Shrikanth S. Gadad
- Center of Emphasis in CancerDepartment of Molecular and Translational MedicinePaul L. Foster School of MedicineTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Md Nurunnabi
- Department of Pharmaceutical SciencesSchool of PharmacyThe University of Texas El PasoEl PasoTexasUSA
- Department of Interdisciplinary Health SciencesCollege of Health SciencesThe University of Texas El PasoEl PasoTexasUSA
- Department of Biomedical EngineeringCollege of EngineeringThe University of Texas El PasoEl PasoTexasUSA
- Border Biomedical Research CenterThe University of Texas El PasoEl PasoTexasUSA
| |
Collapse
|
6
|
Chu L, Xie D, Xu D. Epigenetic Regulation of Fibroblasts and Crosstalk between Cardiomyocytes and Non-Myocyte Cells in Cardiac Fibrosis. Biomolecules 2023; 13:1382. [PMID: 37759781 PMCID: PMC10526373 DOI: 10.3390/biom13091382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic mechanisms and cell crosstalk have been shown to play important roles in the initiation and progression of cardiac fibrosis. This review article aims to provide a thorough overview of the epigenetic mechanisms involved in fibroblast regulation. During fibrosis, fibroblast epigenetic regulation encompasses a multitude of mechanisms, including DNA methylation, histone acetylation and methylation, and chromatin remodeling. These mechanisms regulate the phenotype of fibroblasts and the extracellular matrix composition by modulating gene expression, thereby orchestrating the progression of cardiac fibrosis. Moreover, cardiac fibrosis disrupts normal cardiac function by imposing myocardial mechanical stress and compromising cardiac electrical conduction. This review article also delves into the intricate crosstalk between cardiomyocytes and non-cardiomyocytes in the heart. A comprehensive understanding of the mechanisms governing epigenetic regulation and cell crosstalk in cardiac fibrosis is critical for the development of effective therapeutic strategies. Further research is warranted to unravel the precise molecular mechanisms underpinning these processes and to identify potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 315 Yanchang Middle Road, Shanghai 200072, China; (L.C.); (D.X.)
| |
Collapse
|
7
|
Raffee LA, Alawneh KZ, Alshehabat MAM, Haddad H, Jaradat SA. MicroRNA profiling in dogs undergoing induced ischemic heart infarction: An experimental study. Vet World 2023; 16:1319-1324. [PMID: 37577186 PMCID: PMC10421551 DOI: 10.14202/vetworld.2023.1319-1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim MicroRNAs (miRNAs) play an important role in various biological functions. According to many studies, miRNA expression is tissue-specific, strongly controlled throughout embryogenesis, and over- or under-expressed in numerous disorders, including cardiovascular pathologies. This study aimed to screen, characterize, and profile many induced biomarkers (miRNAs) in dog serum before and after experimentally inducing a regional myocardial infarction (MI) by occluding the coronary arteries under general anesthesia. Materials and Methods A preclinical experimental animal study recruited 12 healthy canine dogs. The selected canine dogs were anesthetized with 1 mg/kg xylazine and 15 mg/kg ketamine before undergoing femoral arterial catheterization under fluoroscopic supervision. Commercial assay kits were used to purify total RNA and miRNA before the occlusion and 2 h after the occlusion according to the manufacturer's guidelines, and the samples were stored in RNase/DNase-free water at -80°C. Data were analyzed by GraphPad Prism 5.0 software (GraphPad Prism, San Diego, CA) SPSS, and GenEx software (www.multid.se) or (REST V3). Results Among 325 transcribed genes, 20 were identified in 2 h. After MI, 14 biomarkers were negative, indicating downregulation, and 6 (3-F08, 3-B10, 4-A11, 1-A06, 2-E01, 3-F10) were positive, indicating upregulation. Polymerase chain reaction assay results showed a normalized fold-change in gene expression in the test sample. Fold values >1 represented a biologically significant change. Conclusion Profiling of miRNAs before and after MI in a dog model revealed upregulation of six previously unidentified biomarkers (3-F08, 3-B10, 4-A11, 1-A06, 2-E01, and 3-F10), indicating various miRNA regulatory patterns.
Collapse
Affiliation(s)
- Liqaa A. Raffee
- Department of Accident and Emergency Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Khaled Z. Alawneh
- Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Musa Ahmed Mohammed Alshehabat
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hazem Haddad
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saied A. Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
8
|
Liu L, Qi W, Wang Y, Ni X, Gao S, Zhou Z, Chen D, He Z, Sun M, Wang Z, Cai D, Zhao L. Circulating exosomal microRNA profiles in migraine patients receiving acupuncture treatment: A placebo-controlled clinical trial. Front Mol Neurosci 2023; 15:1098766. [PMID: 36704329 PMCID: PMC9871901 DOI: 10.3389/fnmol.2022.1098766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background Acupuncture has a long history of being used in Chinese medicine for the treatment of migraine. However, molecular biomarkers for diagnosis and prognosis of migraine and its treatment are lacking. This study aimed to explore whether acupuncture could regulate differentially expressed exosomal miRNAs between patients with migraine without aura (MWoA) and healthy controls (HCs) and to identify diagnostic biomarkers that helped differentiate MWoA patients from HCs and identify prognostic biomarkers that helped to predict the effect of acupuncture. Methods Here, we isolated serum exosomes from patients with MWoA and HCs before and after true and sham acupuncture treatment. Then, small RNA sequencing and bioinformatics analysis were performed to screen out key miRNAs specifically responding to acupuncture treatment. Pearson's correlation analysis was used to evaluate the correlation between miRNAs and clinical phenotypes. Finally, we applied a machine learning method to identify diagnostic biomarkers of MWoA patients and identify prognostic biomarkers that helped to predict the effect of acupuncture. Results Small RNA sequencing identified 68 upregulated and 104 downregulated miRNAs in MWoA patients compared to those in HCs. Further, we identified eight upregulated and four downregulated miRNAs in migraine patients after true acupuncture treatment (trAMWoA), but not in the sham acupuncture treatment (shAMWoA) or HC group. Among them, has-miR-378a-5p was positively correlated with time unable to work, study, or do housework due to migraine (p < 0.05), whereas has-miR-605-3p was negatively correlated with the restrictive subscale of the migraine-specific quality of life questionnaire (MSQ) (p < 0.05). We then evaluated the diagnostic and prognostic potential of these 12 miRNAs in patients with MWoA. The combination of serum levels of exosomal has-miR-369-5p, has-miR-145-5p, and has-miR-5,010-3p could serve as diagnostic and prognostic biomarkers for MWoA patients following acupuncture treatment. Conclusion This is the first study on the serum exosomal miRNA profiles of migraineurs before and after acupuncture treatment. Our results improve our understanding of the molecular functions of miRNAs in MWoA. More importantly, they expand our view of evaluating the clinical outcomes of migraine patients treated with acupuncture, using exosomal RNA markers. Clinical Trial Registration Chinese Clinical Trial Registry, ChiCTR2000034417, July 2020.
Collapse
Affiliation(s)
- Lu Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenchuan Qi
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yanan Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xixiu Ni
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shan Gao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ziyang Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Daohong Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhenxi He
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingsheng Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ziwen Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dingjun Cai
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, China,*Correspondence: Ling Zhao, ; Dingjun Cai,
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, China,*Correspondence: Ling Zhao, ; Dingjun Cai,
| |
Collapse
|
9
|
Hao J, Liu Y. Epigenetics of methylation modifications in diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1119765. [PMID: 37008904 PMCID: PMC10050754 DOI: 10.3389/fendo.2023.1119765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Type 2 diabetes is one of the most common metabolic diseases with complications including diabetic cardiomyopathy and atherosclerotic cardiovascular disease. Recently, a growing body of research has revealed that the complex interplay between epigenetic changes and the environmental factors may significantly contribute to the pathogenesis of cardiovascular complications secondary to diabetes. Methylation modifications, including DNA methylation and histone methylation among others, are important in developing diabetic cardiomyopathy. Here we summarized the literatures of studies focusing on the role of DNA methylation, and histone modifications in microvascular complications of diabetes and discussed the mechanism underlying these disorders, to provide the guidance for future research toward an integrated pathophysiology and novel therapeutic strategies to treat or prevent this frequent pathological condition.
Collapse
Affiliation(s)
- Jing Hao
- Department of Emergency, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Liu
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yao Liu,
| |
Collapse
|
10
|
Shao J, Liu J, Zuo S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022; 11:cells11152347. [PMID: 35954191 PMCID: PMC9367448 DOI: 10.3390/cells11152347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac fibrosis is a common pathophysiologic process associated with numerous cardiovascular diseases, resulting in cardiac dysfunction. Cardiac fibroblasts (CFs) play an important role in the production of the extracellular matrix and are the essential cell type in a quiescent state in a healthy heart. In response to diverse pathologic stress and environmental stress, resident CFs convert to activated fibroblasts, referred to as myofibroblasts, which produce more extracellular matrix, contributing to cardiac fibrosis. Although multiple molecular mechanisms are implicated in CFs activation and cardiac fibrosis, there is increasing evidence that epigenetic regulation plays a key role in this process. Epigenetics is a rapidly growing field in biology, and provides a modulated link between pathological stimuli and gene expression profiles, ultimately leading to corresponding pathological changes. Epigenetic modifications are mainly composed of three main categories: DNA methylation, histone modifications, and non-coding RNAs. This review focuses on recent advances regarding epigenetic regulation in cardiac fibrosis and highlights the effects of epigenetic modifications on CFs activation. Finally, we provide some perspectives and prospects for the study of epigenetic modifications and cardiac fibrosis.
Collapse
Affiliation(s)
- Jingrong Shao
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Shengkai Zuo
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
- Correspondence:
| |
Collapse
|
11
|
Yang JJ, Wang J, Yang Y, Yang Y, Li J, Lu D, Lu C. ALKBH5 ameliorated liver fibrosis and suppressed HSCs activation via triggering PTCH1 activation in an m6A dependent manner. Eur J Pharmacol 2022; 922:174900. [DOI: 10.1016/j.ejphar.2022.174900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/03/2022]
|
12
|
Qian X, Wang Y, Hu W, Xu X, Gao L, Meng Y, Yan J. MiR-369-5p inhibits the proliferation and migration of hepatocellular carcinoma cells by down-regulating HOXA13 expression. Tissue Cell 2022; 74:101721. [DOI: 10.1016/j.tice.2021.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
|
13
|
Xu SS, Ding JF, Shi P, Shi KH, Tao H. DNMT1-Induced miR-152-3p Suppression Facilitates Cardiac Fibroblast Activation in Cardiac Fibrosis. Cardiovasc Toxicol 2021; 21:984-999. [PMID: 34424481 DOI: 10.1007/s12012-021-09690-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
Novel insights into epigenetic control of cardiac fibrosis are now emerging. Cardiac fibroblasts (CFs) activation into myofibroblasts and the production of extracellular matrix (ECM) is the key to cardiac fibrosis development, but the specific mechanism is not fully understood. In the present study, we found that DNMT1 hypermethylation reduces the expression of microRNA-152-3p (miR-152-3p) and promotes Wnt1/β-catenin signaling pathway leading to CFs proliferation and activation. Cardiac fibrosis was produced by ISO, and the ISO was carried out according to the method described. CFs were harvested and cultured from SD neonatal rats and stimulated with TGF-β1. Importantly, DNMT1 resulted in the inhibition of miR-152-3p in activated CFs and both DNMT1 and miR-152-3p altered Wnt/β-catenin downstream protein levels. Over expression of DNMT1 and miR-152-3p inhibitors promotes proliferation of activating CFs. In addition, decreased methylation levels and over expression of miR-152-3p inhibited CFs proliferation. We determined that DNMT1 can methylate to miR-152-3p and demonstrated that expression of miR-152-3p inhibits CFs proliferation by inhibiting the Wnt1/β-catenin pathway. Our results stand out together DNMT1 methylation regulates miR-152-3p to slow the progression of cardiac fibrosis by inhibiting the Wnt1/β-catenin pathway.
Collapse
Affiliation(s)
- Sheng-Song Xu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Ji-Fei Ding
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Peng Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Hui Tao
- Department of Anesthesiology, The Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
14
|
Li C, Wang N, Rao P, Wang L, Lu D, Sun L. Role of the microRNA-29 family in myocardial fibrosis. J Physiol Biochem 2021; 77:365-376. [PMID: 34047925 DOI: 10.1007/s13105-021-00814-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
Myocardial fibrosis (MF) is an inevitable pathological process in the terminal stage of many cardiovascular diseases, often leading to serious cardiac dysfunction and even death. Currently, microRNA-29 (miR-29) is thought to be a novel diagnostic and therapeutic target of MF. Understanding the underlying mechanisms of miR-29 that regulate MF will provide a new direction for MF therapy. In the present review, we concentrate on the underlying signaling pathway of miR-29 affecting MF and the crosstalk regulatory relationship among these pathways to illustrate the complex regulatory network of miR-29 in MF. Additionally, based on our mechanistic understanding, we summarize opportunities and challenges of miR-29-based MF diagnosis and therapy.
Collapse
Affiliation(s)
- Changyan Li
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Nan Wang
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Peng Rao
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Limeiting Wang
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Di Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China.
| |
Collapse
|
15
|
Wang J, Chen X, Huang W. MicroRNA-369 attenuates hypoxia-induced cardiomyocyte apoptosis and inflammation via targeting TRPV3. ACTA ACUST UNITED AC 2021; 54:e10550. [PMID: 33470394 PMCID: PMC7812908 DOI: 10.1590/1414-431x202010550] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 01/14/2023]
Abstract
Hypoxia-induced apoptosis and inflammation play an important role in cardiovascular diseases including myocardial infarction (MI). miR-369 has been suggested to be a key regulator of cardiac fibrosis. However, the role of miR-369 in regulating hypoxia-induced heart injury remains unknown. Our data indicated that miR-369 expression was significantly down-regulated and TRPV3 was significantly up-regulated in myocardial tissue after MI in rats and in hypoxic-treated neonatal rat cardiomyocytes (NRCMs). In addition, we observed that hypoxia significantly promoted apoptosis and the inflammatory response, accompanied by increased caspase-3 activity and the secretion of the cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α. miR-369 overexpression significantly suppressed cell apoptosis and inflammatory factor production triggered by hypoxia, whereas miR-369 inhibition had an opposite effect. Importantly, we identified TRPV3 as a direct target of miR-369-3p. TRPV3 inhibition with small interfering RNA (siRNA) significantly inhibited hypoxia-induced inflammation and apoptosis, which can reverse the injury effects of miR-369 inhibitors. Our findings indicated that miR-369 reduced hypoxia-induced apoptosis and inflammation by targeting TRPV3.
Collapse
Affiliation(s)
- Jinghao Wang
- Department of Pharmacy, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xu Chen
- Department of Pharmacy, Daqing Oilfield General Hospital, Daqing, China
| | - Wei Huang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| |
Collapse
|
16
|
Falagan-Lotsch P, Murphy CJ. Network-based analysis implies critical roles of microRNAs in the long-term cellular responses to gold nanoparticles. NANOSCALE 2020; 12:21172-21187. [PMID: 32990715 PMCID: PMC7606723 DOI: 10.1039/d0nr04701e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since gold nanoparticles (AuNPs) have great potential to bring improvements to the biomedical field, their impact on biological systems should be better understood, particularly over the long term, using realistic doses of exposure. MicroRNAs (miRNAs) are small noncoding RNAs that play key roles in the regulation of biological pathways, from development to cellular stress responses. In this study, we performed genome-wide miRNA expression profiling in primary human dermal fibroblasts 20 weeks after chronic and acute (non-chronic) treatments to four AuNPs with different shapes and surface chemistries at a low dose. The exposure condition and AuNP surface chemistry had a significant impact on the modulation of miRNA levels. In addition, a network-based analysis was employed to provide a more complex, systems-level perspective of the miRNA expression changes. In response to the stress caused by AuNPs, miRNA co-expression networks perturbed in cells under non-chronic exposure to AuNPs were enriched for target genes implicated in the suppression of proliferative pathways, possibly in attempt to restore cell homeostasis, while changes in miRNA co-expression networks enriched for target genes related to activation of proliferative and suppression of apoptotic pathways were observed in cells chronically exposed to one specific type of AuNPs. In this case, miRNA dysregulation might be contributing to enforce a new cell phenotype during stress. Our findings suggest that miRNAs exert critical roles in the cellular responses to the stress provoked by a low dose of NPs in the long term and provide a fertile ground for further targeted experimental studies.
Collapse
Affiliation(s)
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
17
|
Afarideh M, Thaler R, Khani F, Tang H, Jordan KL, Conley SM, Saadiq IM, Obeidat Y, Pawar AS, Eirin A, Zhu XY, Lerman A, van Wijnen AJ, Lerman LO. Global epigenetic alterations of mesenchymal stem cells in obesity: the role of vitamin C reprogramming. Epigenetics 2020; 16:705-717. [PMID: 32893712 DOI: 10.1080/15592294.2020.1819663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Obesity promotes dysfunction and impairs the reparative capacity of mesenchymal stem/stromal cells (MSCs), and alters their transcription, protein content, and paracrine function. Whether these adverse effects are mediated by chromatin-modifying epigenetic changes remains unclear. We tested the hypothesis that obesity imposes global DNA hydroxymethylation and histone tri-methylation alterations in obese swine abdominal adipose tissue-derived MSCs compared to lean pig MSCs. MSCs from female lean (n = 7) and high-fat-diet fed obese (n = 7) domestic pigs were assessed using global epigenetic assays, before and after in-vitro co-incubation with the epigenetic modulator vitamin-C (VIT-C) (50 μg/ml). Dot blotting was used to measure across the whole genome 5-hydroxyemthycytosine (5hmC) residues, and Western blotting to quantify in genomic histone-3 protein tri-methylated lysine-4 (H3K4me3), lysine-9 (H3K9me3), and lysine-27 (H3K27me3) residues. MSC migration and proliferation were studied in-vitro. Obese MSCs displayed reduced global 5hmC and H3K4m3 levels, but comparable H3K9me3 and H3K27me3, compared to lean MSCs. Global 5hmC, H3K4me3, and HK9me3 marks correlated with MSC migration and reduced proliferation, as well as clinical and metabolic characteristics of obesity. Co-incubation of obese MSCs with VIT-C enhanced 5hmC marks, and reduced their global levels of H3K9me3 and H3K27me3. Contrarily, VIT-C did not affect 5hmC, and decreased H3K4me3 in lean MSCs. Obesity induces global genomic epigenetic alterations in swine MSCs, involving primarily genomic transcriptional repression, which are associated with MSC function and clinical features of obesity. Some of these alterations might be reversible using the epigenetic modulator VIT-C, suggesting epigenetic modifications as therapeutic targets in obesity.
Collapse
Affiliation(s)
- Mohsen Afarideh
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, and Department of Biochemistry, and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Farzaneh Khani
- Department of Orthopedic Surgery, and Department of Biochemistry, and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Yasin Obeidat
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Aditya S Pawar
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, and Department of Biochemistry, and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
18
|
Zhang Q, Zheng S, Wang S, Jiang Z, Xu S. The Effects of Low Selenium on DNA Methylation in the Tissues of Chickens. Biol Trace Elem Res 2019; 191:474-484. [PMID: 30737629 DOI: 10.1007/s12011-019-1630-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/01/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation is involved in epigenetic mechanisms associated with gene suppression, and its abnormalities lead to gene instability and disease development. As an essential trace element in humans and animals, selenium (Se) is also associated with abnormal changes in DNA methylation. However, the effect of low Se on DNA methylation in avian tissues has not been reported. In the current study, chickens were fed a low-Se diet (0.033 mg Se/kg) or supplemented with 0.15 mg Se/kg as selenite for up to 55 days. DNA methylation levels were examined by high-performance liquid chromatography (HPLC). DNA methyltransferases (DNMTs) and methyl-DpG-binding domain protein 2 (MBD2) mRNA levels were examined through the applications of RT-PCR. The experiment aims to explore the relationship between low Se and DNA methylation. The results showed that total DNA methylation levels in the muscle tissues, brain, immune tissues, and liver of the low-selenium diet group were decreased compared with the control group. The degree of DNA methylation reduction in different tissues from largest to smallest was liver > cerebellum > thymus > brain > spleen ≥ leg muscles > pectoral muscles > bursa of Fabricius > thalamus > wing muscles. DNMT1, DNMT3A, and DNMT3B mRNA expression levels of the low-selenium diet group were decreased compared with those in the control group. The mRNA expression of the MBD2 gene was increased. The results indicate that low Se can reduce the DNA methylation levels of tissues, especially within the liver. These conclusions provide a basis for exploring the pathogenesis of selenium deficiency from the perspective of DNA methylation and create a new basis for comparative medicine.
Collapse
Affiliation(s)
- Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Zhihui Jiang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|