1
|
Wang Y, Tang X, Luo S, Zhang Z, Cao Y. Intratracheal instillation of graphene oxide with different diameters suppressed toll-like receptor 3-mediated lipid droplet biogenesis in lungs and livers of mice. Toxicol Res (Camb) 2025; 14:tfaf069. [PMID: 40384842 PMCID: PMC12085196 DOI: 10.1093/toxres/tfaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 06/04/2025] Open
Abstract
Recent advances have established lipid droplets as dynamic innate immune hubs coordinating cellular metabolism and defense mechanisms. While previous studies primarily focused on nanomaterials (NMs) altering lipid metabolism to influence lipid droplet dynamics, this study pioneers the investigation of NM-induced immune modulation via Toll-like receptor (TLR) pathways as a novel regulatory axis for lipid droplets. Building on our prior findings that graphene oxide (GO) impaired TLR3-mediated lipid signaling, we systematically explored the role of GO's diameter in modulating this process. Mice were subjected to daily intratracheal instillation of three GO variants (50-200 nm, <500 nm or > 500 nm) at 1 mg/kg for 7 days. Although no significant change in body weight or organ coefficient was observed, all GO exposure suppressed lipid staining in mouse lungs and livers, correlating with altered co-localization of TLR3 and perilipin 2 (PLIN2), critical regulators of lipid droplet biogenesis. Down-regulation of TLR3 signaling components, namely interferon induced protein with tetratricopeptide repeats 1 (IFIT1), radical S-adenosyl methionine domain containing 2 (RSAD2), and PLIN2, occurred in a diameter-dependent manner, with GO 50-200 nm showing the most pronounced effects, likely attributable to the smallest hydrodynamic size and polydispersity index in suspension. This work provides evidence that NM geometry governs TLR-mediated lipid droplet regulation, bridging the knowledge gap between nanotoxicology and immunometabolic cross-talking, a paradigm distinct from conventional lipid metabolism-focused nanotoxicological studies.
Collapse
Affiliation(s)
- Yijin Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Changsheng Road No. 28, Zhengxiang District, Hengyang city, Hunan Province, Hengyang 421001, China
| | - Xiaomin Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Changsheng Road No. 28, Zhengxiang District, Hengyang city, Hunan Province, Hengyang 421001, China
| | - Sihuan Luo
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Changsheng Road No. 28, Zhengxiang District, Hengyang city, Hunan Province, Hengyang 421001, China
| | - Zhaohui Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Changsheng Road No. 28, Zhengxiang District, Hengyang city, Hunan Province, Hengyang 421001, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Changsheng Road No. 28, Zhengxiang District, Hengyang city, Hunan Province, Hengyang 421001, China
| |
Collapse
|
2
|
Cui G, Cong S, Tan M. Fluorescent nanoparticles from roast duck induce cell damage and physiological dysfunction in Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2843-2853. [PMID: 39607032 DOI: 10.1002/jsfa.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The safety of fluorescent nanoparticles (FNPs) that enter the human body through food consumption is uncertain. In this study, the biocompatibility of FNPs derived from roast duck was investigated using pheochromocytoma (PC12) cells and Caenorhabditis elegans. RESULTS Fluorescent nanoparticles, at concentrations of 1 and 4 mg mL-1, caused an increase in early apoptosis, altered the cell cycle, elevated reactive oxygen species levels, and decreased mitochondrial membrane potential in PC12 cells. Both acute and prolonged exposure to the FNPs enabled them to permeate C. elegans via its food source, accumulating predominantly in the intestine. At concentrations ranging between 0 and 15 mg mL-1, FNPs did not induce mortality in C. elegans but they did affect its growth, reproductive ability, and motor behavior. CONCLUSION This study advances the understanding of FNP safety significantly, facilitates risk assessment for foods containing FNPs, and provides valuable guidance to ensure food safety. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guoxin Cui
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, China
| | - Shuang Cong
- College of Life Sciences, Yantai University, Yantai, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
3
|
Gu S, Lu F, Gao Z, Zhou Y, Xiao Y, Bao W, Wang H. Transcriptomics and metabolomics analyses of graphene oxide toxicity on porcine alveolar macrophages. Toxicology 2024; 509:153953. [PMID: 39265697 DOI: 10.1016/j.tox.2024.153953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Graphene oxide (GO) is a type of nanomaterial widely used in tissue engineering, photocatalysis, and biomedicine. GO has been found to produce adverse effects on a broad range of cells and tissues. However, the molecular mechanisms underlying GO toxicity still remain to be explored. In this study, using porcine alveolar macrophages as a study model, we explored the toxic effects of GO and performed genome-wide detection of genes and metabolites associated with GO exposure using RNA-seq and liquid chromatograph mass spectrometer techniques. GO exposure significantly inhibited cell viability and induced apoptosis and oxidative stress in porcine alveolar macrophages. Further, GO exposure promoted cellular inflammation by upregulating the expression of pro-inflammatory cytokines (IL-6, IL-8, and IL-12). Transcriptomic analysis of GO-exposed cells revealed 424 differentially expressed genes. Functional enrichment analysis showed that the differentially expressed genes were significantly enriched in the pathways of Ribosome and oxidative phosphorylation (OXPHOS). In addition, metabolic analysis identified 203 differential metabolites, and these metabolites were significantly enriched in biosynthesis of cofactors, purine metabolism, and nucleotide metabolism. Integrative analyses of transcriptome and metabolome showed that OXPHOS was the most significantly enriched pathway and the involved genes were downregulated. This study revealed the toxic effects of GO on porcine alveolar macrophages and provided global insights to the metabolomic and transcriptomic alterations related to GO exposure. The results contributed to our understanding of the molecular mechanism of GO, and may further promote the detection of biomarkers for the prediction and control of GO toxicity.
Collapse
Affiliation(s)
- Shanshen Gu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fan Lu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhongcheng Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yajing Zhou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yeyi Xiao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Petry R, de Almeida JM, Côa F, Crasto de Lima F, Martinez DST, Fazzio A. Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1297-1311. [PMID: 39498295 PMCID: PMC11533115 DOI: 10.3762/bjnano.15.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024]
Abstract
Graphene oxide (GO) undergoes multiple transformations when introduced to biological and environmental media. GO surface favors the adsorption of biomolecules through different types of interaction mechanisms, modulating the biological effects of the material. In this study, we investigated the interaction of GO with tannic acid (TA) and its consequences for GO toxicity. We focused on understanding how TA interacts with GO, its impact on the material surface chemistry, colloidal stability, as well as, toxicity and biodistribution using the Caenorhabditis elegans model. Employing computational modeling, including reactive classical molecular dynamics and ab initio calculations, we reveal that TA preferentially binds to the most reactive sites on GO surfaces via the oxygen-containing groups or the carbon matrix; van der Waals interaction forces dominate the binding energy. TA exhibits a dose-dependent mitigating effect on the toxicity of GO, which can be attributed not only to the surface interactions between the molecule and the material but also to the inherent biological properties of TA in C. elegans. Our findings contribute to a deeper understanding of GO's environmental behavior and toxicity and highlight the potential of tannic acid for the synthesis and surface functionalization of graphene-based nanomaterials, offering insights into safer nanotechnology development.
Collapse
Affiliation(s)
- Romana Petry
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, 09210-580, São Paulo, Brazil
| | - James M de Almeida
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Felipe Crasto de Lima
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Adalberto Fazzio
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, 09210-580, São Paulo, Brazil
| |
Collapse
|
5
|
Yin F, Zhou Y, Xie D, Liang Y, Luo X. Evaluating the adverse effects and mechanisms of nanomaterial exposure on longevity of C. elegans: A literature meta-analysis and bioinformatics analysis of multi-transcriptome data. ENVIRONMENTAL RESEARCH 2024; 247:118106. [PMID: 38224941 DOI: 10.1016/j.envres.2024.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Exposure to large-size particulate air pollution (PM2.5 or PM10) has been reported to increase risks of aging-related diseases and human death, indicating the potential pro-aging effects of airborne nanomaterials with ultra-fine particle size (which have been widely applied in various fields). However, this hypothesis remains inconclusive. Here, a meta-analysis of 99 published literatures collected from electronic databases (PubMed, EMBASE and Cochrane Library; from inception to June 2023) was performed to confirm the effects of nanomaterial exposure on aging-related indicators and molecular mechanisms in model animal C. elegans. The pooled analysis by Stata software showed that compared with the control, nanomaterial exposure significantly shortened the mean lifespan [standardized mean difference (SMD) = -2.30], reduced the survival rate (SMD = -4.57) and increased the death risk (hazard ratio = 1.36) accompanied by upregulation of ced-3, ced-4 and cep-1, while downregulation of ctl-2, ape-1, aak-2 and pmk-1. Furthermore, multi-transcriptome data associated with nanomaterial exposure were retrieved from Gene Expression Omnibus (GSE32521, GSE41486, GSE24847, GSE59470, GSE70509, GSE14932, GSE93187, GSE114881, and GSE122728) and bioinformatics analyses showed that pseudogene prg-2, mRNAs of abu, car-1, gipc-1, gsp-3, kat-1, pod-2, acdh-8, hsp-60 and egrh-2 were downregulated, while R04A9.7 was upregulated after exposure to at least two types of nanomaterials. Resveratrol (abu, hsp-60, pod-2, egrh-2, acdh-8, gsp-3, car-1, kat-1, gipc-1), naringenin (kat-1, egrh-2), coumestrol (egrh-2) or swainsonine/niacin/ferulic acid (R04A9.7) exerted therapeutic effects by reversing the expression levels of target genes. In conclusion, our study demonstrates the necessity to use phytomedicines that target hub genes to delay aging for populations with nanomaterial exposure.
Collapse
Affiliation(s)
- Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
6
|
Zhou H, Yang Y, Kang Y, Guo T, Zhou Y, Zhang Y, Ma L. Synergistic toxicity induced by the co-exposure of tenuazonic acid and patulin in Caenorhabditis elegans: Daf-16 plays an important regulatory role. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115871. [PMID: 38141335 DOI: 10.1016/j.ecoenv.2023.115871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Tenuazonic acid (TeA) and patulin (PAT), as the naturally occurring mycotoxins with various toxic effects, are often detected in environment and food chain, has attracted more and more attention due to their widespread and high contaminations as well as the coexistence, which leads to potential human and animals' risks. However, their combined toxicity has not been reported yet. In our study, C. elegans was used to evaluate the type of combined toxicity caused by TeA+PAT and its related mechanisms. The results showed that TeA and PAT can induce synergistic toxic effects based on Combination Index (CI) evaluation model (Chou-Talalay method), that is, the body length, brood size as well as the levels of ROS, CAT and ATP were significantly affected in TeA+PAT-treated group compared with those in TeA- or PAT-treated group. Besides, the expressions of oxidative (daf-2, daf-16, cyp-35a2, ctl-1, ctl-3, pmk-1, jnk-1, skn-1) and intestinal (fat-5, pod-2, egl-8, pkc-3, ajm-1, nhx-2) stress-related genes were disrupted, among which daf-16 displayed the most significant alternation. Further study on daf-16 gene defective C. elegans showed that the damages to the mutant nematodes were significantly attenuated. Since daf-2, daf-16, jnk-1 and pmk-1 are evolutionarily conserved, our findings could hint synergistic toxic effects of TeA+PAT on higher organisms.
Collapse
Affiliation(s)
- Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yulian Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yi Kang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
7
|
Vickery WM, Wood HB, Orlando JD, Singh J, Deng C, Li L, Zhou JY, Lanni F, Porter AW, Sydlik SA. Environmental and health impacts of functional graphenic materials and their ultrasonically altered products. NANOIMPACT 2023; 31:100471. [PMID: 37315844 DOI: 10.1016/j.impact.2023.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Graphenic materials have excited the scientific community due to their exciting mechanical, thermal, and optoelectronic properties for a potential range of applications. Graphene and graphene derivatives have demonstrated application in areas stretching from composites to medicine; however, the environmental and health impacts of these materials have not been sufficiently characterized. Graphene oxide (GO) is one of the most widely used graphenic derivatives due to a relatively easy and scalable synthesis, and the ability to tailor the oxygen containing functional groups through further chemical modification. In this paper, ecological and health impacts of fresh and ultrasonically altered functional graphenic materials (FGMs) were investigated. Model organisms, specifically Escherichia coli, Bacillus subtilis, and Caenorhabditis elegans, were used to assess the consequences of environmental exposure to fresh and ultrasonically altered FGMs. FGMs were selected to evaluate the environmental effects of aggregation state, degree of oxidation, charge, and ultrasonication. The major findings indicate that bacterial cell viability, nematode fertility, and nematode movement were largely unaffected, suggesting that a wide variety of FGMs may not pose significant health and environmental risks.
Collapse
Affiliation(s)
- Walker M Vickery
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Hunter B Wood
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Jason D Orlando
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Juhi Singh
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Chenyun Deng
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Li Li
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Jing-Yi Zhou
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Aidan W Porter
- Department of Pediatrics, Nephrology Division, University of Pittsburgh School of Medicine, 5th and Ruskin Ave, Pittsburg, PA 15260, United States; Division of Nephrology, Children's Hospital of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA 15224, United States
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
8
|
Gubert P, Gubert G, de Oliveira RC, Fernandes ICO, Bezerra IC, de Ramos B, de Lima MF, Rodrigues DT, da Cruz AFN, Pereira EC, Ávila DS, Mosca DH. Caenorhabditis elegans as a Prediction Platform for Nanotechnology-Based Strategies: Insights on Analytical Challenges. TOXICS 2023; 11:239. [PMID: 36977004 PMCID: PMC10059662 DOI: 10.3390/toxics11030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Nanotechnology-based strategies have played a pivotal role in innovative products in different technological fields, including medicine, agriculture, and engineering. The redesign of the nanometric scale has improved drug targeting and delivery, diagnosis, water treatment, and analytical methods. Although efficiency brings benefits, toxicity in organisms and the environment is a concern, particularly in light of global climate change and plastic disposal in the environment. Therefore, to measure such effects, alternative models enable the assessment of impacts on both functional properties and toxicity. Caenorhabditis elegans is a nematode model that poses valuable advantages such as transparency, sensibility in responding to exogenous compounds, fast response to perturbations besides the possibility to replicate human disease through transgenics. Herein, we discuss the applications of C. elegans to nanomaterial safety and efficacy evaluations from one health perspective. We also highlight the directions for developing appropriate techniques to safely adopt magnetic and organic nanoparticles, and carbon nanosystems. A description was given of the specifics of targeting and treatment, especially for health purposes. Finally, we discuss C. elegans potential for studying the impacts caused by nanopesticides and nanoplastics as emerging contaminants, pointing out gaps in environmental studies related to toxicity, analytical methods, and future directions.
Collapse
Affiliation(s)
- Priscila Gubert
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife 50670-901, Brazil
- Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife 50670-901, Brazil
- Graduate Program in Pure and Applied Chemistry, POSQUIPA, Federal University of Western of Bahia, Bahia 47808-021, Brazil
| | - Greici Gubert
- Postdoctoral Program in Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | | | - Isabel Cristina Oliveira Fernandes
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife 50670-901, Brazil
- Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Bruna de Ramos
- Oceanography Department, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Milena Ferreira de Lima
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife 50670-901, Brazil
- Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Daniela Teixeira Rodrigues
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | | | - Ernesto Chaves Pereira
- Postdoctoral Program in Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Daiana Silva Ávila
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
- Graduate Program in Biochemistry, Federal University of Pampa (UNIPAMPA), Uruguaiana 97501-970, Brazil
| | - Dante Homero Mosca
- Postdoctoral Program in Physics, Federal University of Paraná, Curitiba 80060-000, Brazil
| |
Collapse
|
9
|
Xie C, Li X, Guo Z, Dong Y, Zhang S, Li A, Ma S, Xu J, Pang Q, Peijnenburg WJGM, Lynch I, Zhang P. Graphene oxide disruption of homeostasis and regeneration processes in freshwater planarian Dugesia japonica via intracellular redox deviation and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114431. [PMID: 36521269 DOI: 10.1016/j.ecoenv.2022.114431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The aquatic system is a major sink for engineered nanomaterials released into the environment. Here, we assessed the toxicity of graphene oxide (GO) using the freshwater planarian Dugesia japonica, an invertebrate model that has been widely used for studying the effects of toxins on tissue regeneration and neuronal development. GO not only impaired the growth of normal (homeostatic) worms, but also inhibited the regeneration processes of regenerating (amputated) worms, with LC10 values of 9.86 mg/L and 9.32 mg/L for the 48-h acute toxicity test, respectively. High concentration (200 mg/L) of GO killed all the worms after 3 (regenerating) or 4 (homeostasis) days of exposure. Whole-mount in situ hybridization (WISH) and immunofluorescence analyses suggest GO impaired stem cell proliferation and differentiation, and subsequently caused cell apoptosis and oxidative DNA damage during planarian regeneration. Mechanistic analysis suggests that GO disturbed the antioxidative system (enzymatic and non-enzymatic) and energy metabolism in the planarian at both molecular and genetic levels, thus causing reactive oxygen species (ROS) over accumulation and oxidative damage, including oxidative DNA damage, loss of mitochondrial membrane integrity, lack of energy supply for cell differentiation and proliferation leading to retardance of neuron regeneration. The intrinsic oxidative potential of GO contributes to the GO-induced toxicity in planarians. These data suggest that GO in aquatic systems can cause oxidative stress and neurotoxicity in planarians. Overall, regenerated tissues are more sensitive to GO toxicity than homeostatic ones, suggesting that careful handling and appropriate decisions are needed in the application of GO to achieve healing and tissue regeneration.
Collapse
Affiliation(s)
- Changjian Xie
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xiaowei Li
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Yuling Dong
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shujing Zhang
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Ao Li
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shan Ma
- Zibo Environment Monitoring Center, Zibo 25500, Shandong, China
| | - Jianing Xu
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Qiuxiang Pang
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Einsteinweg 2, 2333 CC Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
10
|
Wang G, Song B, Jia X, Yin H, Li R, Liu X, Chen J, Zhang J, Wang Z, Zhong S. Ceramides from Sea Red Rice Bran Improve Health Indicators and Increase Stress Resistance of Caenorhabditis elegans through Insulin/IGF-1 Signaling (IIS) Pathway and JNK-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15080-15094. [PMID: 36417897 DOI: 10.1021/acs.jafc.2c04921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The antiaging effects of sea red rice bran in vivo, a new saline-tolerant sea rice byproduct containing high levels of ceramides (Cers), remain unknown. This study aimed to explore the antiaging effects exerted by Cers from sea red rice bran on Caenorhabditis elegans, assess its health indicators as well as tolerance, and then reveal the mechanism of action of Cers in prolonging the mean life span through genetic studies. The results indicated that the mean life span of Cers-treated C. elegans were dose-dependent in the range of 0.10-0.50 mg/mL. Additionally, Cers improved nematode motility, reduced lipofuscin accumulation, and enhanced resistance to heat stress and antioxidant enzyme activity. Genetic studies showed that Cers treatment had altered nematode gene expression. In addition, insulin/IGF-1 and jnk-1/mitogen-activated protein kinase (MAPK) signaling pathways successfully demonstrated the longevity effects of Cers intake. In short, these results suggest that Cers enhance the resistance of C. elegans and prolong its life span.
Collapse
Affiliation(s)
- Gang Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bingbing Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xuejing Jia
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huan Yin
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Xiaofei Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Jianping Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Jieliang Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Zhuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
11
|
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng TRJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. BIOSENSORS 2022; 12:1082. [PMID: 36551049 PMCID: PMC9775545 DOI: 10.3390/bios12121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
Collapse
Affiliation(s)
- Kelli M McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
| | - Jarad Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Elizabeth R Carraway
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Diana C Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change (BioNovo), Universidad del Valle, Cali 76001, Colombia
| |
Collapse
|
12
|
Lipid metabolism and ageing in Caenorhabditis elegans: a complex interplay. Biogerontology 2022; 23:541-557. [PMID: 36048312 DOI: 10.1007/s10522-022-09989-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
Abstract
Life expectancy in Western countries is increasing, with concomitant rise in ageing-related pathologies, including Parkinson's and Alzheimer's disease, as well as other neurodegenerative diseases. Consequently, the medical, psychological and economic burden to society is increasing. Thus, understanding the cellular and molecular mechanisms underlying the association of ageing with elevated vulnerability to disease is crucial towards promoting quality of life in old age. Caenorhabditis elegans has emerged as a versatile model to study ageing, due to its simplicity, fast life cycle, and the availability of a wide range of biological tools to target specific genes and cells. Indeed, recent studies in C. elegans have revealed that lipid metabolism plays a key role in controlling longevity by impinging on a plethora of molecular pathways and cell types. Here, we summarise findings relevant to the interplay between lipid metabolism and ageing in C. elegans, and discuss the implications for the pathogenesis of age-related disorders in humans.
Collapse
|
13
|
Yao Y, Zhang T, Tang M. A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119270. [PMID: 35398402 DOI: 10.1016/j.envpol.2022.119270] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, nanotechnology has rapidly developed. Therefore, there is growing concern about the potential environmental risks of nanoparticles (NPs). Caenorhabditis elegans (C. elegans) has been used as a powerful tool for studying the potential ecotoxicological impacts of nanomaterials from the whole animal level to single cell level, especially in the area of reproduction. In this review, we discuss the reproductive toxicity of common nanomaterials in C. elegans, such as metal-based nanomaterial (silver nanoparticles (NPs), gold NPs, zinc oxide NPs, copper oxide NPs), carbon-based nanomaterial (graphene oxide, multi-walled carbon nanotubes, fullerene nanoparticles), polymeric NPs, silica NPs, quantum dots, and the potential mechanisms involved. This insights into the toxic effects of existing nanomaterials on the human reproductive system. In addition, we summarize how the physicochemical properties (e.g., size, charge, surface modification, shape) of nanomaterials influence their reproductive toxicity. Overall, using C. elegans as a platform to develop rapid detection techniques and prediction methods for nanomaterial reproductive toxicity is expected to reduce the gap between biosafety evaluation of nanomaterials and their application.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
14
|
Côa F, Delite FDS, Strauss M, Martinez DST. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NANOIMPACT 2022; 27:100413. [PMID: 35940564 DOI: 10.1016/j.impact.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, the toxicity and biodistribution of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (MWCNT) were investigated in Caenorhabditis elegans. Bovine serum albumin (BSA) was selected as a model protein to evaluate the influence of protein corona formation on materials physicochemical properties, colloidal stability, and toxicity. Biological assays were performed to assess the effects of bare and albumin corona coated materials on survival, oxidative stress, intestinal barrier permeability, growth, reproduction, and fertility. Critical alterations in topography, surface roughness and chemistry of GO and MWCNT were observed due to albumin corona formation. These modifications were associated with changes in colloidal stability of materials and prevention of their aggregation and sedimentation in nematode testing medium. Both GO and MWCNT caused damage to nematode survival, growth, reproduction, and fertility, as well as enhanced oxidative stress and permeability of the intestinal barrier. But GO was more toxic than MWCNT to C. elegans, especially at long-term assays. Albumin corona mitigated 100% of acute and chronic effects of MWCNT. In contrast, the negative effects of GO were not completely mitigated; GO inhibited 16.2% of nematode growth, 86.5% of reproduction, and 32.0% of fertility at the highest concentration evaluated (10 mg L-1), while corona coated GO mitigated 50% and 100% of fertility and growth, respectively. Confocal Raman spectroscopy imaging was crucial to point out that bare and albumin corona coated GO and MWCNT crossed the C. elegans intestinal barrier reaching its reproductive organs. However, BSA corona protected the nematodes targeted organs from negative effects from MWCNT and blocked its translocation to other tissues, while coated GO was translocated inside the nematode affecting the functionality of crucial organs. In addition, coated MWCNT was excreted after 2 h of food resumption, whereas coated GO still accumulated in the nematode intestine. Our results demonstrate that the materials different translocation and excretion patterns in C. elegans had a relation to the impaired physiological functions of primary and secondary organs. This work is a contribution towards a better understanding of the impacts of protein corona on the toxicity of graphene oxide and carbon nanotubes; essential information for biological applications and nanosafety.
Collapse
Affiliation(s)
- Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
15
|
Ghazimoradi MM, Ghorbani MH, Ebadian E, Hassani A, Mirzababaei S, Hodjat M, Navaei-Nigjeh M, Abdollahi M. Epigenetic effects of graphene oxide and its derivatives: A mini-review. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503483. [PMID: 35649677 DOI: 10.1016/j.mrgentox.2022.503483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO), an engineered nanomaterial, has a two-dimensional structure with carbon atoms arranged in a hexagonal array. While it has been widely used in many industries, such as biomedicine, electronics, and biosensors, there are still concerns over its safety. Recently, many studies have focused on the potential toxicity of GO. Epigenetic toxicity is an important aspect of a material's toxicological profile, since changes in gene expression have been associated with carcinogenicity and disease progression. In this review, we focus on the epigenetic alterations caused by GO, including DNA methylation, histone modification, and altered expression of non-coding RNAs. GO can affect DNA methyltransferase activity and disrupt the methylation of cytosine bases in DNA strands, leading to alteration of genome expression. Modulation of histones by GO, targeting histone deacetylase and demethylase, as well as dysregulation of miRNA and lncRNA expression have been reported. Further studies are required to determine the mechanisms of GO-induced epigenetic alterations.
Collapse
Affiliation(s)
- Mohammad Mahdi Ghazimoradi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Hossein Ghorbani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ehsan Ebadian
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheyl Mirzababaei
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
16
|
Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles. NANOMATERIALS 2022; 12:nano12101716. [PMID: 35630937 PMCID: PMC9144754 DOI: 10.3390/nano12101716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022]
Abstract
The presented review aims to summarize the knowledge regarding the reproductive and developmental toxicity of different types of carbon nanoparticles, such as graphene, graphene oxide, multi- and single-walled nanotubes, fullerenes, and nanodiamonds. Carbon nanoparticles have unique chemical and physical properties that make them an excellent material that can be applied in many fields of human activity, including industry, food processing, the pharmaceutical industry, or medicine. Although it has a high degree of biocompatibility, possible toxic effects on different tissue types must also be taken into account. Carbon nanoparticles are known to be toxic to the respiratory, cardiovascular, nervous, digestive system, etc., and, according to current studies, they also have a negative effect on reproduction and offspring development.
Collapse
|
17
|
Guo Q, Yang Y, Zhao L, Chen J, Duan G, Yang Z, Zhou R. Graphene oxide toxicity in W 1118 flies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150302. [PMID: 34536880 DOI: 10.1016/j.scitotenv.2021.150302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The risk of graphene oxide (GO) exposure to various species has been greatly amplified in recent years due to its booming production and applications in various fields. However, a deep understanding of the GO biosafety lags its wide applications. Herein, we used W1118 flies as a model organism to study GO toxicity at relatively low concentrations. We found that GO exposure led to remarkable weight loss, delayed development, retarded motion, and shortened lifespan of these flies. On the other hand, the GO influence on their sex ratio and the total number of pupae and adults were insignificant. The toxicological effect of GO was shown to be related to its serious compromise of the nutrient absorption in flies due to the severe damages in midguts. These damages were then attributed to the excessive accumulation of reactive oxygen species (ROS), which triggers the oxidative stress. These findings reveal the underlying mechanisms of GO biotoxicities in fruit flies, which might provide a useful reference to assess the risks of these newly invented nanomaterials likely never encountered by various species before.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ying Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Ruhong Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China; Institute of Quantitative Biology and College of Life Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
18
|
Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1804. [PMID: 36416020 PMCID: PMC9787548 DOI: 10.1002/wnan.1804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Nanosafety assessment has experienced an intense era of research during the past decades driven by a vivid interest of regulators, industry, and society. Toxicological assays based on in vitro cellular models have undergone an evolution from experimentation using nanoparticulate systems on singular epithelial cell models to employing advanced complex models more realistically mimicking the respective body barriers for analyzing their capacity to alter the immune state of exposed individuals. During this phase, a number of lessons were learned. We have thus arrived at a state where the next chapters have to be opened, pursuing the following objectives: (1) to elucidate underlying mechanisms, (2) to address effects on vulnerable groups, (3) to test material mixtures, and (4) to use realistic doses on (5) sophisticated models. Moreover, data reproducibility has become a significant demand. In this context, we studied the emerging concept of adverse outcome pathways (AOPs) from the perspective of immune activation and modulation resulting in pro-inflammatory versus tolerogenic responses. When considering the interaction of nanomaterials with biological systems, protein corona formation represents the relevant molecular initiating event (e.g., by potential alterations of nanomaterial-adsorbed proteins). Using this as an example, we illustrate how integrated experimental-computational workflows combining in vitro assays with in silico models aid in data enrichment and upon comprehensive ontology-annotated (meta)data upload to online repositories assure FAIRness (Findability, Accessibility, Interoperability, Reusability). Such digital twinning may, in future, assist in early-stage decision-making during therapeutic development, and hence, promote safe-by-design innovation in nanomedicine. Moreover, it may, in combination with in silico-based exposure-relevant dose-finding, serve for risk monitoring in particularly loaded areas, for example, workplaces, taking into account pre-existing health conditions. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Sabine Hofer
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Norbert Hofstätter
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Benjamin Punz
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Ingrid Hasenkopf
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Litty Johnson
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| |
Collapse
|
19
|
Shi J, Wang Y, Lei Y, Chen X, Liu Y, Xu YJ. Lipidome reveals the alleviation of krill oil on the impairment of acrylamide. Food Funct 2022; 13:8012-8021. [DOI: 10.1039/d2fo00781a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Krill oil has rich content of polyunsaturated fatty acids and various biological functions. Previous researches have demonstrated that krill oil is helpful to improve the locomotion via antioxidation and regulation...
Collapse
|
20
|
Xie M, Huang C, Liang Y, Li S, Sheng L, Cao Y. MoS2 nanosheets and bulk materials altered lipid profiles in 3D Caco-2 spheroids. CHINESE CHEM LETT 2022; 33:293-297. [DOI: 10.1016/j.cclet.2021.06.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Shi J, Wang Y, Jiang F, Liu Y, Xu YJ. The effect of krill oil on longevity and locomotion: a pilot study. Mol Omics 2021; 18:206-213. [PMID: 34935825 DOI: 10.1039/d1mo00373a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Krill oil as a dietary supplement is popular with consumers. Several experimental and clinical trials have suggested that krill oil is beneficial for longevity and locomotion, but the underlying mechanisms for this have remained largely elusive. In this study, we investigated alleviation of impairment of Caenorhabditis elegans by polar compounds from frying oil with the use of krill oil. Observations of life span and locomotion demonstrated that the intake of krill oil increased median survival by 17.86%, head thrashes by 27.79% and body bends by 20.78% for impaired C. elegans. Metabolomic analysis revealed that krill oil could significantly restore the negative alterations caused by polar compounds, including upregulation of serine, tyrosine, palmitic acid and stearic acid, and downregulation of maltose 6'-phosphate, UDP-glucose, glutamic acid, phosphoserine and 25-hydroxyvitamin D3. Additionally, intake of krill oil also changed some metabolites that were irrelevant to impairment by polar compounds, but were beneficial for health for C. elegans. Metabolomics investigations indicated that krill oil ameliorates energy metabolism and alleviates oxidative stress and excitotoxicity caused by polar compounds on C. elegans. The data obtained in this study will facilitate future functional studies of krill oil.
Collapse
Affiliation(s)
- Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yanan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Fan Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Myla A, Dasmahapatra AK, Tchounwou PB. Sex-reversal and Histopathological Assessment of Potential Endocrine-Disrupting Effects of Graphene Oxide on Japanese medaka (Oryzias latipes) Larvae. CHEMOSPHERE 2021; 279:130768. [PMID: 34134430 PMCID: PMC8217731 DOI: 10.1016/j.chemosphere.2021.130768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 05/12/2023]
Abstract
Sex-ratio is considered as an end point during endocrine disrupting chemicals (EDCs) evaluation. Many fish species including Japanese medaka have XX/XY sex determination mechanism, however, sex reversal (SR) can be induced by external and genetic factors. SR imposed an imbalance in natural sex ratio of a population living in any ecosystem. Considering SR as an end point, we aimed to investigate the potential EDC effects of graphene oxide (GO), a nanocarbon, using Japanese medaka as a model. One-day post-hatch (dph) medaka fries were exposed to GO (2.5, 5.0, 10.0 and 20 mg/L) for 96 h without food, followed by 6 weeks depuration in a GO-free environment with feeding. Phenotypic sex was determined by gonad histology; genotypic sex by genotyping Y-chromosome-specific male sex determining gene, dmy. Our data indicated testes in both XY and XX genotypes, while ovaries were only in XX females. Histopathology of XY and XX testis showed isogenic spermatocysts with active spermatogenesis. Distribution of spermatocytes (SPTs), not the spermatogonium (SPGs), showed enhancement in XY than XX testis. Female phenotypes had single ovary, either in stage 0 or 1. Ovo-testis/testis-ova were absent in XX or XY gonads. GO (2.5-20 mg/L) had inconsistent concentration-dependent effect in both SPGs and SPTs; however, no effect on ovarian follicles. Despite genotypic differences (XY/XX), in the histopathology/histochemistry of liver and kidneys GO effects was found to be minimum. Taken together, present study showed spontaneous induction of SR in some XX genotypes; however, exposure of fasting fries to GO had no apparent EDC effects.
Collapse
Affiliation(s)
- Anitha Myla
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA
| | - Asok K Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA; Department of BioMolecular Sciences, Environmental Toxicology Division, University of Mississippi, University, MS, 38677, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
23
|
Bortolozzo LS, Côa F, Khan LU, Medeiros AMZ, Da Silva GH, Delite FS, Strauss M, Martinez DST. Mitigation of graphene oxide toxicity in C. elegans after chemical degradation with sodium hypochlorite. CHEMOSPHERE 2021; 278:130421. [PMID: 33839394 DOI: 10.1016/j.chemosphere.2021.130421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/28/2023]
Abstract
Graphene oxide (GO) is a promising and strategic carbon-based nanomaterial for innovative and disruptive technologies. It is therefore essential to address its environmental health and safety aspects. In this work, we evaluated the chemical degradation of graphene oxide by sodium hypochlorite (NaClO, bleach water) and its consequences over toxicity, on the nematode Caenorhabditis elegans. The morphological, chemical, and structural properties of GO and its degraded product, termed NaClO-GO, were characterized, exploring an integrated approach. After the chemical degradation of GO at room temperature, its flake size was reduced from 156 to 29 nm, while NaClO-GO showed changes in UV-vis absorption, and an increase in the amount of oxygenated surface groups, which dramatically improved its colloidal stability in moderately hard reconstituted water (EPA medium). Acute and chronic exposure endpoints (survival, growth, fertility, and reproduction) were monitored to evaluate material toxicities. NaClO-GO presented lower toxicity at all endpoints. For example, an increase of over 100% in nematode survival was verified for the degraded material when compared to GO at 10 mg L-1. Additionally, enhanced dark-field hyperspectral microscopy confirmed the oral uptake of both materials by C. elegans. Finally, this work represents a new contribution toward a better understanding of the links between the transformation of graphene-based materials and nanotoxicity effects (mitigation), which is mandatory for the safety improvements that are required to maximize nanotechnological benefits to society.
Collapse
Affiliation(s)
- Leandro S Bortolozzo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil
| | - Latif U Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Aline M Z Medeiros
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil
| | - Gabriela H Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Fabricio S Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; Centre of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba, Sao Paulo, Brazil.
| |
Collapse
|
24
|
Fakhrullin R, Nigamatzyanova L, Fakhrullina G. Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145478. [PMID: 33571774 DOI: 10.1016/j.scitotenv.2021.145478] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Nanoscale contaminants (including engineered nanoparticles and nanoplastics) pose a significant threat to organisms and environment. Rapid and non-destructive detection and identification of nanosized materials in cells, tissues and organisms is still challenging, although a number of conventional methods exist. These approaches for nanoparticles imaging and characterisation both inside the cytoplasm and on the cell or tissue outer surfaces, such as electron or scanning probe microscopies, are unquestionably potent tools, having excellent resolution and supplemented with chemical analysis capabilities. However, imaging and detection of nanomaterials in situ, in wet unfixed and even live samples, such as living isolated cells, microorganisms, protozoans and miniature invertebrates using electron microscopy is practically impossible, because of the elaborate sample preparation requiring chemical fixation, contrast staining, matrix embedding and exposure into vacuum. Atomic force microscopy, in several cases, can be used for imaging and mechanical analysis of live cells and organisms under ambient conditions, however this technique allows for investigation of surfaces. Therefore, a different approach allowing for imaging and differentiation of nanoscale particles in wet samples is required. Dark-field microscopy as an optical microscopy technique has been popular among researchers, mostly for imaging relatively large specimens. In recent years, the so-called "enhanced dark field" microscopy based on using higher numerical aperture light condensers and variable numerical aperture objectives has emegred, which allows for imaging of nanoscale particles (starting from 5 nm nanospheres) using almost conventional optical microscopy methodology. Hyperspectral imaging can turn a dark-field optical microscope into a powerful chemical characterisation tool. As a result, this technique is becoming popular in environmental nanotoxicology studies. In this Review Article we introduce the reader into the methodology of enhanced dark-field and dark-field-based hyperspectral microscopy, covering the most important advances in this rapidly-expanding area of environmental nanotoxicology.
Collapse
Affiliation(s)
- Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation.
| | - Läysän Nigamatzyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Gölnur Fakhrullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| |
Collapse
|
25
|
Ramal-Sanchez M, Fontana A, Valbonetti L, Ordinelli A, Bernabò N, Barboni B. Graphene and Reproduction: A Love-Hate Relationship. NANOMATERIALS 2021; 11:nano11020547. [PMID: 33671591 PMCID: PMC7926437 DOI: 10.3390/nano11020547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
Since its discovery, graphene and its multiple derivatives have been extensively used in many fields and with different applications, even in biomedicine. Numerous efforts have been made to elucidate the potential toxicity derived from their use, giving rise to an adequate number of publications with varied results. On this basis, the study of the reproductive function constitutes a good tool to evaluate not only the toxic effects derived from the use of these materials directly on the individual, but also the potential toxicity passed on to the offspring. By providing a detailed scientometric analysis, the present review provides an updated overview gathering all the research studies focused on the use of graphene and graphene-based materials in the reproductive field, highlighting the consequences and effects reported to date from experiments performed in vivo and in vitro and in different animal species (from Archea to mammals). Special attention is given to the oxidized form of graphene, graphene oxide, which has been recently investigated for its ability to increase the in vitro fertilization outcomes. Thus, the potential use of graphene oxide against infertility is hypothesized here, probably by engineering the spermatozoa and thus manipulating them in a safer and more efficient way.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- Correspondence:
| | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- National Research Council (IBCN), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, 00015 Rome, Italy
| | | | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- National Research Council (IBCN), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, 00015 Rome, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
| |
Collapse
|
26
|
Secoisolariciresinol Diglucoside Delays the Progression of Aging-Related Diseases and Extends the Lifespan of Caenorhabditis elegans via DAF-16 and HSF-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1293935. [PMID: 32733632 PMCID: PMC7378611 DOI: 10.1155/2020/1293935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Secoisolariciresinol diglucoside (SDG) is a phytoestrogen and rich in food flaxseed, sunflower seeds, and sesame seeds. Among the beneficial pharmacological activities of SDG on health, many are age related, such as anticancer, antidiabetes, antioxidant, and neuroprotective effects. Thus, we investigated if SDG had an effect on antiaging in Caenorhabditis elegans (C. elegans). Our results showed that SDG could extend the lifespan of C. elegans by up to 22.0%, delay age-related decline of body movement, reduce the lethality of heat and oxidative stress, alleviate dopamine neurodegeneration induced by 6-hydroxydopamine (6-OHDA), and decrease the toxicity of Aβ protein in C. elegans. SDG could increase the expression of the downstream genes of DAF-16, DAF-12, NHR-80, and HSF-1 at mRNA level. SDG could not extend the lifespan of mutants from genes daf-16, hsf-1, nhr-80, daf-12, glp-1, eat-2, and aak-2. The above results suggested that SDG might enhance the stress resistance, delay the progression of aging-related diseases, and extend the lifespan of C. elegans via DAF-16 and HSF-1.
Collapse
|
27
|
De la Parra-Guerra A, Stürzenbaum S, Olivero-Verbel J. Intergenerational toxicity of nonylphenol ethoxylate (NP-9) in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110588. [PMID: 32289633 DOI: 10.1016/j.ecoenv.2020.110588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 05/24/2023]
Abstract
The ethoxylated isomers of nonylphenol (NPEs, NP-9) are one of the main active ingredients present in nonionic surfactants employed as herbicides, cosmetics, paints, plastics, disinfectants and detergents. These chemicals and their metabolites are commonly found in environmental matrices. The aim of this work was to evaluate the intergenerational toxicity of NP-9 in Caenorhabditis elegans. The lethality, length, width, locomotion and lifespan were investigated in the larval stage L4 of the wild strain N2. Transgenic green fluorescent protein (GFP) strains were employed to estimate changes in relative gene expression. RT-qPCR was utilized to measure mRNA expression for neurotoxicity-related genes (unc-30, unc-25, dop-3, dat-1, mgl-1, and eat-4). Data were obtained from parent worms (P0) and the first generation (F1). Lethality of the nematode was concentration-dependent, with 48 h-LC50 values of 3215 and 1983 μM in P0 and F1, respectively. Non-lethal concentrations of NP-9 reduced locomotion. Lifespan was also decreased by the xenobiotic, but the negative effect was greater in P0 than in F1. Non-monotonic concentration-response curves were observed for body length and width in both generations. The gene expression profile in P0 was different from that registered in F1, although the expression of sod-4, hsp-70, gpx-6 and mtl-2 increased with the surfactant concentration in both generations. None of the tested genes followed a classical concentration-neurotoxicity relationship. In P0, dopamine presented an inverted-U curve, while GABA and glutamate displayed a bimodal type. However, in F1, inverted U-shaped curves were revealed for these genes. In summary, NP-9 induced intergenerational responses in C. elegans through mechanisms involving ROS, and alterations of the GABA, glutamate, and dopamine pathways.
Collapse
Affiliation(s)
- Ana De la Parra-Guerra
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, Colombia.
| | - Stephen Stürzenbaum
- School of Population Health & Environmental Sciences, Faculty of Life Science & Medicine, King's College London, London, UK.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, Colombia.
| |
Collapse
|
28
|
Novel Polymeric Nanocarriers Reduced Zinc and Doxycycline Toxicity in the Nematode Caenorhabditis elegans. Antioxidants (Basel) 2019; 8:antiox8110550. [PMID: 31739428 PMCID: PMC6912483 DOI: 10.3390/antiox8110550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
The objective was to evaluate the toxicity of zinc- and doxycycline-loaded polymeric nanoparticles (NPs) using Caenorhabditis elegans as a model organism. These NPs are composed of ethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacrylic acid. NPs were loaded with doxycycline (D-NPs) and zinc (Zn-NPs) by chemical adsorption, and loading efficacy was demonstrated. Worm death rate in a concentration-response curve basis was calculated for lethality. Metabolism was evaluated through pharyngeal pumping assay. Body length measurements, brood size and egg lays were used to gauge growth, reproduction and fertility respectively. Intracellular hydrogen peroxide levels were determined to assess the reactive oxygen species production. One-way ANOVA and Bonferroni were used for comparisons (p < 0.05). Tested NPs at the highest dosage did not affect lethality or worm metabolism, expressed in terms of death rate and pharyngeal pumping per minute, respectively. Zn-NPs slightly increased worm growth. The concentration of the intracellular hydrogen peroxide levels was the lowest in the D-NPs group. The distinct NPs and concentrations employed were shown to be non-toxic for in situ administration of zinc and doxycycline, reducing the harmful effects of these compounds.
Collapse
|
29
|
Zheng M, Lu J, Lin G, Su H, Sun J, Luan T. Dysbiosis of gut microbiota by dietary exposure of three graphene-family materials in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112969. [PMID: 31398638 DOI: 10.1016/j.envpol.2019.112969] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The increasing application and subsequent mass production of graphene-family materials (GFMs) will lead to greater possibilities for their release into the environment. Although GFMs exhibit toxicity toward various aquatic organisms, little information is available on their influence on gut microbiota of aquatic organism. In this study, zebrafish were fed diets containing three GFMs, namely, monolayer graphene powder (GR), graphene oxide nanosheet (GO) and reduced graphene oxide powder (rGO), or appropriate control for 21 days. The gut bacterial communities were then characterized for comparison of the exposure effects of each GFM. Alterations of the intestinal morphology and oxidative stress indicators were also examined. The results showed GFMs led to different inflammatory responses and significantly altered the relative composition of the gut bacterial species by increasing the relative abundance of Fusobacteria and the genus Cetobacterium and Lactobacillus and decreasing the abundance of Firmicutes and the genus Pseudomonas; GR caused marked shifts in the diversity of the gut microbiota. The GFMs also altered the intestinal morphology and antioxidant enzyme activities by inducing more vacuolation and generating more goblet cells. Our findings demonstrate that GFM exposure poses potential health risks to aquatic organisms through alteration of the gut microbiota.
Collapse
Affiliation(s)
- Min Zheng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hualong Su
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingyu Sun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tiangang Luan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Bytesnikova Z, Richtera L, Smerkova K, Adam V. Graphene oxide as a tool for antibiotic-resistant gene removal: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20148-20163. [PMID: 31115815 DOI: 10.1007/s11356-019-05283-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Environmental pollutants, including antibiotics (ATBs), have become an increasingly common health hazard in the last several decades. Overdose and abuse of ATBs led to the emergence of antibiotic-resistant genes (ARGs), which represent a serious health threat. Moreover, water bodies and reservoirs are places where a wide range of bacterial species with ARGs originate, owing to the strong selective pressure from presence of ATB residues. In this regard, graphene oxide (GO) has been utilised in several fields including remediation of the environment. In this review, we present a brief overview of resistant genes of frequently used ATBs, their occurrence in the environment and their behaviour. Further, we discussed the factors influencing the binding of nucleic acids and the response of ARGs to GO, including the presence of salts in the water environment or water pH, because of intrinsic properties of GO of not only binding to nucleic acids but also catalysing their decomposition. This would be helpful in designing new types of water treatment facilities.
Collapse
Affiliation(s)
- Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic.
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
| |
Collapse
|
31
|
Graphene-Based Nanomaterials in Soil: Ecotoxicity Assessment Using Enchytraeus crypticus Reduced Full Life Cycle. NANOMATERIALS 2019; 9:nano9060858. [PMID: 31195669 PMCID: PMC6631203 DOI: 10.3390/nano9060858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
Graphene-based nanomaterials (GBNs) possess unique physicochemical properties, allowing a wide range of applications in physical, chemical, and biomedical fields. Although GBNs are broadly used, information about their adverse effects on ecosystem health, especially in the terrestrial environment, is limited. Therefore, this study aims to assess the toxicity of two commonly used derivatives of GBNs, graphene oxide (GO) and reduced graphene oxide (rGO), in the soil invertebrate Enchytraeus crypticus using a reduced full life cycle test. At higher exposure concentrations, GO induced high mortality and severe impairment in the reproduction rate, while rGO showed little adverse effect up to 1000 mg/kg. Collectively, our body of results suggests that the degree of oxidation of GO correlates with their toxic effects on E. crypticus, which argues against generalization on GBNs ecotoxicity. Identifying the key factors affecting the toxicity of GBNs, including ecotoxicity, is urgent for the design of safe GBNs for commercial purposes.
Collapse
|