1
|
Zheng J, Zhao G, Hu Z, Jia C, Li W, Peng Y, Zheng J. Metabolic Activation and Cytotoxicity of Donepezil Induced by CYP3A4. Chem Res Toxicol 2024; 37:2003-2012. [PMID: 39545607 DOI: 10.1021/acs.chemrestox.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Donepezil (DNP) is a selective cholinesterase inhibitor widely used for the therapy of Alzheimer's disease. Instances of liver injury correlated with DNP treatment have been reported, yet the underlying hepatotoxic mechanism remains to be elucidated. This study aimed to explore the contribution of metabolic activation to the hepatotoxicity of DNP. The structure of 6-O-desmethyl DNP (M1), the oxidative metabolite of DNP, was characterized by chemical synthesis, LC-MS/MS, and nuclear magnetic resonance. A reactive quinone methide resulting from the metabolism of DNP was captured by glutathione (GSH) fortified in liver microsomal incubations after exposure to DNP, and the resulting GSH conjugate (M2) was detected in the bile of rats receiving DNP. Recombinant human P450 enzyme incubation studies demonstrated that CYP3A4 was the principal enzyme responsible for the production of M1 and M2. The generation of M2 declined in rat primary hepatocytes pretreated with ketoconazole, an inhibitor of CYP3A4, which also decreased the vulnerability of rat primary hepatocytes to DNP-caused cytotoxicity. These findings suggest that the quinone methide metabolite may contribute to the cytotoxicity and hepatotoxicity caused by the DNP.
Collapse
Affiliation(s)
- Jiannan Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Chenyang Jia
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| |
Collapse
|
2
|
Namoju R, Chilaka KN. Protective effect of alpha‑lipoic acid against in utero cytarabine exposure-induced hepatotoxicity in rat female neonates. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6577-6589. [PMID: 38459988 DOI: 10.1007/s00210-024-03036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Cytarabine, an anti-metabolite drug, remains the mainstay of treatment for hematological malignancies. It causes various toxic effects including teratogenicity. Alpha lipoic acid (ALA) is a natural antioxidant reported to offer protection against hepatotoxicity induced by various pathological conditions, drugs, or chemicals. We investigated the protective effect of ALA against prenatal cytarabine exposure-induced hepatotoxicity in rat female neonates. A total of 30 dams were randomly assigned to five groups and received normal saline, ALA 200 mg/kg, cytarabine 12.5 mg/kg, cytarabine 25 mg/kg, and cytarabine 25 mg/kg + ALA 200 mg/kg, respectively, from gestational day (GD)8 to GD21. Cytarabine and ALA were administered via intraperitoneal and oral (gavage) routes, respectively. On postnatal day (PND)1, all the live female neonates (pups) were collected and weighed. The blood and liver from pups were carefully collected and used for histopathological, and biochemical evaluations. A significant and dose-dependent decrease in maternal food intake and weight gain was observed in the pregnant rats (dams) of the cytarabine groups as compared to the dams of the control group. The pups exposed to cytarabine showed a significant and dose-dependent (a) decrease in body weight, liver weight, hepatosomatic index, catalase, superoxide dismutase, glutathione, glutathione peroxidase, serum albumin levels and (b) increase in malondialdehyde, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, AST/ALT ratio, and histopathological anomalies. Maternal co-administration of ALA ameliorated these biochemical changes and histopathological abnormalities by combating oxidative stress. Future studies are warranted to explore the molecular mechanisms involved in the ALA's protective effects against prenatal cytarabine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ramanachary Namoju
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, 530045, India.
- Department of Pharmacology, Bhaskar Pharmacy College, Jawaharlal Nehru Technical University, Hyderabad, Telangana, 500075, India.
| | - Kavitha N Chilaka
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, 530045, India
| |
Collapse
|
3
|
Wu D, Jansen-van Vuuren RD, Dasgupta A, Al-Qazazi R, Chen KH, Martin A, Mewburn JD, Alizadeh E, Lima PDA, Jones O, Colpman P, Breault NM, Emon IM, Jedlovčnik L, Zhao YY, Wells M, Sutendra G, Archer SL. Efficacy of Drpitor1a, a Dynamin-Related Protein 1 inhibitor, in Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572836. [PMID: 38187628 PMCID: PMC10769396 DOI: 10.1101/2023.12.21.572836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rationale Dynamin-related protein 1 (Drp1), a large GTPase, mediates mitochondrial fission. Increased Drp1-mediated fission permits accelerated mitosis, contributing to hyperproliferation of pulmonary artery smooth muscle cells (PASMC), which characterizes pulmonary arterial hypertension (PAH). We developed a Drp1 inhibitor, Drpitor1a, and tested its ability to regress PAH. Objectives Assess Drpitor1a's efficacy and toxicity in: a)normal and PAH human PASMC (hPASMC); b)normal rats versus rats with established monocrotaline (MCT)-induced PAH. Methods Drpitor1a's effects on recombinant and endogenous Drp1-GTPase activity, mitochondrial fission, and cell proliferation were studied in hPASMCs (normal=3; PAH=5). Drpitor1a's pharmacokinetics and tissue concentrations were measured (n=3 rats/sex). In a pilot study (n=3-4/sex/dose), Drpitor1a (1mg/kg/48-hours, intravenous) reduced adverse PA remodeling only in females. Consequently, we compared Drpitor1a to vehicle in normal (n=6 versus 8) and MCT-PAH (n=9 and 11) females, respectively. Drpitor1a treatment began 17-days post-MCT with echocardiography and cardiac catheterization performed 28-29 days post-MCT. Results Drpitor1a inhibited recombinant and endogenous Drp1 GTPase activity, which was increased in PAH hPASMC. Drpitor1a inhibited mitochondrial fission and proliferation and induced apoptosis, in PAH hPASMC but not normal hPASMC. Drpitor1a tissue levels were higher in female versus male RVs. In MCT-PAH females, Drpitor1a regressed PA obstruction, lowered pulmonary vascular resistance, and improved RV function, without hematologic, renal, or hepatic toxicity. Conclusions Drpitor1a inhibits Drp1 GTPase, reduces mitochondrial fission, and inhibits cell proliferation in PAH hPASMC. Drpitor1a caused no toxicity in MCT-PAH and had no significant effect on normal rats or hPASMCs. Drpitor1a is a potential PAH therapeutic which displays an interesting therapeutic sexual dimorphism.
Collapse
|
4
|
He N, Li X, Luo Z, Wang L, Cui X, Fu Q. Preparation of molecularly imprinted foam for selective extraction of toxic monocrotaline from herbs. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1200:123273. [DOI: 10.1016/j.jchromb.2022.123273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
5
|
Wu XH, Ma JL, Ding D, Ma YJ, Wei YP, Jing ZC. Experimental animal models of pulmonary hypertension: Development and challenges. Animal Model Exp Med 2022; 5:207-216. [PMID: 35333455 PMCID: PMC9240731 DOI: 10.1002/ame2.12220] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension (PH) is clinically divided into 5 major types, characterized by elevation in pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR), finally leading to right heart failure and death. The pathogenesis of this arteriopathy remains unclear, leaving it impossible to target pulmonary vascular remodeling and reverse the deterioration of right ventricular (RV) function. Different animal models have been designed to reflect the complex mechanistic origins and pathology of PH, roughly divided into 4 categories according to the modeling methods: non‐invasive models in vivo, invasive models in vivo, gene editing models, and multi‐means joint modeling. Though each model shares some molecular and pathological changes with different classes of human PH, in most cases the molecular etiology of human PH is poorly known. The appropriate use of classic and novel PH animal models is essential for the hunt of molecular targets to reverse severe phenotypes.
Collapse
Affiliation(s)
- Xiao-Han Wu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie-Ling Ma
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Ding
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Jiao Ma
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Peng Wei
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Sun Y, Sangam S, Guo Q, Wang J, Tang H, Black SM, Desai AA. Sex Differences, Estrogen Metabolism and Signaling in the Development of Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:719058. [PMID: 34568460 PMCID: PMC8460911 DOI: 10.3389/fcvm.2021.719058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex and devastating disease with a poor long-term prognosis. While women are at increased risk for developing PAH, they exhibit superior right heart function and higher survival rates than men. Susceptibility to disease risk in PAH has been attributed, in part, to estrogen signaling. In contrast to potential pathological influences of estrogen in patients, studies of animal models reveal estrogen demonstrates protective effects in PAH. Consistent with this latter observation, an ovariectomy in female rats appears to aggravate the condition. This discrepancy between observations from patients and animal models is often called the "estrogen paradox." Further, the tissue-specific interactions between estrogen, its metabolites and receptors in PAH and right heart function remain complex; nonetheless, these relationships are essential to characterize to better understand PAH pathophysiology and to potentially develop novel therapeutic and curative targets. In this review, we explore estrogen-mediated mechanisms that may further explain this paradox by summarizing published literature related to: (1) the synthesis and catabolism of estrogen; (2) activity and functions of the various estrogen receptors; (3) the multiple modalities of estrogen signaling in cells; and (4) the role of estrogen and its diverse metabolites on the susceptibility to, and progression of, PAH as well as their impact on right heart function.
Collapse
Affiliation(s)
- Yanan Sun
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shreya Sangam
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| | - Qiang Guo
- Department of Critical Care Medicine, Suzhou Dushu Lake Hospital, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Stephen M. Black
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Miami, FL, United States
- Center for Translational Science and Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL, United States
| | - Ankit A. Desai
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
7
|
Dai Y, Luo J, Xiang E, Guo Q, He Z, Gong Z, Sun X, Kou H, Xu K, Fan C, Liu J, Qiu S, Wang Y, Wang H, Guo Y. Prenatal Exposure to Retrorsine Induces Developmental Toxicity and Hepatotoxicity of Fetal Rats in a Sex-Dependent Manner: The Role of Pregnane X Receptor Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3219-3231. [PMID: 33685126 DOI: 10.1021/acs.jafc.0c06748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a type of natural phytotoxin that contaminate food and feed and become an environmental health risk to humans and livestock. PAs exert toxicity that requires metabolic activation by cytochrome P450 (CYP) 3A, and case reports showed that fetuses are quite susceptible to PAs toxicity. The aim of this study was to explore the characteristics of developmental toxicity and fetal hepatotoxicity induced by retrorsine (RTS, a typcial toxic PA) and the underlying mechanism. Pregnant Wistar rats were intragastrically administered with 20 mg/(kg·day) RTS from gestation day (GD) 9 to 20. Results showed that prenatal RTS exposure lowered fetal bodyweights, reduced hepatocyte numbers, and potentiated hepatic apoptosis in fetuses, particularly females. Simutaneously, RTS increased CYP3A expression and pregnane X receptor (PXR) activation in female fetal liver. We further confirmed that RTS was a PXR agonist in LO2 and HepG2 cell lines. Furthermore, agonism or antagonism of androgen receptor (AR) either induced or blocked RTS-mediated PXR activation, respectively. As a PXR agonist, RTS toxicity was exacerbated in female fetus due to the increased CYP3A induction and self-metabolism, while the inhibitory effect of AR on PXR activation reduced the susceptibility of male fetus to RTS. Our findings indicated that PXR may be a potential therapeutic target for PA toxicity.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Jinyuan Luo
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province, China
| | - E Xiang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Qi Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Zheng He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Xiaoxiang Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Hao Kou
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei Province, China
| | - Kequan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
| | - Jie Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Shuaikai Qiu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Yanqing Wang
- Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| |
Collapse
|
8
|
Zhao Y, Meng F, Ding C, Yu Y, Zhang G, Tzeng C. Gender-differentiated metabolic abnormalities of adult zebrafish with zinc pyrithione (ZPT) -induced hepatotoxicity. CHEMOSPHERE 2020; 257:127177. [PMID: 32480090 DOI: 10.1016/j.chemosphere.2020.127177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Zinc pyrithione (ZPT) is an extensively used microbicidal agent and its toxicity to multiple organs has been gradually recognized. However, details of the mechanism of ZPT toxicity are lacking and profile studies at metabolic level are still greatly limited. In this work we investigated the effects of ZPT on metabolic pathways of zebrafish liver after twenty-one days of exposure. Our integrated approach was underpinned by gas chromatography coupled with mass spectroscopy (GC-MS) and liver function analysis. Metabolomic profiles were generated from the livers of ZPT-treated zebrafish and 172 significantly altered metabolite peaks were detected. As a result, ZPT caused altered perturbation of metabolic pathways in male and female zebrafish liver. Moreover, ZPT induced the liver injury with the changes of the metabolites 2,4-diaminobutyric acid (2,4-DABA) with significant distinction between male and female zebrafish. ZPT caused gender-differentiated liver metabolic changes associated with the disruption of glycogenolysis and glycolysis metabolism, purine and pyrimidine metabolism, oxidative phosphorylation, arginine biosynthesis, and amino acid metabolism. Conclusively, exposure of ZPT may result in gender-differentiated metabolic abnormalities of adult zebrafish with induced hepatotoxicity.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing, 211800, China.
| | - Fanrong Meng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Cunbao Ding
- School of Life Sciences, North China University of Science and Technology, Hebei, China
| | - Yang Yu
- College of Environmental Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Guisen Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Chimeng Tzeng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
9
|
Female-specific activation of pregnane X receptor mediates sex difference in fetal hepatotoxicity by prenatal monocrotaline exposure. Toxicol Appl Pharmacol 2020; 406:115137. [PMID: 32682830 DOI: 10.1016/j.taap.2020.115137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 01/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a group of hepatic toxicant widely present in plants. Cytochrome P450 (CYP) 3A plays a key role in metabolic activation of PAs to generate electrophilic metabolites, which is the main cause of hepatotoxicity. We have previously demonstrated the sex difference in developmental toxicity and hepatotoxicity in fetal rats exposed to monocrotaline (MCT), a representative toxic PA. The aim of this study was to explore the underlying mechanism. 20 mg·kg-1·d-1 MCT was intragastrically given to pregnant Wistar rats from gestation day 9 to 20. CYP3As expression and pregnane X receptor (PXR) activation were specifically enhanced in female fetal liver. After MCT treatment, we also observed a significant increase of CYP3As expression in LO2 cells (high PXR level) or hPXR-transfected HepG2 cells (low PXR level). Employing hPXR and CYP3A4 dual-luciferase reporter gene assay, we confirmed the agonism effect of MCT on PXR-dependent transcriptional activity of CYP3A4. Agonism and antagonism of the androgen receptor (AR) either induced or blocked MCT-induced PXR activation, respectively. This study was the first report identifying that MCT served as PXR agonist to induce CYP3A expression. CYP3A induction may increase self-metabolic activation of MCT and subsequently lead to more severe hepatotoxicity in female fetus. While in male, during the intrauterine period, activated AR by testosterone secretion from developing testes represses MCT-induced PXR activation and CYP3A induction, which may partially protect male fetus from MCT-induced hepatotoxicity.
Collapse
|