1
|
Liu Z, Gao H, Li G, Yu Y, Cui M, Peng H, Guan X, Zhang X, Zhang Z, Shen X, Chen S, Li D, Chen L, Xiao Y, Chen W, Liu L, Wang Q. Genome-wide CRISPR-based screen identifies E2F transcription factor 1 as a regulator and therapeutic target of aristolochic acid-induced nephrotoxicity. ENVIRONMENT INTERNATIONAL 2025; 195:109234. [PMID: 39724681 DOI: 10.1016/j.envint.2024.109234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Aristolochic Acid I (AAI) is widely present in traditional Chinese medicines derived from the Aristolochia genus and is known to cause significant damage to renal tubular epithelial cells. Genome-wide screening has proven to be a powerful tool in identifying critical genes associated with the toxicity of exogenous substances. To identify undiscovered key genes involved in AAI-induced renal toxicity, a genome-wide CRISPR library screen was conducted in the human kidney-2 (HK-2) cell line. Among the altered sgRNAs, a significant enrichment of those targeting the E2F transcription factor 1 (E2F1) gene was observed in surviving HK-2 cells in the AAI-treated group. Interestingly, the role of E2F1 had not been previously explored in studies of AAI nephrotoxicity. Further investigations revealed that E2F1 promotes apoptosis by activating the p53 signaling pathway and upregulating pro-apoptotic genes, such as BAK and BAX. Additionally, using the high-throughput experiment- and reference-guided database of traditional Chinese medicine (HERB), cannabidiol (CBD) was identified as an inhibitor of E2F1 by suppressing the activity of NF-κB pathway. In vitro and in vivo models confirmed that CBD inhibits AAI-induced upregulation of E2F1, thereby suppressing p53-mediated apoptosis. In conclusion, this study highlights the crucial role of E2F1 in AAI-induced renal cell apoptosis and identifies CBD as a novel therapeutic candidate for mitigating AAI nephrotoxicity.
Collapse
Affiliation(s)
- Ziqi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huan Gao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guoliang Li
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, 510300, China
| | - Yongjiang Yu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mengxing Cui
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Honghao Peng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinchao Guan
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xue Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhihan Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyu Shen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lili Liu
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, 510300, China.
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Wang F, Li R, Xu JY, Bai X, Wang Y, Chen XR, Pan C, Chen S, Zhou K, Heng BC, Wu X, Guo W, Song Z, Jin SC, Zhou J, Zou XH, Ouyang HW, Liu H. Downregulating human leucocyte antigens on mesenchymal stromal cells by epigenetically repressing a β 2-microglobulin super-enhancer. Nat Biomed Eng 2024; 8:1682-1699. [PMID: 39433971 DOI: 10.1038/s41551-024-01264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
Immune rejection caused by mismatches in human leucocyte antigens (HLAs) remains a major obstacle to the success of allogeneic cell therapies. Current strategies for the generation of 'universal' immune-compatible cells, particularly the editing of HLA class I (HLA-I) genes or the modulation of proteins that inhibit natural killer cells, often result in genomic instability or cellular cytotoxicity. Here we show that a β2-microglobulin super-enhancer (B2M-SE) that is responsive to interferon-γ is a critical regulator of the expression of HLA-I on mesenchymal stromal cells (MSCs). Targeted epigenetic repression of B2M-SE in MSCs reduced the surface expression of HLA-I below the threshold required to activate allogenic T cells while maintaining levels sufficient to evade cytotoxicity mediated by natural killer cells. In a humanized mouse model, the epigenetically edited MSCs demonstrated improved survival by evading the immune system, allowing them to exert enhanced therapeutic effects on LPS-induced acute lung injury. Targeted epigenetic repression of B2M-SE may facilitate the development of off-the-shelf cell sources for allogeneic cell therapy.
Collapse
Affiliation(s)
- Fei Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ran Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Jing Yi Xu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxia Bai
- The Women's Hospital, Zhejiang University School of Medicine and Key Laboratory of Women's Reproduction Health of Zhejiang Province, Hangzhou, China
| | - Ying Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Ri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratories, Peking University School of Stomatology, Beijing, China
| | - Xuewei Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Zhe Song
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Cheng Jin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Hui Zou
- Central laboratory, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hong Wei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Hua Liu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Wang L, Chi EZ, Zhao XH. Valorization of cell wall polysaccharides extracted from Liubao brick tea residues: chemical, structural, and hypoglycemic properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6933-6946. [PMID: 38597456 DOI: 10.1002/jsfa.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Tea dregs, typically generated during the production of instant tea or tea beverages, have conventionally been regarded as waste material and routinely discarded. Nevertheless, contemporary research endeavors are concentrating on discovering efficient methods for utilizing the potential of this discarded resource. RESULTS In this study, we employed a sequential extraction method using chemical chelating agents to extract and isolate four distinct cell wall polysaccharides, designated as CWTPS-1 through CWTPS-4, from the tea dregs of Liubao brick tea. A comprehensive investigation into their physicochemical, structural, and hypoglycemic properties was conducted. The analysis of chemical composition and physicochemical characteristics revealed that all four CWTPSs were characterized as acidic polysaccharides, albeit with varying chemical compositions and physicochemical attributes. Specifically, the xyloglucan fractions, CWTPS-3 and CWTPS-4, were found to be rich in glucose and xylose, displaying a more uniform molecular weight distribution, greater structural stability, and a more irregular surface compared to the others. Moreover, they exhibited a higher diversity of monosaccharide residues. Importantly, our research unveiled that all four CWTPSs exhibited the capacity to modulate key glucose-regulated and antioxidant enzyme activities within HepG2 cells via the IRS-1-PI3K/AKT signaling pathway, thereby ameliorating cellular insulin resistance. Furthermore, our correlation analysis highlighted significant associations between monosaccharide composition and neutral sugar content with the observed hypoglycemic activity of CWTPSs. CONCLUSION This study highlights the potential of utilizing tea dregs as a valuable resource, making a significant contribution to the advancement of the tea industry. Furthermore, CWTPS-4 exhibits promising prospects for further development as a functional food ingredient or additive. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Wang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - En-Zhong Chi
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
4
|
Lin MW, Yu XR, Chen JY, Wei YS, Chen HY, Tsai YT, Lin LH, Liao EC, Kung HY, Young SS, Chan HL, Chou HC. Sediment pollutant exposures caused hepatotoxicity and disturbed glycogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114559. [PMID: 36669277 DOI: 10.1016/j.ecoenv.2023.114559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Liver metabolic syndrome, which involves impaired hepatic glycogen synthesis, is persistently increased by exposure to environmental pollutants. Most studies have investigated the pathogenesis of liver damage caused by single metal species or pure organics. However, under normal circumstances, the pollutants that we are exposed to are usually chemical mixtures that accumulate over time. Sediments are long-term repositories for environmental pollutants due to their environmental cycles, which make them good samples for evaluating the effect of environmental pollutants on the liver via bioaccumulation. This study aimed to clarify the effects of sediment pollutants on liver damage. Our results indicate that industrial wastewater sediment (downstream) is more cytotoxic than sediments from other zones. Downstream sediment extract (DSE) causes hepatotoxicity, stimulates reactive oxygen species (ROS) generation, triggers mitochondrial dysfunction, induces cell apoptosis, and results in the release of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) proteins. Additionally, to elucidate the underlying mechanism by which sediment pollutants disturb hepatic glycogen synthesis, we investigated the effects of different sediment samples from different pollution situations on glycogen synthesis in liver cell lines. It was found that DSE induced multiple severe impairments in liver cells, and disturbed glycogen synthesis more than under other conditions. These impairments include decreased hepatic glycogen synthesis via inhibition and insulin receptor substrate 1 (IRS-1) /AKT /glycogen synthase kinase3β (GSK3β)-mediated glycogen synthase (GYS) inactivation. To our knowledge, this study provides the first detailed evidence of in vitro sediment-accumulated toxicity that interferes with liver glycogen synthesis, leading to hepatic cell damage through apoptosis.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Xin-Ru Yu
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jai-Yu Chen
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Shan Wei
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Yi Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ting Tsai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Hsun Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiang-Yu Kung
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shuh-Sen Young
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Wei X, Yang D, Zhang B, Fan X, Du H, Zhu R, Sun X, Zhao M, Gu N. Di-(2-ethylhexyl) phthalate increases plasma glucose and induces lipid metabolic disorders via FoxO1 in adult mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156815. [PMID: 35750186 DOI: 10.1016/j.scitotenv.2022.156815] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), an endocrine-disrupting chemical (EDC) commonly used as a plasticizer, is responsible for widespread environmental pollution. Epidemiological and experimental data implicate DEHP and its metabolite mono(2-ethylhexyl) phthalate (MEHP) in the occurrence and development of metabolic syndrome. However, the specific effects and potential mechanisms of action of DEHP on glucose and lipid metabolism in adults are currently unclear. In the current study, adult male mice were continuously exposed to DEHP (0, 5, and 25 mg/kg/day) via oral administration and changes in glucose and lipid metabolism explored. Notably, exposure to DEHP led to a significant increase in plasma glucose and hepatic lipid accumulation but had no effect on insulin secretion. Western blot and real-time quantitative PCR showed that DEHP induced insulin resistance and promoted gluconeogenesis and lipid accumulation via overexpression of forkhead box protein O1 (FoxO1), in keeping with hepatic RNA sequencing data. Variations in gut microbiota aggravated these effects while inhibition of FoxO1 reversed the adverse effects of DEHP. Our findings support a key role of FoxO1 in disorders of glucose and lipid metabolism caused by DEHP.
Collapse
Affiliation(s)
- Xiangjuan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Daqian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xingpei Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Haining Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaotong Sun
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Meimei Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150006, China.
| |
Collapse
|
6
|
Leng J, Li H, Niu Y, Chen K, Yuan X, Chen H, Fu Z, Zhang L, Wang F, Chen C, Héroux P, Yang J, Zhu X, Lu W, Xia D, Wu Y. Low-dose mono(2-ethylhexyl) phthalate promotes ovarian cancer development through PPARα-dependent PI3K/Akt/NF-κB pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147990. [PMID: 34380243 DOI: 10.1016/j.scitotenv.2021.147990] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
The plasticizer di(2-ethylhexyl) phthalate (DEHP) and its hydrolysate mono(2-ethylhexyl) phthalate (MEHP) are major toxicants from plastics, but their association with hormone-dependent cancers has been controversial. We treated the human ovarian cancer cell lines SKOV3 and A2780 with low concentrations of DEHP/MEHP, and found that although no significant effect on cell proliferation was observed, ovarian cancer cell migration, invasion, and epithelial-mesenchymal transition (EMT) were promoted by submicromolar MEHP but not DEHP. Next, ovarian cancer patient data from The Cancer Genome Atlas (TCGA) were obtained and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) supported enrichment and Kaplan-Meier survival analyses, which identified PI3K/Akt pathway as a pivotal signaling pathway in ovarian cancer. We found that 500 nM MEHP treatment significantly increased PIK3CA expression, which could be reversed by the knockdown of peroxisome proliferator-activated receptor alpha (PPARα). Silencing PIK3CA significantly suppressed the MEHP-induced migration, invasion and EMT. In addition, we validated that MEHP treatment promoted phosphorylation of Akt and degradation of IκB-α, thereby activating NF-κB and enhancing NF-κB nuclear translocation. In nude mice, MEHP exposure significantly promoted the metastasis of ovarian cancer xenografts, which could be suppressed by the treatment of PPARα inhibitor GW6471. Our findings showed that low-dose MEHP promoted ovarian cancer progression through activating PI3K/Akt/NF-κB pathway, in a PPARα-dependent manner.
Collapse
Affiliation(s)
- Jing Leng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyi Li
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Scientific Research Department, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanwen Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiqin Fu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lihuan Zhang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoyi Chen
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, Zhejiang, China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Jun Yang
- Department of Public Health, Hangzhou Normal University School of Medicine, Hangzhou, China; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinqiang Zhu
- Central Laboratory of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Weiguo Lu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
7
|
Liang X, Zhou R, Li Y, Yang L, Su M, Lai KP. Clinical characterization and therapeutic targets of vitamin A in patients with hepatocholangiocarcinoma and coronavirus disease. Aging (Albany NY) 2021; 13:15785-15800. [PMID: 34176789 PMCID: PMC8266307 DOI: 10.18632/aging.203220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Recent reports indicate that patients with hepatocholangiocarcinoma (CHOL) have a higher morbidity and mortality rate for coronavirus disease (COVID-19). Anti-CHOL/COVID-19 medicines are inexistent. Vitamin A (VA) refers to a potent nutrient with anti-cytotoxic and anti-inflammatory actions. Therefore, this study aimed to determine the potential functions and molecular mechanisms of VA as a potential treatment for patients with both CHOL and COVID-19 (CHOL/COVID-19). The transcriptome data of CHOL patients were obtained from the Cancer Genome Analysis database. Furthermore, the network pharmacology approach and bioinformatics analysis were used to identify and reveal the molecular functions, therapeutic biotargets, and signaling of VA against CHOL/COVID-19. First, clinical findings identified the medical characteristics of CHOL patients with COVID-19, such as susceptibility gene, prognosis, recurrence, and survival rate. Anti-viral and anti-inflammatory pathways, and immunopotentiation were found as potential targets of VA against CHOL/COVID-19. These findings illustrated that VA may contribute to the clinical management of CHOL/COVID-19 achieved by induction of cell repair, suppression of oxidative stress and inflammatory reaction, and amelioration of immunity. Nine vital therapeutic targets (BRD2, NOS2, GPT, MAPK1, CXCR3, ICAM1, CDK4, CAT, and TMPRSS13) of VA against CHOL/COVID-19 were identified. For the first time, the potential pharmacological biotargets, function, and mechanism of action of VA in CHOL/COVID-19 were elucidated.
Collapse
Affiliation(s)
- Xiao Liang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, Guangxi, China.,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Rui Zhou
- Department of Hepatobiliary Surgery, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| | - Yu Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, Guangxi, China.,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Lu Yang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, Guangxi, China.,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Min Su
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, Guangxi, China.,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, Guangxi, China.,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
8
|
Lu X, Fraszczyk E, van der Meer TP, van Faassen M, Bloks VW, Kema IP, van Beek AP, Li S, Franke L, Westra HJ, Xu X, Huo X, Snieder H, Wolffenbuttel BHR, van Vliet-Ostaptchouk JV. An epigenome-wide association study identifies multiple DNA methylation markers of exposure to endocrine disruptors. ENVIRONMENT INTERNATIONAL 2020; 144:106016. [PMID: 32916427 DOI: 10.1016/j.envint.2020.106016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/26/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Exposure to environmental endocrine disrupting chemicals (EDCs) may play an important role in the epidemic of metabolic diseases. Epigenetic alterations may functionally link EDCs with gene expression and metabolic traits. OBJECTIVES We aimed to evaluate metabolic-related effects of the exposure to endocrine disruptors including five parabens, three bisphenols, and 13 metabolites of nine phthalates as measured in 24-hour urine on epigenome-wide DNA methylation. METHODS A blood-based epigenome-wide association study was performed in 622 participants from the Lifelines DEEP cohort using Illumina Infinium HumanMethylation450 methylation data and EDC excretions in 24-hour urine. Out of the 21 EDCs, 13 compounds were detected in >75% of the samples and, together with bisphenol F, were included in these analyses. Furthermore, we explored the putative function of identified methylation markers and their correlations with metabolic traits. RESULTS We found 20 differentially methylated cytosine-phosphate-guanines (CpGs) associated with 10 EDCs at suggestive p-value < 1 × 10-6, of which four, associated with MEHP and MEHHP, were genome-wide significant (Bonferroni-corrected p-value < 1.19 × 10-7). Nine out of 20 CpGs were significantly associated with at least one of the tested metabolic traits, such as fasting glucose, glycated hemoglobin, blood lipids, and/or blood pressure. 18 out of 20 EDC-associated CpGs were annotated to genes functionally related to metabolic syndrome, hypertension, obesity, type 2 diabetes, insulin resistance and glycemic traits. CONCLUSIONS The identified DNA methylation markers for exposure to the most common EDCs provide suggestive mechanism underlying the contributions of EDCs to metabolic health. Follow-up studies are needed to unravel the causality of EDC-induced methylation changes in metabolic alterations.
Collapse
Affiliation(s)
- Xueling Lu
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041 Guangdong, China
| | - Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands; Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, the Netherlands
| | - Thomas P van der Meer
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - André P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Shuang Li
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Harm-Jan Westra
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041 Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443 Guangdong, China
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands.
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands; Genomics Coordination Centre, Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|