1
|
Goettel M, Werner C, Honarvar N, Gröters S, Fegert I, Haines C, Chatham LR, Vardy A, Lake BG. Mode of action analysis for fluxapyroxad-induced rat liver tumour formation: evidence for activation of the constitutive androstane receptor and assessment of human relevance. Toxicology 2024; 505:153828. [PMID: 38740169 DOI: 10.1016/j.tox.2024.153828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The fungicide fluxapyroxad (BAS 700 F) has been shown to significantly increase the incidence of liver tumours in male Wistar rats at dietary levels of 1500 and 3000 ppm and in female rats at a dietary level of 3000 ppm via a non-genotoxic mechanism. In order to elucidate the mode of action (MOA) for fluxapyroxad-induced rat liver tumour formation a series of in vivo and in vitro investigative studies were undertaken. The treatment of male and female Wistar rats with diets containing 0 (control), 50, 250, 1500 and 3000 ppm fluxapyroxad for 1, 3, 7 and 14 days resulted in a dose-dependent increases in relative weight at 1500 and 3000 ppm from day 3 onwards in both sexes, with an increase in relative liver weight being also observed in male rats given 250 ppm fluxapyroxad for 14 days. Examination of liver sections revealed a centrilobular hepatocyte hypertrophy in some fluxapyroxad treated male and female rats. Hepatocyte replicative DNA synthesis (RDS) was significantly increased in male rats given 1500 and 3000 ppm fluxapyroxad for 3 and 7 days and in female rats given 50-3000 ppm fluxapyroxad for 7 days and 250-3000 ppm fluxapyroxad for 3 and 14 days; the maximal increases in RDS in both sexes being observed after 7 days treatment. The treatment of male and female Wistar rats with 250-3000 ppm fluxapyroxad for 14 days resulted in significant increases in hepatic microsomal total cytochrome P450 (CYP) content and CYP2B subfamily-dependent enzyme activities. Male Wistar rat hepatocytes were treated with control medium and medium containing 1-100 μM fluxapyroxad or 500 μM sodium phenobarbital (NaPB) for 4 days. Treatment with fluxapyroxad and NaPB increased CYP2B and CYP3A enzyme activities and mRNA levels but had little effect on markers of CYP1A and CYP4A subfamily enzymes and of the peroxisomal fatty acid β-oxidation cycle. Hepatocyte RDS was significantly increased by treatment with fluxapyroxad, NaPB and 25 ng/ml epidermal growth factor (EGF). The treatment of hepatocytes from two male human donors with 1-100 μM fluxapyroxad or 500 μM NaPB for 4 days resulted in some increases in CYP2B and CYP3A enzyme activities and CYP mRNA levels but had no effect on hepatocyte RDS, whereas treatment with EGF resulted in significant increase in RDS in both human hepatocyte preparations. Hepatocytes from male Sprague-Dawley wild type (WT) and constitutive androstane receptor (CAR) knockout (CAR KO) rats were treated with control medium and medium containing 1-16 μM fluxapyroxad or 500 μM NaPB for 4 days. While both fluxapyroxad and NaPB increased CYP2B enzyme activities and mRNA levels in WT hepatocytes, only minor effects were observed in CAR KO rat hepatocytes. Treatment with both fluxapyroxad and NaPB only increased RDS in WT and not in CAR KO rat hepatocytes, whereas treatment with EGF increased RDS in both WT and CAR KO rat hepatocytes. In conclusion, a series of in vivo and in vitro investigative studies have demonstrated that fluxapyroxad is a CAR activator in rat liver, with similar properties to the prototypical CAR activator phenobarbital. A robust MOA for fluxapyroxad-induced rat liver tumour formation has been established. Based on the lack of effect of fluxapyroxad on RDS in human hepatocytes, it is considered that the MOA for fluxapyroxad-induced liver tumour formation is qualitatively not plausible for humans.
Collapse
MESH Headings
- Animals
- Male
- Female
- Rats, Wistar
- Rats
- Fungicides, Industrial/toxicity
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Constitutive Androstane Receptor
- Humans
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Dose-Response Relationship, Drug
- Organ Size/drug effects
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- DNA Replication/drug effects
- Cytochrome P-450 Enzyme System/metabolism
- Cytochrome P-450 Enzyme System/genetics
- Microsomes, Liver/drug effects
- Microsomes, Liver/metabolism
- Liver Neoplasms/chemically induced
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
Collapse
Affiliation(s)
- Manuela Goettel
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany.
| | - Christoph Werner
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Sibylle Gröters
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Ivana Fegert
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany
| | - Corinne Haines
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Lynsey R Chatham
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Audrey Vardy
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Brian G Lake
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
2
|
Wei L, Ran J, Li Z, Zhang Q, Guo K, Mu S, Xie Y, Xie A, Xiao Y. Chemical Composition, Antibacterial Activity and Mechanism of Action of Fermentation Products from Aspergillus Niger xj. Appl Biochem Biotechnol 2024; 196:878-895. [PMID: 37256487 DOI: 10.1007/s12010-023-04577-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
Six compounds were isolated and purified from the crude acetone extract of Aspergillus niger xj. Characterization of all compounds was done by NMR and MS. On the basis of chemical and spectral analysis structure, six compounds were elucidated as metazachlor (1), nonacosane (2), palmitic acid (3), 5,5'-oxybis(5-methylene-2-furaldehyde) (4), dimethyl 5-nitroisophthalate (5) and cholesta-3,5-dien-7-one (6), respectively, and compounds 1, 4, 5 and 6 were isolated for the first time from A. niger. To evaluate the antibacterial activity of compounds 1-6 against three plant pathogenic bacteria (Agrobacterium tumefaciens T-37, Erwinia carotovora EC-1 and Ralstonia solanacearum RS-2), and the minimum inhibitory concentrations (MICs) were determined by broth microdilution method in 96-well microtiter plates. Results of the evaluation of the antibacterial activity showed that T-37 strain was more susceptible to metazachlor with the lowest MIC of 31.25 µg/mL. The antibacterial activity of metazachlor has rarely been reported, thus the antibacterial mechanism of metazachlor against T-37 strain were investigated. The permeability of cell membrane demonstrated that cells membranes were broken by metazachlor, which caused leakage of ions in cells. SDS-PAGE of T-37 proteins indicated that metazachlor could damage bacterial cells through the destruction of cellular proteins. Scanning electron microscopy results showed obvious morphological and ultrastructural changes in the T-37 cells, further confirming the cell membrane damages caused by metazachlor. Overall, our findings demonstrated that the ability of metazachlor to suppress the growth of T-37 pathogenic bacteria makes it potential biocontrol agents.
Collapse
Affiliation(s)
- Longfeng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Jiang Ran
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China.
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550009, China.
| | - Qinyu Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Kun Guo
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Yudan Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Ailin Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| |
Collapse
|
3
|
Satoh H, Machino S, Fujii T, Yoshida M, Asano S, Yokoyama Y, Miyajima K. [Important Points at Interpretation ofNongenotoxic-Carcinogenicity Induced by Pesticidesin Rodent Bioassays]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2022; 63:34-42. [PMID: 35264520 DOI: 10.3358/shokueishi.63.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Assessment of carcinogenicity is important for human health at dietary risk assessment of pesticide residues. This article indicated important points on interpretation of carcinogenicity in toxicological evaluation of pesticide residues based on principles of risk analysis in foods by CODEX to be a guide for risk assessors. This guidance was referred from the guidance on carcinogenicity evaluation by international and/or national organizations, and the interpretations of Food Safety Commissions of Japan (FSCJ) published in their risk assessment reports. We focused on carcinogenicity obtained from routine carcinogenicity bioassays in rodents. The guidance includes the purpose and usefulness of the bioassay studies, consideration points to be carcinogenicity and influencing factors to carcinogenicity in the test to judge carcinogenic hazard at hazard identification. Considering on human relevance as carcinogenic hazard also was proposed using practical case examples. Next, a carcinogenic hazard is evaluated on dose-response relationship to judge points of departure on carcinogenicity. At the end of this article, we challenged our recommendation on future assessment of carcinogenicity to progress from hazard to risk.
Collapse
|
4
|
Yamada T. Application of humanized mice to toxicology studies: Evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). J Toxicol Pathol 2021; 34:283-297. [PMID: 34629731 PMCID: PMC8484926 DOI: 10.1293/tox.2021-0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
The constitutive androstane receptor (CAR)-mediated mode of action (MOA) for phenobarbital (PB)-induced rodent liver tumor formation has been established, with increased hepatocyte proliferation, which is a key event in tumor formation. Previous studies have demonstrated that PB and other CAR-activators stimulate proliferation in cultured rodent hepatocytes, but not in cultured human hepatocytes. However, in the genetically humanized CAR and pregnane X receptor (PXR) mouse (hCAR/hPXR mouse, downstream genes are still mouse), PB increased hepatocyte proliferation and tumor production in vivo. In contrast to the hCAR/hPXR mouse, studies with chimeric mice with human hepatocytes (PXB-mouse, both receptor and downstream genes are human) demonstrated that PB did not increase human hepatocyte proliferation in vivo. PB increased hepatocyte proliferation in a chimeric mouse model with rat hepatocytes, indicating that the lack of human hepatocyte proliferation is not due to any functional defect in the chimeric mouse liver environment. Gene expression analysis demonstrated that the downstream genes of CAR/PXR activation were similar in hCAR/hPXR and CD-1 mice, but differed from those observed in chimeric mice with human hepatocytes. These findings strongly support the conclusion that the MOA for CAR-mediated rodent liver tumor formation is qualitatively implausible for humans. Indeed, epidemiological studies have found no causal link between PB and human liver tumors. There are many similarities with respect to hepatic effects and species differences between rodent CAR and peroxisome proliferator-activated receptor α activators. Based on our research, the chimeric mouse with human hepatocytes (PXB-mouse) is reliable for human cancer risk assessment of test chemicals.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
5
|
Yamada T, Ohara A, Ozawa N, Maeda K, Kondo M, Okuda Y, Abe J, Cohen SM, Lake BG. Comparison of the Hepatic Effects of Phenobarbital in Chimeric Mice Containing Either Rat or Human Hepatocytes With Humanized Constitutive Androstane Receptor and Pregnane X Receptor Mice. Toxicol Sci 2021; 177:362-376. [PMID: 32735318 DOI: 10.1093/toxsci/kfaa125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Using a chimeric mouse humanized liver model, we provided evidence that human hepatocytes are refractory to the mitogenic effects of rodent constitutive androstane receptor (CAR) activators. To evaluate the functional reliability of this model, the present study examined mitogenic responses to phenobarbital (PB) in chimeric mice transplanted with rat hepatocytes, because rats are responsive to CAR activators. Treatment with 1000 ppm PB for 7 days significantly increased replicative DNA synthesis (RDS) in rat hepatocytes of the chimeric mice, demonstrating that the transplanted hepatocyte model is functionally reliable for cell proliferation analysis. Treatment of humanized CAR and pregnane X receptor (PXR) mice (hCAR/hPXR mice) with 1000 ppm PB for 7 days significantly increased hepatocyte RDS together with increases in several mitogenic genes. Global gene expression analysis was performed with liver samples from this and from previous studies focusing on PB-induced Wnt/β-catenin signaling and showed that altered genes in hCAR/hPXR mice clustered most closely with liver tumor samples from a diethylnitrosamine/PB initiation/promotion study than with wild-type mice. However, different gene clusters were observed for chimeric mice with human hepatocytes for Wnt/β-catenin signaling when compared with those of hCAR/hPXR mice, wild-type mice, and liver tumor samples. The results of this study demonstrate clear differences in the effects of PB on hepatocyte RDS and global gene expression between human hepatocytes of chimeric mice and hCAR/hPXR mice, suggesting that the chimeric mouse model is relevant to humans for studies on the hepatic effects of rodent CAR activators whereas the hCAR/hPXR mouse is not.
Collapse
Affiliation(s)
| | - Ayako Ohara
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | - Naoya Ozawa
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | | | | | - Yu Okuda
- Environmental Health Science Laboratory
| | - Jun Abe
- Environmental Health Science Laboratory
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
6
|
Kondo M, Kikumoto H, Osimitz TG, Cohen SM, Lake BG, Yamada T. An Evaluation of the Human Relevance of the Liver Tumors Observed in Female Mice Treated With Permethrin Based on Mode of Action. Toxicol Sci 2021; 175:50-63. [PMID: 32040184 DOI: 10.1093/toxsci/kfaa017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In 2-year studies, the nongenotoxic pyrethroid insecticide permethrin produced hepatocellular tumors in CD-1 mice but not in Wistar rats. Recently, we demonstrated that the mode of action (MOA) for mouse liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), resulting in a mitogenic effect. In the present study, the effects of permethrin and 2 major permethrin metabolites, namely 3-phenoxybenzoic acid and trans-dichlorochrysanthemic acid, on cytochrome P450 mRNA levels and cell proliferation (determined as replicative DNA synthesis) were evaluated in cultured CD-1 mouse, Wistar rat, and human hepatocytes. Permethrin and 3-phenoxybenzoic acid induced CYP4A mRNA levels in both mouse and human hepatocytes, with trans-dichlorochrysanthemic acid also increasing CYP4A mRNA levels in mouse hepatocytes. 3-Phenoxybenzoic acid induced CYP4A mRNA levels in rat hepatocytes, with trans-dichlorochrysanthemic acid increasing both CYP4A mRNA levels and replicative DNA synthesis. Permethrin, 3-phenoxybenzoic acid, and trans-dichlorochrysanthemic acid stimulated replicative DNA synthesis in mouse hepatocytes but not in human hepatocytes, demonstrating that human hepatocytes are refractory to the mitogenic effects of permethrin and these 2 metabolites. Thus, although some of the key (eg, PPARα activation) and associative (eg, CYP4A induction) events in the established MOA for permethrin-induced mouse liver tumor formation could occur in human hepatocytes at high doses of permethrin, 3-phenoxybenzoic acid, and/or trans-dichlorochrysanthemic acid, increased cell proliferation (an essential step in carcinogenesis by nongenotoxic PPARα activators) was not observed. These results provide additional evidence that the established MOA for permethrin-induced mouse liver tumor formation is not plausible for humans.
Collapse
Affiliation(s)
- Miwa Kondo
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | - Hiroko Kikumoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | | | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
7
|
Yamada T, Cohen SM, Lake BG. Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit Rev Toxicol 2021; 51:373-394. [PMID: 34264181 DOI: 10.1080/10408444.2021.1939654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|