1
|
Fouad BM, Abdel-Ghany AA, Kandeil MA, Ibrahim IT. Protective effects of Silibinin and cinnamic acid against paraquat-induced lung toxicity in rats: impact on oxidative stress, PI3K/AKT pathway, and miR-193a signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4291-4303. [PMID: 39453500 PMCID: PMC11978700 DOI: 10.1007/s00210-024-03511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Levels of reactive oxygen species (ROS) are the primary determinants of pulmonary fibrosis. It was discovered that antioxidants can ameliorate pulmonary fibrosis caused by prolonged paraquat (PQ) exposure. However, research on the precise mechanisms by which antioxidants influence the signaling pathways implicated in pulmonary fibrosis induced by paraquat is still insufficient. This research utilized a rat model of pulmonary fibrosis induced by PQ to examine the impacts of Silibinin (Sil) and cinnamic acid (CA) on pulmonary fibrosis, with a specific focus on pro-fibrotic signaling pathways and ROS-related autophagy. Lung injury induced by paraquat was demonstrated to be associated with oxidative stress and inflammation of the lungs, downregulated (miR-193a), and upregulated PI3K/AKT/mTOR signaling lung tissues. Expression levels of miR-193a were determined with quantitative real-time PCR, protein level of protein kinase B (Akt), and phosphoinositide 3-Kinase (PI3K) which were determined by western blot analysis. Hydroxyproline levels (HYP) and transforming growth factor-β1 (TGF-β1) were measured by ELISA, malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione peroxidase (GSH), and catalase and were measured in lung tissue homogenates colorimetrically using spectrophotometer. Long-term exposure to paraquat resulted in decreased PI3K/AKT signaling, decreased cell autophagy, increased oxidative stress, and increased pulmonary fibrosis formation. Silibinin and cinnamic acid also decreased oxidative stress by increasing autophagy and miR-193a expression, which in turn decreased pulmonary fibrosis. These effects were associated by low TGF-β1. Silibinin and cinnamic acid inhibited PQ-induced PI3K/AKT by stimulating miR-193-a expression, thus attenuating PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Basma M Fouad
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt.
| | - A A Abdel-Ghany
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
- Biochemistry Department, Faculty of Pharmacy, Al-Azher University, Assiut, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ibrahim T Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
2
|
Wang Z, Yang J, Tu M, Zhang R, Ma Y, Jin H, Weng J, Xie M, Wang L, Wang Z, Chen C. Integrin-β 1 aggravates paraquat-induced pulmonary fibrosis by activation of FAK/ ERK1/2 pathway depending on fibrotic ECM. Int Immunopharmacol 2024; 141:112947. [PMID: 39213871 DOI: 10.1016/j.intimp.2024.112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Irreversible pulmonary fibrosis induced by paraquat is the most prevalent cause of death in patients with paraquat poisoning. Pulmonary fibrosis is characterized by abnormal deposition of extracellular matrix (ECM). Currently, the role of fibrotic ECM microenvironment in paraquat-induced pulmonary fibrosis has not been established. METHODS Rat pulmonary fibrosis model was induced by paraquat, ATN-161 (an integrin-β1 antagonist) was given to investigate their effect on Rat survival and pulmonary fibrosis. Lungs were decellularized to generate normal and fibrotic acellular ECM scaffolds using Triton and SDS. Fibroblasts were cocultured with ECM scaffolds to established 3D culture systems to investigate the relationship between fibrotic ECM and the differentiation of fibroblasts. Then we explored the effect of fibrotic ECM microenvironment systematically promoting on integrin-β1/FAK/ERK1/2 pathway and established 3D culture systems to investigate the relationship between fibrotic ECM and the differentiation of fibroblasts. RESULTS Antagonism of integrin-β1 could alleviate paraquat-induced pulmonary fibrosis and ameliorate survival status of rats. Compared to normal ECM, fibrotic extracellular microenvironment promoted the differentiation of fibroblasts to myofibroblasts. Antagonism of integrin-β1 could also ameliorate the promotion of fibrotic extracellular microenvironment on differentiation of fibroblasts to myofibroblasts. Fibrotic ECM microenvironment promotes fibroblasts transforming into myofibroblasts through integrin-β1/FAK/ERK1/2 signaling pathway. Moreover, this phenomenon holds independent on exogenous integrin-β1. CONCLUSIONS Activation of integrin-β1/FAK/ERK1/2 pathway aggravates paraquat-induced pulmonary fibrosis depend on fibrotic ECM and integrin-β1 may be a prospective therapeutic target for paraquat-induced pulmonary fibrosis in the future.
Collapse
Affiliation(s)
- Zhiyi Wang
- Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Key Laboratory of Precision General Practice and Health Management, Wenzhou 325027, China; Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingwen Yang
- Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Key Laboratory of Precision General Practice and Health Management, Wenzhou 325027, China
| | - Mengyun Tu
- Department of Clinical Laboratory, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Ran Zhang
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuan Ma
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haijuan Jin
- Theorem Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou 325099, China
| | - Jie Weng
- Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Key Laboratory of Precision General Practice and Health Management, Wenzhou 325027, China
| | - Mengying Xie
- Department of General Practice, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Key Laboratory of Precision General Practice and Health Management, Wenzhou 325027, China
| | - Liang Wang
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, US
| | - Zhibin Wang
- Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Chan Chen
- Wenzhou Key Laboratory of Precision General Practice and Health Management, Wenzhou 325027, China; Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Bioscaffold Transplantation and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Etcheverry M, Zanini GP. Kinetic study of paraquat adsorption on alginate beads loaded with montmorillonite using shrinking core model. Int J Biol Macromol 2024; 281:136515. [PMID: 39406329 DOI: 10.1016/j.ijbiomac.2024.136515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Water contamination by pesticides threatens clean water availability, highlighting the need for advanced sustainable sanitation systems. Adsorption using biopolymers and minerals is prominent. Understanding process kinetics and influencing parameters is crucial for optimizing contaminant-adsorbent contact time for safe water disposal. The adsorption kinetics of Paraquat (PQ) at three initial concentrations (C0 = 19, 38, and 50 ppm) were studied using alginate-montmorillonite (Alg-Mt) beads with varying clay contents and a 30-min gelation time. The beads were characterized by elemental analysis, TG/DTG, FTIR, XRD, SEM, and EDX. The Shrinking Core Model (SCM) was applied to the experimental data to determine if the diffusion of PQ within the beads depended on clay content. The effective diffusion coefficient (Dp) in the adsorbent increased from 7 × 10-12 to 1 × 10-10 m2 s-1 with increasing clay content, suggesting that diffusion into the interior depended on interaction with the mineral. This investigation also demonstrated that the synthesis of beads at different gelation times does not impact either the adsorption capacity or the adsorption rate of the herbicide on the materials. These results indicate that diffusion depends solely on the interaction of the cationic herbicide with the clay encapsulated within the bead hydrogel.
Collapse
Affiliation(s)
- Mariana Etcheverry
- Instituto de Química del Sur (INQUISUR), CONICET - Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina.
| | - Graciela P Zanini
- Instituto de Química del Sur (INQUISUR), CONICET - Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina.
| |
Collapse
|
4
|
Li A, Wu S, Li Q, Wang Q, Chen Y. Elucidating the Molecular Pathways and Therapeutic Interventions of Gaseous Mediators in the Context of Fibrosis. Antioxidants (Basel) 2024; 13:515. [PMID: 38790620 PMCID: PMC11117599 DOI: 10.3390/antiox13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis.
Collapse
Affiliation(s)
- Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Siyuan Wu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qian Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| |
Collapse
|
5
|
Li N, Huang Y, Yi Y, Qian J, Li Q, Xu SQ, Wang HF, Wu XX, Peng JC, Li LH, Yao JJ, Liu XR. Analysis of abnormal expression of signaling pathways in PQ-induced acute lung injury in SD rats based on RNA-seq technology. Inhal Toxicol 2024; 36:1-12. [PMID: 38175690 DOI: 10.1080/08958378.2023.2300373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Background: Paraquat (PQ) plays an important role in agricultural production due to its highly effective herbicidal effect. However, it has led to multiple organ failure in those who have been poisoned, with damage most notable in the lungs and ultimately leading to death. Because of little research has been performed at the genetic level, and therefore, the specific genetic changes caused by PQ exposure are unclear.Methods: Paraquat poisoning model was constructed in Sprague Dawley (SD) rats, and SD rats were randomly divided into Control group, paraquat (PQ) poisoning group and Anthrahydroquinone-2,6-disulfonate (AH2QDS) treatment group. Then, the data was screened and quality controlled, compared with reference genes, optimized gene structure, enriched at the gene expression level, and finally, signal pathways with significantly different gene enrichment were screened.Results: This review reports on lung tissues from paraquat-intoxicated Sprague Dawley (SD) rats that were subjected to RNA-seq, the differentially expressed genes were mainly enriched in PI3K-AKT, cGMP-PKG, MAPK, Focal adhesion and other signaling pathways.Conclusion: The signaling pathways enriched with these differentially expressed genes are summarized, and the important mechanisms mediated through these pathways in acute lung injury during paraquat poisoning are outlined to identify important targets for AH2QDS treatment of acute lung injury due to paraquat exposure, information that will be used to support a subsequent in-depth study on the mechanism of PQ action.
Collapse
Affiliation(s)
- Nan Li
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Yue Huang
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Yang Yi
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Jin Qian
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Qi Li
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Shuang-Qin Xu
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Hang-Fei Wang
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Xin-Xin Wu
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ji-Chao Peng
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li-Hua Li
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jin-Jian Yao
- Emergency Department, Hainan General Hospital, Affiliated to Hainan Medical University, Haikou, China
| | - Xiao-Ran Liu
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| |
Collapse
|
6
|
İpek E, Aşıcı GSE, Kurt BK, Epikmen ET, Özsoy ŞY, Tunca R. Carbon monoxide (CO) derived from the CO-releasing molecule CORM-2 reduces peritoneal adhesion formation in a rat model. Mol Biol Rep 2023; 50:8483-8495. [PMID: 37639152 DOI: 10.1007/s11033-023-08753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Although low-dose carbon monoxide (CO) administration has been shown to have an anti-fibrotic effect in various fibrotic diseases, its effects on peritoneal adhesion (PA), one of the postoperative complications, are not elucidated. In this study, the effect of CO-releasing tricarbonyldichlororuthenium (II) dimer (CORM-2) administration on the formation of PA and the underlying factors of its potential effect were investigated. METHODS AND RESULTS After the induction of PA, rats were divided into four groups with 8 rats in each group. The rats received either (i) dimethyl sulfoxide:saline solution (1:10) as a vehicle, (ii) 2.5 mg/kg CORM-2, (iii) 5 mg/kg CORM-2, or (iv) inactive (i) CORM (iCORM) intragastrically every day for a duration of 7 days. PA was not induced in rats (n = 8) designated as sham controls. Gross, histological, immunohistochemical and quantitative real-time polymerase chain reaction analyses were performed to evaluate the effectiveness of CORM-2 administration. Gross analysis showed that CORM-2 administration reduced PA formation compared to rats treated with vehicle. Histological and immunohistochemical examinations showed that increased collagen deposition, myofibroblast accumulation, microvessel density, and M1 macrophage count in the peritoneal fibrosis area of vehicle-treated rats decreased following CORM-2 treatments. PCR analyses showed that CORM-2 treatments decreased hypoxia-induced Hif1a, profibrotic Tgfb1, ECM components Col1a1 and Col3a1, collagen degradation suppressor Timp1, fibrinolysis inhibitor Serpine1, and pro-inflammatory Tnf mRNA expressions, while increasing the M2 macrophage marker Arg1 mRNA expression. CONCLUSIONS These results suggested that CORM-2 administration reduces PA formation by affecting adhesiogenic processes such as pro-inflammatory response, fibrinolytic system, angiogenesis and fibrogenesis.
Collapse
Affiliation(s)
- Emrah İpek
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey.
| | - Gamze Sevri Ekren Aşıcı
- Department of Biochemistry, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Büşra Kibar Kurt
- Department of Surgery, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Erkmen Tuğrul Epikmen
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Şule Yurdagül Özsoy
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Recai Tunca
- Department of Pathology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
7
|
Berrino E, Micheli L, Carradori S, di Cesare Mannelli L, Guglielmi P, De Luca A, Carta F, Ghelardini C, Secci D, Supuran CT. Novel Insights on CAI-CORM Hybrids: Evaluation of the CO Releasing Properties and Pain-Relieving Activity of Differently Substituted Coumarins for the Treatment of Rheumatoid Arthritis. J Med Chem 2023; 66:1892-1908. [PMID: 36701258 DOI: 10.1021/acs.jmedchem.2c01706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pain control is among the most important healthcare services in patients affected by rheumatoid arthritis (RA), but the current therapeutic options (i.e., disease-modifying anti-rheumatic drugs) are limited by the risk of the side effects. In this context, we proposed an innovative approach based on the hybridization between carbonic anhydrase inhibitors (CAIs) and CO releasing molecules (CORMs). The resulting CAI-CORM hybrids were revealed to possess strong anti-inflammatory effects in in vitro models of diseases and to relieve ache symptoms in an in vivo RA rat model. In this work, we have deepened the study of these promising hybrids, designing a library of coumarin-based compounds, also including internal dicobalt hexacarbonyl systems. The results obtained from the CO releasing study, the CA inhibitory activity, and the in vivo pain-relief efficacy evaluation in the RA rat model confirmed the success of this strategy, allowing us to consider CAI-CORM hybrids promising anti-nociceptive agents against arthritis.
Collapse
Affiliation(s)
- Emanuela Berrino
- Università degli Studi di Firenze, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino Florence, Italy.,Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Laura Micheli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Lorenzo di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro De Luca
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino Florence, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, V.le G. Pieraccini 6, 50139 Firenze, Italy
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino Florence, Italy
| |
Collapse
|
8
|
HIF-1α promotes paraquat induced acute lung injury and implicates a role NF-κB and Rac2 activity. Toxicology 2023; 483:153388. [PMID: 36462643 DOI: 10.1016/j.tox.2022.153388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Paraquat (PQ) is a bipyridine herbicide and oral exposure is the main way of PQ exposure with a very high mortality. At present, it is believed that large number of oxygen free radicals are generated and cause lipid peroxidation of tissue and organ cell membranes after PQ is absorbed. PQ exposure could cause multiple organ dysfunction, among which acute lung injury is the most common and most serious. However, its specific mechanism is still unclear. In this study, the C57BL/6J mouse (alveolar epithelial cell-specific knockout HIF-1α) model of acute lung injury (40 mg/kg PQ) at several time pointes and a model of acute type II alveolar epithelial cell (A549, 800 μM PQ) injury constructed. The oxidative stress (ROS, MDA) and inflammatory response (IL-1β, IL-6, TNF-α) were significantly inhibited in the alveolar epithelial cell-specific knockout of HIF-1α mice and siRNA technology to inhibit HIF-1α in alveolar epithelial cells. Further proteomic analysis showed that the expression of Rac2 protein, which is closely related to oxidative stress, was significantly increased after PQ exposure. And the inhibition of Rac2 expression in vitro significantly alleviated PQ-induced oxidative stress and inflammatory response. The expression of Rac2 protein was regulated by HIF-1α. The above suggests that HIF-1α may promote oxidative stress and inflammatory response in alveolar epithelial cells by regulating the expression of Rac2, and then participate in the promotion of PQ exposure-induced acute lung injury.
Collapse
|
9
|
Qin Z, Shi Y, Qiao J, Lin G, Tang B, Li X, Zhang J. CFD simulation of porous microsphere particles in the airways of pulmonary fibrosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107094. [PMID: 36087437 PMCID: PMC9436827 DOI: 10.1016/j.cmpb.2022.107094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Pulmonary fibrosis (PF) is a chronic progressive disease with an extremely high mortality rate and is a complication of COVID-19. Inhalable microspheres have been increasingly used in the treatment of lung diseases such as PF in recent years. Compared to the direct inhalation of drugs, a larger particle size is required to ensure the sustained release of microspheres. However, the clinical symptoms of PF may lead to the easier deposition of microspheres in the upper respiratory tract. Therefore, it is necessary to understand the effects of PF on the deposition of microspheres in the respiratory tract. METHODS In this study, airway models with different degrees of PF in humans and mice were established, and the transport and deposition of microspheres in the airway were simulated using computational fluid dynamics. RESULTS The simulation results showed that PF increases microsphere deposition in the upper respiratory tract and decreases bronchial deposition in both humans and mice. Porous microspheres with low density can ensure deposition in the lower respiratory tract and larger particle size. In healthy and PF humans, porous microspheres of 10 µm with densities of 700 and 400 kg/m³ were deposited most in the bronchi. Unlike in humans, microspheres larger than 4 µm are completely deposited in the upper respiratory tract of mice owing to their high inhalation velocity. For healthy and PF mice, microspheres of 6 µm with densities of and 100 kg/m³ are recommended. CONCLUSIONS The results showed that with the exacerbation of PF, it is more difficult for microsphere particles to deposit in the subsequent airway. In addition, there were significant differences in the deposition patterns among the different species. Therefore, it is necessary to process specific microspheres from different individuals. Our study can guide the processing of microspheres and achieve differentiated drug delivery in different subjects to maximize therapeutic effects.
Collapse
Affiliation(s)
- Zhilong Qin
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jinwei Qiao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Bingtao Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Xuelin Li
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
10
|
Linares-Hernández I, Antonio Castillo-Suárez L, Ibanez JG, Vasquez-Medrano R, Miguel López-Rebollar B, Santoyo-Tepole F, Alejandra Teutli-Sequeira E, Martínez-Cienfuegos IG. Degradation of commercial paraquat in a solar-Fenton pilot lagoon using iron oxalate as a chelating agent: Hydro-thermal analysis with CFD. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Abstract
Since the industrial revolution, air pollution has become a major problem causing several health problems involving the airways as well as the cardiovascular, reproductive, or neurological system. According to the WHO, about 3.6 million deaths every year are related to inhalation of polluted air, specifically due to pulmonary diseases. Polluted air first encounters the airways, which are a major human defense mechanism to reduce the risk of this aggressor. Air pollution consists of a mixture of potentially harmful compounds such as particulate matter, ozone, carbon monoxide, volatile organic compounds, and heavy metals, each having its own effects on the human body. In the last decades, a lot of research investigating the underlying risks and effects of air pollution and/or its specific compounds on the airways, has been performed, involving both in vivo and in vitro experiments. The goal of this review is to give an overview of the recent data on the effects of air pollution on healthy and diseased airways or models of airway disease, such as asthma or chronic obstructive pulmonary disease. Therefore, we focused on studies involving pollution and airway symptoms and/or damage both in mice and humans.
Collapse
|