1
|
Rodriguez-Carrillo A, Vela-Soria F, Smagulova F, Fernández MF, Freire C. Association between PFAS exposure and metabolic-related biomarkers in Spanish adolescents. ENVIRONMENTAL RESEARCH 2025; 273:121171. [PMID: 39978619 DOI: 10.1016/j.envres.2025.121171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) exert endocrine disruptive effects on the endocrine-metabolic axis. Emerging knowledge suggests that kisspeptin may play a key role in these effects. OBJECTIVE To assess the cross-sectional association of blood PFAS concentrations with kisspeptin levels, KISS1 gene DNA methylation, and metabolic-related biomarkers in adolescent males from the Spanish INMA-Granada cohort. METHODS Seven PFAS and twelve biomarkers (glucose-GLU, total cholesterol-TC, triglycerides, LDL, HDL, ALP, AST, ALT, GGT, total bilirubin-BILT, direct bilirubin-BILD, and urea) were measured in plasma and serum, respectively, from 129 adolescent males (15-17 yrs). Systolic and diastolic blood pressure (SBP, DBP), pulse, z-scored body mass index, kisspeptin protein levels (n = 104) and whole blood KISS1 DNA methylation (n = 117) were determined. Linear regression models, weighted quantile sum (WQS), and Bayesian kernel machine (BKMR) were fit. RESULTS PFHpA was associated with lower GLU levels [% change per log-unit increase in plasma concentrations (95%CI) = -4.73 (-8.98;-0.28)], and PFUnDA with higher GLU, TC, and HDL levels. In models adjusted by kisspeptin level, PFOS was associated with higher SBP [3.42 (-0.12; 7.09)]. Additionally, PFNA and total PFAS concentrations were associated with higher kisspeptin levels [3.91 (0.55; 7.37) and 6.14 (0.47; 12.13), respectively]. Mixture models showed that combined PFAS exposure was associated with higher HDL, lower hepatic biomarkers (ALT, BILD) and higher kisspeptin levels. CONCLUSION Certain PFAS (e.g. PFUnDA) and their mixture were associated with metabolic-related biomarkers, mainly GLU, HDL, and SBP. These associations may be influenced by kisspeptin levels. More studies are needed to verify these observations.
Collapse
Affiliation(s)
- Andrea Rodriguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, 2400, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, Wilrijk, 2610, Belgium; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18016, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18016, Spain
| | - Fatima Smagulova
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, F-35000, France
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18016, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, 18016, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18016, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, Granada, 18016, Spain.
| |
Collapse
|
2
|
Du X, Xu X, Yu H, Du Z, Wu Y, Qian K, Xu J, Tao G, Zhang L, Zheng W. Thyrotoxic Effects of Mixed Exposure to Perfluorinated Compounds: Integrating Population-Based, Toxicogenomic, Animal, and Cellular Evidence to Elucidate Molecular Mechanisms and Identify Potential Effector Targets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18177-18189. [PMID: 39359169 DOI: 10.1021/acs.est.4c06287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are emerging environmental endocrine disruptors that may adversely affect the human endocrine system, particularly the thyroid gland, the largest endocrine gland in the human body. An epidemiologic survey was conducted involving 318 community residents in Shanghai, China, to assess PFAS exposure levels. The relationship between PFAS exposure and five thyroid function indicators was analyzed using Bayesian Kernel Regression (BKMR) and Weighted Quantile Sum Regression (WQS). Ten effector genes related to PFAS and thyroid diseases were identified through the Comparative Toxicogenomics Database (CTD) for bioinformatics analysis and pathways involved were explored through mediation analysis. In vivo validation of these effector genes was conducted using PCR, complemented by in vitro cellular experiments involving transcriptome sequencing and the construction of animal models to simulate mixed PFAS exposure in the general population. Mixed PFAS exposure was found to impact thyroid health primarily through pathways related to lipid metabolism in toxicogenomic studies and resulted in the upregulation of key genes associated with lipid metabolism in animal models. Our results demonstrate that PFAS exposure could affect the expression of lipid metabolism pathways through the modulation of transcription factors, contributing to the development of thyroid disease.
Collapse
Affiliation(s)
- Xiushuai Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
- Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Xueming Xu
- Clinical Medical Research Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Hongjie Yu
- Jiading District Center for Disease Control and Prevention, Shanghai 201899, China
| | - Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
- Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Yitian Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Kelei Qian
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jing Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Ling Zhang
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
- Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Wang H, Zhang H, Hu S, Xu T, Yang Y, Cao M, Wei S, Song Y, Han J, Yin D. Insight into the differential toxicity of PFOA and PFBA based on a 3D-cultured MDA-MB-231 cell model. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133499. [PMID: 38219595 DOI: 10.1016/j.jhazmat.2024.133499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/26/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a category of high-concerned emerging contaminants which are suspected to correlate with various human adverse health outcomes including tumors. It is also a question whether short-chain PFASs are qualified alternatives under the regulation of long-chain PFASs. In this study, a three-dimensional (3D) culture system based on Gelatin methacrylate (GelMA) hydrogel matrix was used to investigate the impacts of 120-h perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA) exposure of MDA-MB-231 cells. The results showed that PFOA exposure promoted the proliferation, migration, and invasion of MDA-MB-231 cells in an environmentally relevant concentration range (0.1 to 10 μM), exhibiting a clear malignant-promoting risk. In contrast, PFBA only showed a trend to induce non-invasive cell migration. Hippo/YAP signaling pathway was identified as the contributor to the differences between the two PFASs. PFOA but PFBA reduced YAP phosphorylation and increased the nuclear content of YAP, which further facilitated abundant key factors of epithelial-mesenchymal transition (EMT) process. Our results provided a new idea for the carcinogenicity of PFOA using a 3D-based paradigm. Although the effects by PFBA were much milder than PFOA in the current test duration, the cell model suitable for longer exposure is still necessary to better assess the safety of alternative short-chain PFASs.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongchang Zhang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yiheng Yang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yiqun Song
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Han
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
4
|
Sadrabadi F, Alarcan J, Sprenger H, Braeuning A, Buhrke T. Impact of perfluoroalkyl substances (PFAS) and PFAS mixtures on lipid metabolism in differentiated HepaRG cells as a model for human hepatocytes. Arch Toxicol 2024; 98:507-524. [PMID: 38117326 PMCID: PMC10794458 DOI: 10.1007/s00204-023-03649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants with various adverse health effects in humans including disruption of lipid metabolism. Aim of the present study was to elucidate the molecular mechanisms of PFAS-mediated effects on lipid metabolism in human cells. Here, we examined the impact of a number of PFAS (PFOS, PFOA, PFNA, PFDA, PFHxA, PFBA, PFHxS, PFBS, HFPO-DA, and PMPP) and of some exposure-relevant PFAS mixtures being composed of PFOS, PFOA, PFNA and PFHxS on lipid metabolism in human HepaRG cells, an in vitro model for human hepatocytes. At near cytotoxic concentrations, the selected PFAS and PFAS mixtures induced triglyceride accumulation in HepaRG cells and consistently affected the expression of marker genes for steatosis, as well as PPARα target genes and genes related to lipid and cholesterol metabolism, pointing to common molecular mechanisms of PFAS in disrupting cellular lipid and cholesterol homeostasis. PPARα activation was examined by a transactivation assay in HEK293T cells, and synergistic effects were observed for the selected PFAS mixtures at sum concentrations higher than 25 µM, whereas additivity was observed at sum concentrations lower than 25 µM. Of note, any effect observed in the in vitro assays occurred at PFAS concentrations that were at least four to five magnitudes above real-life internal exposure levels of the general population.
Collapse
Affiliation(s)
- Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jimmy Alarcan
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Heike Sprenger
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
5
|
Sim KH, Oh HS, Lee C, Eun H, Lee YJ. Evaluation of the Effect of Perfluorohexane Sulfonate on the Proliferation of Human Liver Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6868. [PMID: 37835138 PMCID: PMC10572997 DOI: 10.3390/ijerph20196868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Perfluorohexane sulfonate (PFHxS) is a widely detected replacement for legacy long-chain perfluoroalkyl substances (PFAS) in the environment and human blood samples. Its potential toxicity led to its recent classification as a globally regulated persistent organic pollutant. Although animal studies have shown a positive association between PFHxS levels and hepatic steatosis and hepatocellular hypertrophy, the link with liver toxicity, including end-stage liver cancer, remains inconclusive. In this study, we examined the effects of PFHxS on the proliferation of Hep3B (human hepatocellular carcinoma) and SK-Hep1 (human liver sinusoidal endothelial cells). Cells were exposed to different PFHxS concentrations for 24-48 h to assess viability and 12-14 days to measure colony formation. The viability of both cell lines increased at PFHxS concentrations <200 μM, decreased at >400 μM, and was highest at 50 μM. Colony formation increased at <300 μM and decreased at 500 μM PFHxS. Consistent with the effect on cell proliferation, PFHxS increased the expression of proliferating cell nuclear antigen (PCNA) and cell-cycle molecules (CDK2, CDK4, cyclin E, and cyclin D1). In summary, PFHxS exhibited a biphasic effect on liver cell proliferation, promoting survival and proliferation at lower concentrations and being cytotoxic at higher concentrations. This suggests that PFHxS, especially at lower concentrations, might be associated with HCC development and progression.
Collapse
Affiliation(s)
- Kyeong Hwa Sim
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Hyeon Seo Oh
- Department of Neurology, Daegu Catholic University Medical Center, Daegu 42472, Republic of Korea;
| | - Chuhee Lee
- Department of Biochemistry & Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea;
| | - Heesoo Eun
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8604, Japan
| | - Youn Ju Lee
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
6
|
Khan EA, Grønnestad R, Krøkje Å, Bartosov Z, Johanson SM, Müller MHB, Arukwe A. Alteration of hepato-lipidomic homeostasis in A/J mice fed an environmentally relevant PFAS mixture. ENVIRONMENT INTERNATIONAL 2023; 173:107838. [PMID: 36822005 DOI: 10.1016/j.envint.2023.107838] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
In the present study, we have investigated liver lipid homeostasis and corresponding changes in transcript and functional product levels in A/J mice exposed to environmental relevant concentration of per- and polyfluoroalkyl substances (PFAS) mixture. Mice were fed environmentally relevant concentrations of a PFAS mixture during a period of 10 weeks. The concentrations of the 8 individual PFAS in the mixture were chosen based on measured concentrations in earthworms at a Norwegian skiing area. Our data show high liver accumulation of ∑PFAS in exposed mice, which paralleled significant elevation in body weight and hepatosomatic index (HSI) of male mice. UPC2 -MS/MS analysis in both positive and negative mode, respectively, indicated significant differences between control and exposure groups in the liver of exposed mice. Principal component analysis (PCA) of the features revealed separation of control and exposure groups in both sexes. From the significantly differential 207 lipids, only 72 were identified and shown to belong to eight different lipid classes. PCA of fatty acids (FAs) profile showed a clear separation between control and PFAS exposure groups in both female and male mice, with differential abundant levels of 5 and 4 hydrolyzed FAs, respectively. Transcript and protein analysis of genes associated with lipid homeostasis (ppar-α and β, lxr-α and β, rxr, fasn and srebp) showed that PFAS exposure produced sex- and individual response related alterations. Glutathione reductase (Gr) activity showed exposure-related changes in both female and male mice, compared with controls. Overall, the present study has demonstrated changes in lipid metabolism after PFAS exposure, showing that PFAS accumulation in the liver resulted to hepatotoxic effects, potential interference with membrane lipid profile and homeostasis, and oxidative stress. Given the structural similarity with FAs, interaction between PFAS and nuclear receptors such as PPARs may have severe consequences for general health and physiology in exposed animals and humans.
Collapse
Affiliation(s)
- Essa A Khan
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Randi Grønnestad
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Åse Krøkje
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zdenka Bartosov
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Silje Modahl Johanson
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Mette H B Müller
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|