1
|
Chen Q, Wang Z, Guo W, Xue A, Bian G, Guo X, Lu S, Zeng P, Li H, Zhu X, Huang Y, Cen X, Bu Q. Sea Squirt-Derived Peptide WLP Mitigates OKA-Induced Alzheimer's Disease-like Phenotypes in Human Cerebral Organoid. Antioxidants (Basel) 2025; 14:553. [PMID: 40427435 PMCID: PMC12108538 DOI: 10.3390/antiox14050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/27/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
Alzheimer's disease (AD), a prevalent neurodegenerative disorder in the elderly, poses significant humanistic and economic burdens worldwide. Previously, we identified Trp-Leu-Pro (WLP), a novel antioxidant peptide derived from the sea squirt (Halocynthia roretzi); however, its effects on AD remained unexplored. In this study, we developed a rapid and efficient method to generate AD cerebral organoids with consistent quality using okadaic acid (OKA) exposure. This study aimed to evaluate the protective effects of WLP on OKA-induced AD pathology in cerebral organoids and elucidate its underlying mechanisms. Our results demonstrated that cerebral organoids exposed to 25 nM OKA successfully recapitulated hallmark AD pathologies, including amyloid-beta (Aβ) plaque deposits, neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau proteins, and neuronal loss. WLP treatment significantly enhanced cell viability, increased the proportion of neuronal progenitor cells, and reduced Aβ plaques and NFTs in OKA-induced cerebral organoids. Furthermore, transcriptomic analysis revealed that the neuroprotective effects of WLP are primarily mediated through the regulation of synapse-related and oxidative stress pathways. These findings highlight the potential of WLP as a promising nutraceutical candidate for AD prevention.
Collapse
Affiliation(s)
- Qiqi Chen
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.C.); (Z.W.); (X.G.); (S.L.); (P.Z.); (H.L.); (Y.H.)
| | - Zhiqiu Wang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.C.); (Z.W.); (X.G.); (S.L.); (P.Z.); (H.L.); (Y.H.)
| | - Wei Guo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; (W.G.); (A.X.); (G.B.); (X.Z.); (X.C.)
| | - Aiqin Xue
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; (W.G.); (A.X.); (G.B.); (X.Z.); (X.C.)
| | - Guohui Bian
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; (W.G.); (A.X.); (G.B.); (X.Z.); (X.C.)
| | - Xinhua Guo
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.C.); (Z.W.); (X.G.); (S.L.); (P.Z.); (H.L.); (Y.H.)
| | - Shiya Lu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.C.); (Z.W.); (X.G.); (S.L.); (P.Z.); (H.L.); (Y.H.)
| | - Pinli Zeng
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.C.); (Z.W.); (X.G.); (S.L.); (P.Z.); (H.L.); (Y.H.)
| | - Hao Li
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.C.); (Z.W.); (X.G.); (S.L.); (P.Z.); (H.L.); (Y.H.)
| | - Xizhi Zhu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; (W.G.); (A.X.); (G.B.); (X.Z.); (X.C.)
| | - Yan Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.C.); (Z.W.); (X.G.); (S.L.); (P.Z.); (H.L.); (Y.H.)
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; (W.G.); (A.X.); (G.B.); (X.Z.); (X.C.)
| | - Qian Bu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.C.); (Z.W.); (X.G.); (S.L.); (P.Z.); (H.L.); (Y.H.)
| |
Collapse
|
2
|
Qiu J, Yin C, Li A, Yang Y, Wang G, Li D. Effects of microorganisms, temperature and irradiation on the stability of dissolved okadaic acid and dinophysistoxin-1 in seawater. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106969. [PMID: 39874871 DOI: 10.1016/j.marenvres.2025.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/13/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Diarrhetic shellfish toxins (DSTs) are widespread in marine environments, posing potential threats to marine ecosystems, shellfish aquaculture, and human health. Despite their prevalence, knowledge of the stability of dissolved DSTs in seawater is still limited. This study aimed to investigate the effects of bacteria, temperature, and irradiation on the stability of dissolved okadaic acid (OA) and dinophysistoxin-1 (DTX1) in seawater. Results indicated that bacteria did not contribute to the biodegradation of OA and DTX1, while their growth was inhibited by the toxins over the 7-day experiment. During a 28-day period without irradiation at 4 °C, 20 °C, and 37 °C, no degradation of OA was observed, whereas significant degradation of DTX1 occurred, with concentrations dropping to 58%-78% of the initial concentration at the end of the experiment. Under xenon lamp irradiation at 1000 W, the concentrations of DTX1 decreased by 15%-19% in seawater after 160 min, while the concentrations of OA showed minimal change. Conversely, both OA and DTX1 underwent significant degradation under mercury lamp irradiation with an irradiation intensity-dependent pattern. Additionally, the degradation rates of OA and DTX1 increased with higher concentrations of dissolved organic matter in the range of 1.2-15 mg C L⁻1. This study enhances the understanding of DST stability in seawater under varying temperature and light conditions, highlighting the complexities involved in their degradation processes. The results of this study found that ultraviolet is an important driving environmental factor for OA and DTX1 degradation in the natural marine environment. In case of harmful algal blooms with associated phycotoxins, ultraviolet irradiation can be used as a removal method for OA and DTX1.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China
| | - Chao Yin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China.
| | - Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
3
|
Li D, Qiu J, Wang X, Li A, Wu G, Yin C, Yang Y. Spatial distribution of lipophilic shellfish toxins in seawater and sediment in the Bohai Sea and the Yellow Sea, China. CHEMOSPHERE 2024; 362:142780. [PMID: 38971437 DOI: 10.1016/j.chemosphere.2024.142780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Lipophilic shellfish toxins (LSTs) are widely distributed in marine environments worldwide, potentially threatening marine ecosystem health and aquaculture safety. In this study, two large-scale cruises were conducted in the Bohai Sea and the Yellow Sea, China, in spring and summer 2023 to clarify the composition, concentration, and spatial distribution of LSTs in the water columns and sediments. Results showed that okadaic acid (OA), dinophysistoxin-1 (DTX1) and/or pectenotoxin-2 (PTX2) were detected in 249 seawater samples collected in spring and summer. The concentrations of ∑LSTs in seawater were ranging of ND (not detected) -13.86, 1.60-17.03, 2.73-17.39, and 1.26-30.21 pmol L-1 in the spring surface, intermediate, bottom water columns and summer surface water layers, respectively. The detection rates of LSTs in spring and summer seawater samples were 97% and 100%, respectively. The high concentrations of ∑LSTs were mainly distributed in the north Yellow Sea and the northeast Bohai Sea in spring, and in the northeast Yellow Sea, the waters around Laizhou Bay and Rongcheng Bay in summer. Similarly, only OA, DTX1 and PTX2 were detected in the surface sediments. Overall, the concentration of ∑LSTs in the surface sediments of the northern Yellow Sea was higher than that in other regions. In sediment cores, PTX2 was mainly detected in the upper sediment samples, whereas OA and DTX1 were detected in deeper sediments, and LSTs can persist in the sediments for a long time. Overall, OA, DTX1 and PTX2 were widely distributed in the water column and surface sediments in the Bohai Sea and the Yellow Sea, China. The results of this study contribute to the understanding of spatial distribution of LSTs in seawater and sediment environmental media and provide basic information for health risk assessment of phycotoxins.
Collapse
Affiliation(s)
- Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Xiaoyun Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Guangyao Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chao Yin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
4
|
Topal A, Oğuş H, Sulukan E, Comaklı S, Ceyhun SB. Okadaic acid enhances NfKB, TLR-4, caspase 3, ERK ½, c-FOS, and 8-OHdG signaling pathways activation in brain tissues of zebrafish larvae. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109529. [PMID: 38561069 DOI: 10.1016/j.fsi.2024.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
This study was designed to investigate the potential neuronal damage mechanism of the okadaic acid (OA) in the brain tissues of zebrafish embryos by evaluating in terms of immunofluorescence of Nf KB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG signaling pathways. We also evaluated body malformations. For this purpose, zebrafish embryos were exposed to 0.5 μg/ml, 1 μg/ml and 2.5 μg/ml of OA for 5 days. After application, FITC/GFP labeled protein-specific antibodies were used in immunofluorescence assay for NfKB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG respectively. The results indicated that OA caused immunofluorescence positivity of NfKB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG in a dose-dependent manner in the brain tissues of zebrafish embryos. Pericardial edema (PE), nutrient sac edema (YSE) and body malformations, tail malformation, short tail and head malformation (BM) were detected in zebrafish embryos. These results suggest that OA induces neuronal damage by affecting the modulation of DNA damage, apoptotic, and inflammatory activities in the brain tissues of zebrafish embryos. The increase in signaling pathways shows that OA can cause damage in the structure and function of brain nerve cells. Our results provide a new basis for the comprehensive assessment of the neural damage of OA and will offer enable us to better understand molecular the mechanisms underlying the pathophysiology of OA toxicity.
Collapse
Affiliation(s)
- Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey.
| | - Hatice Oğuş
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey
| | - Ekrem Sulukan
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey
| | - Selim Comaklı
- Department of Pathology, Faculty of Veterinary, Atatürk University, TR-25030, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey; Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| |
Collapse
|
5
|
Yang Y, Li A, Qiu J, Gao D, Yin C, Li D, Yan W, Dang H, Li P, Wu R, Han L, Wang X. Responses of the intestinal microbiota to exposure of okadaic acid in marine medaka Oryzias melastigma. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133087. [PMID: 38035524 DOI: 10.1016/j.jhazmat.2023.133087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
It is still limited that how the microalgal toxin okadaic acid (OA) affects the intestinal microbiota in marine fishes. In the present study, adult marine medaka Oryzias melastigma was exposed to the environmentally relevant concentration of OA (5 μg/L) for 10 days, and then recovered in fresh seawater for 10-days depuration. Analysis of taxonomic composition and diversity of the intestinal microbiota, as well as function prediction analysis and histology observation were carried out in this study. Functional prediction analysis indicated that OA potentially affected the development of colorectal cancer, protein and carbohydrate digestion and absorption functions, and development of neurodegenerative diseases like Parkinson's disease, which may be associated with changes in Proteobacteria and Firmicutes in marine medaka. Significant increases of C-reactive protein (CRP) and inducible nitric oxide synthase (iNOS) levels, as well as the changes of histology of intestinal tissue demonstrated that an intestinal inflammation was induced by OA exposure in marine medaka. This study showed that the environmental concentrations of OA could harm to the intestinal microbiota thus threatening the health of marine medaka, which hints that the chemical ecology of microalgal toxins should be paid attention to in future studies.
Collapse
Affiliation(s)
- Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Dongmei Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Chao Yin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenhui Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hui Dang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Peiyao Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ruolin Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lilin Han
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaoyun Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
6
|
Han L, Qiu J, Li A, Li D, Yang Y, Wang G, Li P. Effects of marine phycotoxin dinophysistoxin-1 on the growth and cell cycle of Isochrysis galbana. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109732. [PMID: 37611885 DOI: 10.1016/j.cbpc.2023.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The phycotoxin dinophysistoxins are widely distributed in the global marine environments and potentially threaten marine organisms and human health. The mechanism of the dinophysistoxin toxicity in inhibiting the growth of microalgae is less well understood. In this study, effects of the dissolved dinophysistoxin-1 (DTX1) on the growth, pigment contents, PSII photosynthetic efficiency, oxidative stress response and cell cycle of the marine microalga Isochrysis galbana were investigated. Growth of I. galbana was significantly inhibited by DTX1 with 0.6-1.5 μmol L-1 in a 96-h batch culture, corresponding the 96 h-EC50 of DTX1 at 0.835 μmol L-1. The maximum quantum yield of PSII (Fv/Fm), and light utilization efficiency (α) were obviously reduced by DTX1 at 1.5 μmol L-1 during 96-h exposure. Contents of most of pigments were generally reduced by DTX1 with a dose-depend pattern in microalgal cells except for diatoxanthin. The ROS levels were increased by DTX1 with 0.6-1.5 μmol L-1 after 72-h exposure, while the contents or activities of MDA, GSH, SOD and CAT were significantly increased by DTX1 at 1.5 μmol L-1 at 96 h. The inhibitory effect of DTX1 on the growth of I. galbana was mainly caused by the production of ROS in the cells. Cell cycle analysis showed that the I. galbana cell cycle was arrested by DTX1 at G2/M phase. This study enhances the understanding of the chemical ecology effects of DTX1 on marine microalgae and also provides fundamental data for deriving water quality criteria of DSTs for marine organisms.
Collapse
Affiliation(s)
- Lilin Han
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Peiyao Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
7
|
Wuerger LT, Birkholz G, Oberemm A, Sieg H, Braeuning A. Proteomic analysis of hepatic effects of okadaic acid in HepaRG human liver cells. EXCLI JOURNAL 2023; 22:1135-1145. [PMID: 38054204 PMCID: PMC10694344 DOI: 10.17179/excli2023-6458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
The marine biotoxin okadaic acid (OA) is produced by dinoflagellates and enters the human food chain by accumulating in the fatty tissue of filter-feeding shellfish. Consumption of highly contaminated shellfish can lead to diarrheic shellfish poisoning. However, apart from the acute effects in the intestine, OA can also provoke toxic effects in the liver, as it is able to pass the intestinal barrier into the blood stream. However, molecular details of OA-induced hepatotoxicity are still insufficiently characterized, and especially at the proteomic level data are scarce. In this study, we used human HepaRG liver cells and exposed them to non-cytotoxic OA concentrations for 24 hours. Global changes in protein expression were analyzed using 2-dimensional gel electrophoresis in combination with mass-spectrometric protein identification. The results constitute the first proteomic analysis of OA effects in human liver cells and indicate, amongst others, that OA affects the energy homeostasis, induces oxidative stress, and induces cytoskeletal changes.
Collapse
Affiliation(s)
- Leonie T.D. Wuerger
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Greta Birkholz
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|